
CSCI 1520: Algorithmic Aspects of Machine Learning (Spring 2025)

Written Assignment 1

Due at 11:59pm ET, Thursday, Feb 20

1. (5 points) The Jaccard similarity between two sets S and T is defined as sim(S, T) = |S∩T |
|S∪T | .

Recall that MinHash provides a family F of functions such that, for any S and T ,

Pr [h(S) = h(T)] = sim(S, T) ,

where h is chosen uniformly at random from F .
Suppose we want to find pairs of sets with Jaccard similarity at least 0.5. Let sim(S1, T1) = 0.6
and sim(S2, T2) = 0.4. For each algorithm below, compute the probability that the algorithm
incorrectly outputs “no” for (S1, T1) (false negative) and the probability that the algorithm
incorrectly outputs “yes” for (S2, T2) (false positive). In these algorithms, each function hi is
sampled independently and uniformly at random from F .
(Round your answer to 2 decimal places. For this question, you may use Mathematica,
Wolfram Alpha, or similar software/websites without explicitly mentioning them.)

(1) A single hash function: output “yes” iff h1(S) = h1(T).

(2) A 5-way AND followed by a 30-way OR: output “yes” iff∨29
i=0

(∧5
j=1

(
h5i+j(S) = h5i+j(T)

))
.

(3) A 5-way OR followed by a 30-way AND: output “yes” iff∧29
i=0

(∨5
j=1

(
h5i+j(S) = h5i+j(T)

))
.

2. (5 points) We will construct a family of locality-sensitive functions for the angular distance.
The angular distance between two points x, y ∈ Rn is the normalized angle between them:

d(x, y) =
1

π
cos−1

(
x⊤y

∥x∥2∥y∥2

)
.

Let v ∈ Rn be a unit vector drawn uniformly at random.

(1) Let n = 2, x = (1, 0), and y = (1,
√
3).

Compute d(x, y). Compute the probability that v⊤x and v⊤y have different signs.

1

(2) Prove that for any n ≥ 2, x ̸= 0, and y ̸= 0, we have

Pr[v⊤x and v⊤y have the same sign] = 1− d(x, y) .

(3) Given Part (2), construct a family F of functions for angular distance such that F is
(d1, d2, 1− d1, 1− d2)-sensitive for any 0 ≤ d1 < d2 ≤ 1.

Definition (Locality-Sensitive Functions). Let d be a metric and let d1 < d2. A family F of
functions is (d1, d2, p1, p2)-sensitive if, for f drawn uniformly at random from F :

• If d(x, y) ≤ d1, then Pr[f(x) = f(y)] ≥ p1.

• If d(x, y) ≥ d2, then Pr[f(x) = f(y)] ≤ p2.

3. (4 points) Bloom filters provide a space-efficient way to test set membership: Let S be a set
of m elements and let B be an n-bit array. Let (hi)

k
i=1 be k hash functions, each of which

maps an element to one of the n positions independently and uniformly at random.

Initially, all bits in B are set to 0. Then for each a ∈ S, we set B[hi(a)] to 1 for all 1 ≤ i ≤ k.
To test if an element x is in the set S, we check the bits B[hi(x)] for all 1 ≤ i ≤ k, and return
“yes” iff these bits are all 1.

(1) Consider a variant of Bloom filter where B is divided into k disjoint parts, one for each
hash function. Suppose n is a multiple of k, and each hash function maps an element to
one of n

k positions, i.e., 0 ≤ hi(x) ≤ n
k − 1 for all i and x.

For each a ∈ S, we set B[nk (i− 1) + hi(a)] to 1 for all 1 ≤ i ≤ k. To test if an element x
is in the set S, we return “yes” iff the bits B[nk (i− 1) + hi(x)] are all 1 for 1 ≤ i ≤ k.

What is the false positive rate of this approach?

What is the limit of the false positive rate when n
m and k are fixed and m→∞?

(2) Suppose we want to allow the set S to change over time. Can we generalize Bloom filters
to allow adding and removing elements from S?

(Hint: What if each position of B is an integer instead of a single bit?)

2

4. (1 bonus point) Consider the same setting as in Question 1. Compute the false negative and
false positive probabilities on input (S1, T1) and (S2, T2) for the following algorithm:

A majority rule over 99 hash functions: output “yes” iff

|{1 ≤ i ≤ 99 : hi(S) = hi(T)}| ≥ 50 .

5. (1 bonus point) Prove that any deterministic algorithm for computing a (1±0.1)-approximation
of the number of distinct elements in an n-element data stream must use Ω(n) bits of space.

(Hint: Suppose Alice has the first n
2 numbers and Bob has the last n

2 numbers. The following
claim might be useful.)

Claim 1. For all even m ≥ 2, there exists a set of bit strings S ⊆ {0, 1}m such that:

• Every bit string in S has exactly b = m
2 ones.

• Any two strings in S have at most b
2 overlapping ones.

• |S| ≥ 2cm for some universal constant c > 0.

6. (1 bonus point) Consider the problem of counting the number of distinct elements in a data
stream. Let 1 ≤ a1, . . . , an ≤ m denote the first n elements in the data stream. Let d denote
the number of distinct elements in (a1, . . . , an).

Consider the following algorithm. Algorithm ?? hashes every element in the stream, maintains
the t smallest distinct hash values, and then uses the t-th smallest hash value to estimate d.

We write [n] for {1, . . . , n}.

Algorithm 1: Estimating the number of distinct elements.

Input : m ≥ 10, n ≥ 1, 0 < ϵ < 1, and a stream of n numbers 1 ≤ a1, . . . , an ≤ m.
Output: an estimation of the number of distinct elements in (a1, . . . , an).
Let M = m3 and t = 40

ϵ2
.

Suppose h is a hash function that maps [m] to [M] uniformly at random.
Initialize S ← ∅.
for i = 1 to n do

if h(ai) /∈ S then
if |S| < t then

S ← S ∪ {h(ai)}.
else

If h(ai) is smaller than the largest number in S, replace that number with h(ai).

if |S| < t then
return |S|.

else
Let v be the largest number in S.

return d̃ = tM
v .

3

(1) Assume that h can be stored for free and h(x) can be evaluated in O(1) time. Show that
implementing Algorithm ?? using (balanced) binary search trees requires O(logm

ϵ2
) bits

of space, and each iteration of the for loop runs in time O(logm log(1/ϵ)).

Next, we will prove one side of the correctness of Algorithm ??: Pr[d̃ > (1 + ϵ)d] ≤ 1
10 (over

the randomness in h).

The event tM
v = d̃ > (1 + ϵ)d happens iff v < tM

(1+ϵ)d . In other words, for d̃ > (1 + ϵ)d to

happen, there must be at least t hash values that are less than tM
(1+ϵ)d ≤ (1− ϵ

2)
tM
d .

Because the output of Algorithm ?? does not depend on the order of the elements, we can
assume w.l.o.g. that a1, . . . , ad are the d distinct elements. Let Xi ∈ {0, 1} be the indicator
random variable for the event h(ai) ≤ (1− ϵ

2)
tM
d . Let Y =

∑d
i=1Xi.

That is, Y is the total number of hash values that are below the threshold, and we want to
upper bound Pr[Y ≥ t].

(2) Prove that E[Xi] ≤ (1− ϵ
2)

t
d and E[Y] ≤ (1− ϵ

2)t.

(3) Prove that var[Xi] ≤ (1− ϵ
2)

t
d ≤

t
d and var[Y] ≤ t.

(Hint: You can use the following facts without proving them.)

• For two random variables X1 and X2, we have E[X1 +X2] = E[X1] + E[X2].

• For two independent random variables X1 and X2, var[X1 +X2] = var[X1] + var[X2].

Consequently, by Chebyshev’s inequality, Parts (3) and (4), and the choice of t = 40
ϵ2
,

Pr[d̃ > (1 + ϵ)d] ≤ Pr[Y ≥ t] ≤ Pr
[
|Y − E[Y] | > ϵt

2

]
≤ var[Y]

(ϵt2)
2
≤ 4

ϵ2t
≤ 1

10
.

4

