
CSCI 0500: Data Structures, Algorithms, and Intractability (Fall 2025)

Assignment 3

1. (1 point) In this question, we consider another universal family of hash functions.

Definition 1. Fix key space U and table size m. Let H be a family of hash functions that
map U to {0, . . . ,m− 1}. We say H is universal if, for every pair of keys x, y ∈ U and x ̸= y,

we have |{h ∈ H : h(x) = h(y)}| ≤ |H|
m .

For simplicity, we assume that m is prime and |U | = mr for some positive integer r. We can
view each key k ∈ U as an r-digit number in base m: k = (kr−1, . . . , k0) where 0 ≤ ki ≤ m−1.

Consider the following family H of hash functions, where |H| = mr:

H = {ha : a = (ar−1, . . . , a0) ∈ {0, . . . ,m− 1}r} where ha(k) =

(
r−1∑
i=0

aiki

)
mod m.

We will prove that H is universal.

Fix any pair of keys x, y ∈ U with x ̸= y. We can view x and y as numbers in base m:
x = (xr−1, . . . , x0) and y = (yr−1, . . . , y0). Because x ̸= y, there is an index d with xd ̸= yd.

Your task is to prove that for every choice of (ai)i ̸=d ∈ {0, . . . ,m− 1}r−1, there is exactly one
choice of ad ∈ {0, . . . ,m−1} such that ha(x) = ha(y). Therefore, |{ha ∈ H : ha(x) = ha(y)}| =
mr−1 = |H|

m , so H is universal.

(Hint: You can use the following fact without proving it: Let m and 0 < b < m be integers.
If gcd(b,m) = 1, then there is a unique integer 0 < z < m such that bz ≡ 1 (mod m).)

2. (1 point) In class, we discussed using chaining to handle hash collisions, and we analyzed the
expected length of a chain when storing n keys in a hash table of size m. In this question, we
study the length of the longest chain.

For simplicity, assume that the hash function is truly random: it maps each key uniformly at
random to {0, . . . ,m− 1}. If we view each key as a ball and each entry in the table as a bin,
this is equivalent to throwing m balls independently and uniformly at random into n bins.
We focus on the case with m = n.

Prove that with probability at least 1− 1
n , the maximum-loaded bin has O

(
logn

log logn

)
balls.

(Hint: First upper bound the probability that the first bin has at least k balls. You may find

the inequality
(
n
k

)
= n!

k!(n−k)! ≤
nk

k! useful. Then, by symmetry and a union bound, we have

Pr[at least one bin has ≥ k balls] ≤ n · Pr[first bin has ≥ k balls].)

1

3. (1 point) In Q2, we saw that querying a key in a hash table with n stored keys can take

Θ
(

logn
log logn

)
time, even with ideal hash functions. In this question, we study perfect hashing,

which achieves O(1) worst-case query time and O(n) space.

For simplicity, we consider the following static hashing problem: A set S of n keys is given in
advance. The goal is to build a hash table for S that only supports querying whether a key
is in S, but not inserting or deleting keys.

Perfect hashing uses two levels of hashing. First, we choose a hash function h1 that maps the
n keys into a table of size m = n. For each index 0 ≤ j < m, let ℓj = |{k ∈ S : h1(k) = j}|
denote the number of keys mapped to slot j. The key idea is that, instead of chaining, we
create a second-level hash table of size ℓ2j to store these ℓj keys using a hash function h2,j .

(a) Prove that if h2 is chosen from a universal family of hash functions that map keys to
{0, . . . , ℓ2 − 1}, then the probability that h2 has a collision on ℓ given keys is at most 1

2 .

(b) Prove that if h1 is chosen uniformly from a universal family of hash functions that map

keys to {0, . . . ,m− 1} where m = n, then E
[∑m−1

j=0 ℓ2j

]
≤ 2n.

(Consequently, by Markov’s inequality, Pr
[∑

j ℓ
2
j ≥ 4n

]
≤ E[

∑
j ℓ

2
j]

4n ≤ 1
2 .)

To build the data structure, we repeatedly draw h1 until
∑

j ℓ
2
j ≤ 4n. Each draw succeeds

with probability at least 1
2 , so the expected number of trials is at most 2. Then, similarly for

each j, we repeatedly draw h2,j until no collisions happen on those ℓj keys. After a successful
(randomized) construction, the hash functions are fixed.

The total space is m +
∑

j ℓ
2
j ≤ 5n, which is O(n). Querying a key k takes O(1) worst-case

time because there are no collisions in the second-level tables: first compute j = h1(k) and
then check the h2,j(k)-th slot in the j-th second-level table.

2

