CSCI 0500: Data Structures, Algorithms, and Intractability (Fall 2025)
Assignment 3

1. (1 point) In this question, we consider another universal family of hash functions.

Definition 1. Fix key space U and table size m. Let H be a family of hash functions that
map U to {0,...,m —1}. We say H is universal if, for every pair of keys z,y € U and x # y,

we have [{h € H : h(z) = h(y)}| < ‘Z{n—‘

For simplicity, we assume that m is prime and |U| = m" for some positive integer r. We can
view each key k € U as an r-digit number in base m: k = (k,—1,..., ko) where 0 < k; < m—1.

Consider the following family #H of hash functions, where |H| = m":
r—1
H=A_{hg:a= (ar-1,...,a0) € {0,...,m —1}"} where hy(k)= (Z aiki> mod m.
i=0

We will prove that H is universal.

Fix any pair of keys z,y € U with © # y. We can view x and y as numbers in base m:
x=(Tp_1,...,20) and y = (yYr—1,...,Y0). Because x # y, there is an index d with z4 # yg4.

Your task is to prove that for every choice of (a;);zq € {0, ...,m —1}"~1, there is exactly one
choice of ag € {0, ...,m—1} such that he(z) = he(y). Therefore, [{hq € H : ho(x) = ha(y)}| =
m' = 256 9 is universal.

m ?
(Hint: You can use the following fact without proving it: Let m and 0 < b < m be integers.
If ged(b,m) = 1, then there is a unique integer 0 < z < m such that bz =1 (mod m).)

2. (1 point) In class, we discussed using chaining to handle hash collisions, and we analyzed the
expected length of a chain when storing n keys in a hash table of size m. In this question, we
study the length of the longest chain.

For simplicity, assume that the hash function is truly random: it maps each key uniformly at
random to {0,...,m — 1}. If we view each key as a ball and each entry in the table as a bin,
this is equivalent to throwing m balls independently and uniformly at random into n bins.
We focus on the case with m = n.

Prove that with probability at least 1 — %, the maximum-loaded bin has O(log’fgo Zn) balls.

(Hint: First upper bound the probability that the first bin has at least k balls. You may find
the inequality (Z) = ﬁlk), < %’f useful. Then, by symmetry and a union bound, we have
Pr[at least one bin has > k balls] < n - Pr[first bin has > k balls].)

3. (1 point) In Q2, we saw that querying a key in a hash table with n stored keys can take

© <IO§§) gn) time, even with ideal hash functions. In this question, we study perfect hashing,

which achieves O(1) worst-case query time and O(n) space.

For simplicity, we consider the following static hashing problem: A set S of n keys is given in
advance. The goal is to build a hash table for S that only supports querying whether a key
is in S, but not inserting or deleting keys.

Perfect hashing uses two levels of hashing. First, we choose a hash function h; that maps the
n keys into a table of size m = n. For each index 0 < j < m, let ¢; = [{k € S : hi(k) = j}|
denote the number of keys mapped to slot j. The key idea is that, instead of chaining, we
create a second-level hash table of size E? to store these ¢; keys using a hash function ho ;.

(a) Prove that if hy is chosen from a universal family of hash functions that map keys to
{0,...,£%2 — 1}, then the probability that hs has a collision on £ given keys is at most %

(b) Prove that if h; is chosen uniformly from a universal family of hash functions that map
keys to {0,...,m — 1} where m = n, then E[ZT:_Ol Bﬂ < 2n.

2
(Consequently, by Markov’s inequality, Pr [Z y E? > 4n} < E[ziijfj] < %)

To build the data structure, we repeatedly draw h; until y €]2~ < 4n. Each draw succeeds
with probability at least %, so the expected number of trials is at most 2. Then, similarly for
each j, we repeatedly draw ho ; until no collisions happen on those ¢; keys. After a successful
(randomized) construction, the hash functions are fixed.

The total space is m + 3, E? < 5n, which is O(n). Querying a key k takes O(1) worst-case
time because there are no collisions in the second-level tables: first compute j = hi(k) and
then check the hg j(k)-th slot in the j-th second-level table.

