
CSCI 0500: Data Structures, Algorithms, and Intractability (Fall 2025)

Assignment 2

Due at 11:59pm ET, Tuesday, Oct 14

1. (1 point) The following theorem provides tight asymptotic bounds for many recurrences that
arise in the analysis of divide-and-conquer algorithms. There is a more general version of the
theorem, but the following simple version is sufficient in most cases.

Theorem 1 (Master Theorem). Fix an integer a ≥ 1 and real numbers b > 1, c ≥ 0, and
d > 0. Consider the following recurrence:

T (n) =

{
a · T

(
n
b

)
+ nc if n > 1,

d if n = 1.

Assume that n is a power of b. Then,

T (n) =


Θ(nlogb a) if c < logb a,

Θ(nc log n) if c = logb a,

Θ(nc) if c > logb a.

You will prove this theorem and then use it to solve some recurrences. Note that

T (n) = a · T
(
n
b

)
+ nc

= a ·
(
a · T

(
n
b2

)
+
(
n
b

)c)
+ nc

= a2 · T
(
n
b2

)
+ a

bc · n
c + nc

= a3 · T
(
n
b3

)
+
(
a
bc

)2 · nc + a
bc · n

c + nc

= alogb n · T (1) + nc ·
(logb n)−1∑

i=0

(
a
bc

)i
= Θ(nlogb a) + nc ·

(logb n)−1∑
i=0

(
a
bc

)i
where the last step uses that alogb n = nlogb a and T (1) = d = Θ(1).

(a) Complete the proof of Theorem 1.

(Hint: Let r = a
bc . The second term is nc times the sum of a geometric series

(logb n)−1∑
i=0

ri.

You can analyze the three cases: r < 1, r = 1, and r > 1, and derive a tight asymptotic
bound for this sum in each case.)

1



(b) Use Theorem 1 to provide a tight asymptotic bound for each recurrence below. You can
assume that n is a power of 2 and T (1) = 1.

i. T (n) = T (n/2) + n.

ii. T (n) = 2T (n/2) + n.

iii. T (n) = T (n/2) + 1.

iv. T (n) = 3T (n/2) + n.

v. T (n) = 7T (n/2) + n2.

vi. T (n) = 2T (n/2) + 1.

2. (1 point) In this question, we study algorithms for computing the greatest common divisor
and the modular multiplicative inverse.

(a) Given two integers a ≥ b > 0, the Euclidean algorithm returns their greatest common
divisor gcd(a, b):

def gcd(a, b):

while b != 0:

(a, b) = (b, a % b)

return a

Prove that on input a ≥ b > 0, the algorithm uses O(log a) modulo operations in the
worst case.

(Hint: Consider how much a decreases after two iterations.)

(b) Given two integers a ≥ b > 0, the extended Euclidean algorithm returns three integers
(d, x, y) such that ax+ by = d = gcd(a, b).

def extended_gcd(a, b):

if b == 0:

return (a, 1, 0)

else:

(d, x1, y1) = extended_gcd(b, a % b)

x = y1

y = x1 - (a // b) * y1

return (d, x, y)

Prove the correctness of extended_gcd(a, b) using mathematical induction.

Remark. Let n and a be integers with 0 < a < n. A multiplicative inverse of a modulo
n is an integer y such that ay ≡ 1 (mod n), which exists if and only if gcd(a, n) = 1. A
multiplicative inverse can be computed by running the extended Euclidean algorithm on
input (n, a), which returns (1, x, y) with nx+ ay = 1. It follows that ay ≡ 1 (mod n).

2



3. (1 point) In class, we discussed how repeated squaring can speed up (modular) exponentiation.
In this question, we explore another application of repeated squaring.

The Fibonacci sequence is defined as:

Fn =


0 if n = 0,

1 if n = 1,

Fn−1 + Fn−2 if n ≥ 2.

Given Fk and Fk+1, the next number Fk+2 can be computed using matrix multiplication:(
Fk+2

Fk+1

)
=

(
1 1
1 0

)(
Fk+1

Fk

)
By mathematical induction, this implies(

Fn+1

Fn

)
=

(
1 1
1 0

)n(
F1

F0

)
.

Based on the above equation, design an algorithm fibonacci(n) that returns Fn.

You can use the function matrix_mult(A, B), which returns the product of two 2×2 matrices
A and B, without implementing it. For one call fibonacci(n), your algorithm should make
O(log n) calls to matrix_mult. (You do not need to analyze the runtime of your algorithm.)

3


