CSCI 0500: Data Structures, Algorithms, and Intractability (Fall 2025)
Assignment 2

Due at 11:59pm ET, Tuesday, Oct 14

1. (1 point) The following theorem provides tight asymptotic bounds for many recurrences that
arise in the analysis of divide-and-conquer algorithms. There is a more general version of the
theorem, but the following simple version is sufficient in most cases.

Theorem 1 (Master Theorem). Fiz an integer a > 1 and real numbers b > 1, ¢ > 0, and
d > 0. Consider the following recurrence:

T(n) = a-T(%)+n ifn>1,
"= d ifn=1.

Assume that n is a power of b. Then,

O(n'o8 ) if c < log,a,
T(n) =4 O(nlogn) if c=log,a,
O(n°) if ¢ > logy a.

You will prove this theorem and then use it to solve some recurrences. Note that

T(n)=a-T(%)+n°

)+ () nt g ont
(logym)—1
= T +nc 3 (§)
=0
(logy, n)—1

:@(nlogba)+nc_ Z (l%)z

=0
where the last step uses that a'°®™ = nl°8@ and T(1) = d = O(1).

(a) Complete the proof of Theorem 1.
(logy n)—1
(Hint: Let r = ;z. The second term is n® times the sum of a geometric series Z .
i=0
You can analyze the three cases: r < 1, r =1, and r > 1, and derive a tight asymptotic
bound for this sum in each case.)



(b) Use Theorem 1 to provide a tight asymptotic bound for each recurrence below. You can
assume that n is a power of 2 and 7'(1) = 1.

1.
1.
1ii.
v.
V.

vi.

T(n)=T(n/2) + n.

(n)
T(n)=T(n/2)+1
T(n)=3T(n/2)+n
T(n) =7T(n/2) + n?
T(n)=2T(n/2)+1

2. (1 point) In this question, we study algorithms for computing the greatest common divisor
and the modular multiplicative inverse.

(a) Given two integers a > b > 0, the Euclidean algorithm returns their greatest common
divisor ged(a, b):

def gcd(a, b):

while b !'= 0:
(a, b) = (b, a % b)
return a

Prove that on input @ > b > 0, the algorithm uses O(loga) modulo operations in the
worst case.

(Hint: Consider how much a decreases after two iterations.)

Given two integers a > b > 0, the extended Euclidean algorithm returns three integers
(d, x,y) such that ax + by = d = ged(a, b).

def extended_gcd(a, b):

if b == 0:
return (a, 1, 0)
else:
(d, x1, y1) = extended_gcd(b, a % b)
x =yl
y=x1-(a//Db)*yl

return (d, x, y)

Prove the correctness of extended_gcd(a, b) using mathematical induction.

Remark. Let n and a be integers with 0 < a < n. A multiplicative inverse of a modulo
n is an integer y such that ay =1 (mod n), which exists if and only if ged(a,n) = 1. A
multiplicative inverse can be computed by running the extended Euclidean algorithm on
input (n,a), which returns (1, z,y) with nz + ay = 1. It follows that ay =1 (mod n).



3. (1 point) In class, we discussed how repeated squaring can speed up (modular) exponentiation.
In this question, we explore another application of repeated squaring.

The Fibonacci sequence is defined as:

0 if n =0,
F,=<1 ifn=1,

Given Fj, and Fjy1, the next number Fjio can be computed using matrix multiplication:

Frio) _ (1 1\ (Frna
Frin 1 0)\ F

By mathematical induction, this implies

Fo\ (1 \" (PR
F, ) \10 )
Based on the above equation, design an algorithm fibonacci(n) that returns Fj,.

You can use the function matrix_mult (A, B), which returns the product of two 2 x 2 matrices
A and B, without implementing it. For one call fibonacci(n), your algorithm should make
O(logn) calls to matrix_mult. (You do not need to analyze the runtime of your algorithm.)



