CSCI 0500: Data Structures, Algorithms, and Intractability (Fall 2025)
Assignment 1

Due at 11:59pm ET, Sunday, Oct 5

1. (1 point) There are several ways to define asymptotic notations such as big-O.

Definition 1 (Simplified big-O in lecture). For two functions f and g that map positive
integers to positive real numbers, we say f = O(g) if there is a constant ¢ > 0 such that
f(n) <c-g(n) for all n > 1.

This definition is sufficient in most cases. However, sometimes we want to use big-O notation
for functions that are not positive everywhere. For example, a function T'(n) with T'(1) = 0,
or a function like In(In(n)) that is negative when n < 2.

In this question, we introduce more general definitions of big-O and big-Omega:

Definition 2 (Big-O). For two functions f and g that map positive integers to real numbers,
we say [ = O(g) if there are constants ¢ > 0 and ng such that 0 < f(n) < ¢- g(n) for all
n > no.

Definition 3 (Big-2). For two functions f and g that map positive integers to real numbers,
we say [ = Q(g) if there are constants ¢ > 0 and ng such that f(n) > c¢-g(n) > 0 for all
n > ng.

Arrange the following functions in ascending order of their asymptotic growth rate: If g(n)
immediately follows f(n) in your list, it should hold that f(n) = O(g(n)). (You do not need to
prove each f(n) = O(g(n)) but should know how to do so using the more general definitions.)

fi(n) = g n"Inn
fa(n)=2"

f3(n) =1n*n = (Inn)3
fa(n) =Inlnn = In(In(n))
fo(n) =5-n*/?

fe(n) =nl!

Remark. Think of O(-) as adjectives. Just as we might say that “a tree is green”, we say
“fis O(n)”. We do not say “green is a tree” or “O(n) is f”.

The equal sign in “f = O(n)” should be viewed as shorthand for “is” rather than “equals”.
Therefore, “O(n) = f” is nonsense.

Be sure to use uppercase O and 2. The lowercase versions mean something different.



2. (1 point) In this question, we explore non-comparison-based sorting algorithms.

Consider sorting an n-element array X, where each element is an integer in {0,1,...,n — 1}
(possibly with duplicates). Consider the following algorithm sort1.

def sortl(X):
n = len(X)
count = [0 for i in range(n)]
for a in X:
count[a] += 1
S =11
for i in range(n):
for j in range(count[i]):
S.append (i)
return S

For this problem, we measure computational cost (i.e., runtime) by the number of array
entries created plus the number of array accesses (for all three arrays X, S, and count).

Prove that the worst-case runtime of sortl is ©(n).

Remark. (This is not a question.) How can we relax the restriction on the values in X7
Consider sorting an n-element array X, where each element is an integer in {0,1,...,n% —1}.
Each element can be viewed as a two-digit number in base n. Intuitively, we can invoke sort1
twice: sort the elements first by the lower digit and then by the higher digit. This requires a
slight modification to sortl to enable a key-based stable sort (the relative order of elements
with the same key is preserved). The runtime is still ©(n).

3. (1 point) In this question, we consider two applications of sorting and selection.

(a) Consider the problem of finding the ¢ largest elements in an array X.

Given a 0-indexed n-element array X and an integer ¢ (where 1 < ¢ < n), the goal is to
return the ¢ largest elements in X (in any order). The computational cost (i.e., runtime)
is measured by the number of pairwise comparisons between elements in X.

Design a randomized algorithm with worst-case expected runtime O(n) and prove that
it achieves this runtime. You can assume that all elements in X are distinct.

(Hint: You can use the quickselect (X, k) algorithm discussed in class: For any X,
quickselect (X, k) runs in expected time O(n) and returns sorted(X) [k], the (k+1)-
th smallest element in X. You do not need to implement it or prove its runtime.)

(b) Consider the problem of deciding whether an element appears in a sorted array.
Given a 0O-indexed array S with n elements in ascending order and another element v,
the goal is to return 1 if v appears in S and 0 otherwise. The runtime is measured by
the number of pairwise comparisons between v and elements in S.
Design a deterministic algorithm with worst-case runtime O(logn) and prove that it
achieves this runtime. You can assume that all elements in S are distinct.



