
Correlation Clustering with Noisy Input

Claire Mathieu∗ Warren Schudy∗

Abstract

Correlation clustering is a type of clustering that uses a ba-

sic form of input data: For every pair of data items, the

input specifies whether they are similar (belonging to the

same cluster) or dissimilar (belonging to different clusters).

This information may be inconsistent, and the goal is to find

a clustering (partition of the vertices) that disagrees with as

few pieces of information as possible.

Correlation clustering is APX-hard for worst-case in-

puts. We study the following semi-random noisy model to

generate the input: start from an arbitrary partition of the

vertices into clusters. Then, for each pair of vertices, the sim-

ilarity information is corrupted (noisy) independently with

probability p. Finally, an adversary generates the input by

choosing similarity/dissimilarity information arbitrarily for

each corrupted pair of vertices.

In this model, our algorithm produces a clustering with

cost at most 1 + O(n−1/6) times the cost of the optimal

clustering, as long as p ≤ 1/2 − n−1/3. Moreover, if all

clusters have size at least1 c1

√
n then we can exactly recon-

struct the planted clustering. If the noise p is small, that

is, p ≤ n−δ/60, then we can exactly reconstruct all clusters

of the planted clustering that have size at least 3150/δ, and

provide a certificate (witness) proving that those clusters are

in any optimal clustering.

Among other techniques, we use the natural semi-

definite programming relaxation followed by an interesting

rounding phase. The analysis uses SDP duality and spectral

properties of random matrices.

1 Introduction

Clustering is an important tool for analyzing large data
sets. Correlation clustering [6, 5] is a type of clustering
that uses a very basic form of input data: indications
that certain pairs of vertices (pairs of data items) belong
in the same cluster, and certain other pairs belong in
different clusters [5]. Unfortunately the information is
not necessarily consistent, possibly claiming for example
that “cat” is similar to “dog” and “dog” is similar to
“bog” but “cat” is not similar to “bog”. The goal is to

∗Department of Computer Science, Brown University. Sup-
ported in part by NSF Grant CCF-0728816. Email: {claire,
ws}@cs.brown.edu.

1Throughout this work c1, c2, c3, . . . denote absolute constants.

find a clustering, that is, a partition of the vertices, that
agrees with as many pieces of information as possible
(maximization) or disagrees with as few as possible
(minimization). This has applications in data mining,
e.g. the work of Cohen and Richman [11].

As correlation clustering is hard to solve exactly,
many previous papers focused on approximation algo-
rithms [5, 10, 12, 1, 25]. For the purpose of approxi-
mation, note that the maximization and minimization
goals are not equivalent: minimizing is harder. How
hard is it to minimize disagreements? The best known
algorithm has approximation ratio O(log n) [12] (n is the
number of items (vertices) being clustered). However, a
constant approximation ratio (currently 2.5) is achiev-
able in the restricted complete information setting that
assumes that information is available for every pair of
vertices [1, 26, 5]; this result is essentially best possible
(except for lowering the value of the constant) since the
complete information problem is APX-hard [10]. Yet, in
this paper we concentrate on the minimization version
with complete information.

How can one get around this APX-hardness result
to provably get a clustering with value within 1 + ǫ of
optimal? Additional assumptions are needed. Thus,
there is a PTAS that relies on the additional assumption
that the number of clusters is a constant [16]. In
this paper, motivated by the data mining context, our
angle is to assume that the input comes from a noisy
model defined as follows. To generate the input, start
from an arbitrary partition B of the vertices into
clusters (base clustering). Then, each pair of vertices
is perturbed independently with probability p. In the
fully-random model, the input is generated from B
simply by switching every perturbed pair. In the semi-
random variant, an adversary controls the perturbed
pairs and decides whether or not to switch them. Such
noisy models are hardly new: they have been studied
for many graph problems such as complete information
feedback arc set [9], maximum bisection [8], k-coloring,
unique games[21], maximum clique [18, 22, 3, 14], and
even for correlation clustering itself [6, 5, 23, 24, 13].
Indeed, studying the noisy model theoretically led [6]
to a heuristic algorithm that they used to successfully
cluster real gene expression data.

We note that, prior to this work, noisy correlation

clustering had only been studied in the fully-random
model [6, 5, 23, 24]. Typically, results assume that
all clusters have size bounded below, by c1n [6] or by
c2

√
n log n/(1/2− p)1+ǫ [24]. From a slightly different

angle, [5] makes no assumption on minimum input
cluster size but finds all clusters of the base clustering
that have size at least c3p

√
n logn/(1/2− p)2).2,3 Their

algorithm can be used to yield a 1+o(1) approximation
for p = ω((log n)/n). (More precisely, the additive error
is O(pn3/2

√
log n/(1/2− p)2) for

√
log n/n < p < 1/2

and O(n log n) for smaller p.)
In contrast to our work, none of those prior results

on noisy correlation clustering certify optimality of the
output clustering. Certification is a highly desirable
feature, as explained by Feige and Krauthgamer [14]:

“since average case algorithms do not have
an a priori guarantee on their performance,
it is important to certify that the algorithm is
indeed successful on the particular instance at
hand.”

Our analysis relies on the validity of the noisy model,
hence that is also important for us. All of our results
address that issue and come with accompanying certifi-
cates.

Our results. We design a simple approximation al-
gorithm. It uses a semi-definite programming relaxation
and, for rounding, a constant factor approximation al-
gorithm [26, 1]. Note that this semidefinite program
was already used by [25], but our rounding algorithm
is completely different from theirs. We then proceed to
prove that it has several desirable features.

Our first result bounds the cost of the output
(Theorem 2.1). In the worst-case model, that cost is
a constant-factor approximation. In the noisy model,4

let OPT (resp. OPTfull) denote the optimum cost in
the semi-random model (resp. fully-random model). In
the fully random model, our algorithm is a PTAS. In the
semi-random variant, our algorithm yields cost at most
OPT + O(n−1/6)OPTfull with high probability (over
the random perturbation). Our algorithm also produces
a lower-bound, proving that the random perturbation
was “random enough” for this high probability event to
occur.

Our second result (Theorem 2.2) shows one circum-
stance in which the base clustering can be reconstructed
exactly. We show that if p ≤ 1/3 and all clusters have

2A straightforward variation works in the semi-random model
but only finds clusters of size at least c4np2

√
log n/(1/2 − p)2.

3McSherry [23] also solved this problem, however their results
depend on the number of clusters and are worse than [24] if the
number of clusters is large.

4Assuming p ≤ 1/2 − n−1/3

size at least c5
√

n then the base clustering is the unique
optimum solution of the natural SDP relaxation of cor-
relation clustering, hence is the output of our algorithm.

Our third result (Theorem 2.3) analyzes the small
noise regime, p ≤ n−δ/60 for some δ. (Such a regime
makes sense in applications in which perturbations are
rare, for example if they correspond to mutations).
Then, we have an algorithm which finds all clusters of
size Ω(1/δ), even in the semi-random model. It also
produces a certificate (witness) proving that the clusters
found are part of all optimal clusterings. For example,
consider a base clustering consisting of clusters of (large
enough) constant size, and let p = n−1/10/60. For every
vertex u, we can determine which Θ(1) pairs uv are
correctly labeled as similar in the input, among the sea
of Θ(n9/10) pairs uv incorrectly labeled as similar.

Our analysis uses probabilistic and combinato-
rial arguments, spectral properties of random matrices
(Lemma 3.12), and semidefinite programming duality
(Section 4).

Comparison with previous results.

1. We give the first algorithm that achieves a 1+ o(1)
approximation even when there are arbitrarily few
noisy edges (so that OPT is small) and clusters
are arbitrarily small (so that reconstructing them
exactly is impossible.) (Theorem 2.1)

2. In the semi-random model, as it turns out, for
constant p our additive error is O(n3/2); the best
result previously known had additive error O(ǫn2)
(in the worst-case model) [16].

3. In the fully random model, compared to previous
work [5, 24] we find clusters a factor

√
log n smaller

for constant p. (For example, when p = 1/3 we
reconstruct the base clustering when all clusters
are size at least c5

√
n rather than c6

√
n logn.) We

improve additive error by the same factor.

4. Not only does the output have cost that, with
high probability, is within 1 + o(1) of optimal,
but our algorithm also produces a deterministic
lower-bound witnessing that fact. In other words
our algorithm knows whether or not its input is
“sufficiently random.”

5. Let δ > 0. If p ≤ n−δ/60 we give the first
algorithm that exactly reconstructs every cluster
of size 3150/δ.

Our work is worse than previous work in two ways:
First, the algorithm for item 5 has impractical runtime
even for modest δ = 1/3. Second, when p is a constant,
we, like [22], can only find the base clusters exactly if all

Algorithm 1 MainCluster algorithm

Input: graph G = (V, E)
Output: clustering Output

Let Ê be E with edges that are not part of triangles
removed.
Call algorithm SDPCluster on input (V, Ê), yield-
ing clustering A.
Let U denote the vertices in singleton clusters of A.
Use maximum matching to compute an optimal clus-
tering of U into clusters of size at most 2.

are size at least c5
√

n. Bansal Blum Chawla [5]’s result
is incomparable, since they find the clusters of size at
least c7

√
n log n, even if the base clustering is a mixture

of large and small clusters.

2 Algorithms

The input is an undirected graph G = (V, E), where
{u, v} ∈ E iff we have information that u and v are
similar, and {u, v} /∈ E iff we have information that
u and v are dissimilar.5 A clustering is a partition
of the vertices into clusters. To any clustering, we
associate the induced graph, which has an edge between
every pair of intra-cluster vertices (including self-loops),
and an associated matrix, the adjacency matrix of the
induced graph. We use the terminology vertex pair
(VP) to avoid ambiguity with edge, which refers to
vertex pairs that have an edge between them in some
graph.

The correlation clustering problem consists of find-
ing a clustering A of V minimizing d(E,A), where d(·, ·)
denotes the Hamming distance between two graphs
(viewed as sets of edges), or equivalently, half of the
ℓ1 distance between the associated adjacency matri-
ces: for symmetric matrices M and N , d(M, N) =
1
2

∑
u,v |Muv −Nuv|.
Fix the error parameter p. Our noisy model assumes

that the input graph G = (V, E) is generated by
perturbing some unknown base clustering B as follows:
identify B with the associated graph. Then, in the fully
random model, for each pair of vertices, the information
is flipped independently with probability p (in other
words, to go from B to the input graph we flip every
edge and every non-edge independently with probability
p). In the semi-random model, for each pair of vertices,
the information is corrupted (noisy) independently with
probability p; then, an adversary generates the input

5Our model requires complete information so we use absence
of an edge to represent dissimilarity, not an edge labeled “-” as in
previous work.

Algorithm 2 SDPCluster algorithm

Input: graph G = (V, F)
Output: a clustering A

Compute an optimal solution X∗ to the following
semi-definite program:

min d(X, F) s.t.





Xii = 1 ∀i
Xij ≥ 0 ∀i 6= j
Xij + Xjk −Xik ≤ 1 ∀i 6= j 6= k
X pos. semi-definite

Let U ← V .
while U is non-empty do

Pick a pivot vertex v uniformly at random from U
A← {v}
For each vertex u of U \ {v}, add u to A indepen-
dently with probability X∗

uv.
Output the resulting cluster A, and let U ← U \A.

end while

graph by choosing similarity/dissimilarity information
arbitrarily for each corrupted pair of vertices (when
the adversary always flips the information of every
corrupted pair, the resulting input is exactly the input
generated in the fully random model).

We let B denote the unknown base clustering,
G = (V, E) the input graph generated from B in
the semi-random model, and Gfull = (V, Efull) the
corresponding graph generated from B in the fully-
random model. OPT denotes the cost of the optimal
solution for input G, and, in the semi-random model,
OPTfull denotes the cost of the optimal solution for
the associated fully-random input.

Throughout the paper, when we write that an event
occurs with high probability (w.h.p.), we mean that it
holds with probability at least 1− n−α for some α > 0
(over the randomness in Efull). Let Ealg [·] denote
expectation over the random choices made by algorithm
MainCluster.

Our first theorem shows that the MainCluster al-
gorithm has three desirable properties. It is a constant-
factor approximation in the adversarial model, a 1+o(1)
approximation in the planted model, and produces a
lower bound certifying its approximation factor.

Theorem 2.1. (Main Theorem) Algorithm Main-
Cluster runs in polynomial time and is such that:

1. For any input graph G, Ealg [Cost(OUT)] ≤
3.5 OPT .

2. In the semi-random model, if p ≤ 1/2 − n−1/3

then, with high probability over the noisy model,
Ealg [Cost(OUT)] ≤ OPT + O(n−1/6)OPTfull.

3. One can compute a lower bound L on OPT . In
the fully random model, if p ≤ 1/2 − n−1/3

then, with high probability over the noisy model,
Ealg [Cost(OUT)] ≤ L + o(L).

A 2.5-approximation algorithm was already known so
the first part of Theorem 2.1 is a contribution to the
understanding of the MainCluster algorithm, not to
the understanding of the correlation clustering problem.

The noisy model is motivated by the view that B
is the ground truth, so it makes sense to ask if we
can, not just approximate the objective function, but
actually recover B. We give two results of this type.
Our next theorem shows that SDPCluster recovers
the base clustering exactly whenever all base clusters
are sufficiently large.

Theorem 2.2. In the semi-random model if p ≤ 1/3
and all clusters have size at least c5

√
n then B is with

high probability the unique optimum solution of the SDP
used in SDPCluster.

Our next theorem shows that when the noise is
small it is possible to reconstruct all base clusters of
super-constant size.

Theorem 2.3. (Large Cluster Theorem)
Assume that p ≤ n−δ/60 for some δ. Then in
the semi-random model Algorithm 3 outputs a set of
clusters A such that:

1. W.h.p. the output clusters A are exactly the clusters
of the base clustering that have size ≥ 3150/δ.

2. The algorithm certifies that for any optimal clus-
tering, its clusters of size ≥ 3150/δ are exactly the
output clusters.

Almost all of our proofs apply identically in the
fully random and semi-random models. For simplicity
of exposition we only emphasize the distinction between
the models where important.

Remarks

1. A natural generalization of our planted noisy model
has input generated by adding noise to an arbi-
trary graph G rather than a union of cliques B.
Unfortunately this “smoothed” model is hard to
approximate; if the noise is less than n−δ for some
δ > 0 this model has no PTAS unless P=NP. To
see this, take an arbitrary correlation clustering in-
stance with ℓ nodes and non-zero optimum cost,
make ℓ1/δ copies of each, yielding a graph with
n = ℓ1+1/δ nodes. Then add noise. The number of
resulting noisy edges is O(n2−δ) = O(ℓ2/δ+1−1/δ) =

Algorithm 3 Large Cluster Algorithm (parameterized
by integer s = ⌈70/δ⌉).
Input: graph G = (V, E).
Let A ← ∅.
For every subset S of V of size s:

Let A be the set of vertices that have at least |S|/2
neighbors in S.

If all of the following conditions hold:

1. For all disjoint sets T, U ⊆ A, |T | = |U | = s, G has
at least .9|T ||U | edges between T and U .

2. For all sets T ⊆ A, U ⊆ V \ A, |T | = |U | = s, G
has at most .1|T ||U | edges between T and U .

3. |A| ≥ 3|S| and A is equal to the set of vertices that
have at least |A|/2 neighbors in A.

Then add A to the collection A.

If any of the following properties fails to hold then
Output:“Failure”.

1. The sets in A are disjoint.

2. For every cluster A ∈ A:

(a) Every vertex in A has at least .9|A| neighbors
in A.

(b) Every vertex not in A has at most .1|A|
neighbors in A.

3. For every pair of disjoint vertex sets S, T with
cardinalities |S| = |T | = 6s, such that no cluster
A ∈ A intersects both S and T (∀A, A ∩ S = ∅
or A ∩ T = ∅), there are at most (.35)|S||T | edges
between S and T .

Let A′ = {A ∈ A : |A| ≥ 45s}.
Output A′.

o(ℓ2/δ) = O(new optimum), so a PTAS for correla-
tion clustering in this smoothed model would im-
ply a PTAS for adversarial correlation clustering
and hence P=NP [10]. This smoothed model may
however be interesting for relatively large p such as
p = 1/ polylog(n).

2. A random graph G(n, p) with p = n−δ has max
clique of size Θ(1/δ) with high probability [7].
Therefore the size of clusters reconstructed by
Algorithm 3 is optimal to within constant factors.

3. The planted clique problem is the special-case of
our problem where all but one of the clusters of
B have size one and the noise only adds edges,

not removes them. The semi-random nature of
our planted model allows our model to include the
planted clique problem as a special case. The best
known result [14] for planted clique and constant
p requires the clique to be of size Ω(

√
n), which

matches Theorem 2.2. Theorem 2.2 does not
subsume previous results for planted clique [14]
since it requires that all clusters be that large. One
interesting open question is how the correlation
clustering SDP behaves when some clusters are
large and other small.

4. Our results on reconstructing clusters exactly and
on approximating the objective function do not
imply each other. To see that even optimal results
for the reconstruction problem are insufficient for
approximation, consider when p = n−3/2 and the
base clusters have size 1 and 2. In this setting is
clearly impossible to reconstruct the base clustering
from the input data and such a reconstruction
would not be a good approximation to the objective
even if it were available. To see that approximation
is insufficient for reconstruction note that omitting
a vertex from a base cluster costs at most the size of
that cluster, which is much less than OPT in most
circumstances.

3 Proof of Theorem 2.1

3.1 Analysis of SDPCluster Algorithm The fol-
lowing extension of an analysis from [1] forms the start-
ing point of our worst-case analysis of section 3.2 and is
also used in section 3.5.

Theorem 3.1. [1] Let G = (V, F) be an instance of
correlation clustering, and let A be the resulting output
of algorithm SDPCluster. Then, for any clustering
C′, we have:

Ealg [d(A, F)] ≤ 2.5 d(C′, F).

Proof. (Proof Sketch) Algorithm SDPCluster is al-
most identical to algorithm LP-KwikCluster from
[1]. Our SDP (semi-definite program) includes all of the
constraints in [1] (Xij ≤ 1 is implied by Xii = 1, Xjj =
1, and positive semi-definiteness) as well as the positive
semi-definite constraint. Integral clusterings satisfy the
positive semi-definite constraint, so our SDP is a re-
laxation. The analysis from [1] applies unchanged to
SDPCluster.

The following theorem is very similar to Theo-
rem 3.1, but shows an approximation factor relative to
the fractional clustering X∗ rather than relative to the
input edge set F . The analysis, which uses techniques
from [1], is deferred to the full version.

Theorem 3.2. Let G = (V, F) be an instance of cor-
relation clustering, and let A be the resulting output of
algorithm SDPCluster. Then, for any clustering C′,
we have:

Ealg [d(A, X∗)] ≤ 3 d(C′, X∗).

Lemma 3.1. Let u be a vertex with no neighbors in the
input (V, F) to algorithm SDPCluster. Then u is
in a singleton cluster of the clustering A obtained by
SDPCluster.

Proof. (Proof Sketch) Let u be a vertex with no neigh-
bors in F . Assume that Xuv > 0 for some v 6= u in
some SDP feasible X . Consider the solution X ′ ob-
tained from X by setting X ′

uw = 0 for all w. It is easy
to see that X ′ is also SDP feasible and has strictly bet-
ter objective. So the optimum X∗ must have X∗

uv = 0.
Rounding therefore puts u in a singleton cluster.

3.2 Proof of Theorem 2.1 (1)

Lemma 3.2. For input G = (V, E), there exists an
optimal clustering C such that for every input edge {u, v}
that is inside a cluster C of C of size 3 or more, there
exists a vertex w ∈ C such that {u, v, w} is a triangle
in the input graph.

Proof. Let C be an optimal clustering with the most
clusters. Assume, for a contradiction, that there is a
cluster C ∈ C of size 3 or more, and an input edge {u, v}
in C such that u and v have no common neighbor in C.
Consider the clustering C′ obtained from C by replacing
C with two clusters, {u, v} and C \ {u, v}. It is easy to
check that C′ is at least as good as C, so C′ is also optimal
but has more clusters, contradicting the definition of C.

Lemma 3.3. Let C be an optimal clustering for input
G = (V, E), let A be the output of SDPCluster on

Ĝ = (V, Ê), and Output denote the clustering output by
MainCluster. Then:

d(Output, E) ≤ d(C, E) + d(A, Ê).

Proof. Let M be the matching in the last step of al-
gorithm MainCluster. Since M only merges single-
tons of A by using edges of G, we have d(Output, E) =
d(A, E)− |M|. By the triangular inequality, d(A, E) ≤
d(A, Ê) + d(Ê, E).

Assume, without loss of generality, that C satisfies
Lemma 3.2, and let M∗ be the collection of clusters of
C of size 2. By definition of Ĝ and by Lemma 3.2, the
edges of G\ Ĝ are not in clusters on C of size 3 or more.
So they are either in M∗ or between different clusters
of C. Thus d(Ê, E) ≤ |M∗|+ d1(C, E), where d1(·) only

takes into account edges that are in G \ Ĝ.

Let U denote the vertices that are in singleton
connected components of Ĝ and hence by Lemma 3.1
in A. Let M∗

1 be the clusters of M∗ contained in U ,
and M∗

2 = M∗ \ M∗
1. By maximality of M, we have

|M∗
1| ≤ |M|.
Let {ui, vi}, 1 ≤ i ≤ |M∗

2| denote the edges of
M∗

2, with vi /∈ U . Since vi is in some non-singleton

connected component Ĝ, there is an edge {vi, wi} of

Ĝ. By definition of Ĝ, there is a vertex zi such that
{vi, wi, zi} is a triangle of Ĝ. We mark the two edges
{vi, wi} and {vi, zi}. When we have done this for every

i, it is easy to see that each edge of Ĝ has at most two
marks, so |M∗

2| is less than or equal to the total number
of marked edges.

By construction, the marked edges go between
different clusters of C, but they are edges of G which
are also in Ĝ, so the number of marked edges is at most
d2(C, E), where d2(·) only counts edges that are in Ĝ.

Putting all inequalities together and noticing that
d1(C, E) + d2(C, E) = d(C, E) yields the lemma.

Proof. (Of Part 1 of Theorem 2.1) By Lemma 3.3

we have d(Output, E) ≤ OPT + d(A, Ê). Consider
the clustering C′ obtained from C by splitting clus-
ters of size 2 whenever the corresponding edge is not
in Ê. By Theorem 3.1 applied to G = (V, Ê) we

have d(A, Ê) ≤ 2.5d(C′, Ê). Lemma 3.2 implies that

d(C′, Ê) ≤ d(C, E) = OPT . Putting these inequalities
together yields the theorem.

3.3 Lower Bound In this section we prove the fol-
lowing simple lower bound:

Theorem 3.3. There exists c8 such that if c8/n ≤
p ≤ 1/3 then w.h.p. OPTfull = Ω(n2p). If p ≤
c8/n then w.h.p. either OPTfull = 0 or OPTfull =

Ω̃(n3p2 + nn2p), where n2 is the number of vertices in
base clusters of size 2 or more.

Lemma 3.4. (Variant of [19]) d(OPT,B) ≤ 4n log n
− log 4p

with high probability

Proof. Fix some clusteringA. Let D = d(B,A). Clearly
A is better than B if and only if at least D/2 of the
D pairs where they differ are noisy. This occurs with
probability at most

(
D

D/2

)
pD/2 ≤ 2DpD/2 = (4p)D/2.

Take a union bound over all O(nn) clusterings [19]
A with D = d(B,A) ≥ 4n log n

− log 4p , we bound the proba-

bility that d(OPT,B) ≥ 4n log n
− log 4p by nn · (4p)D/2 =

exp(n log n + 2n log n
− log 4p log(4p)) = n−n.

Proof. (Of Theorem 3.3) First we prove that OPT =
Ω(n2p) when c8/n ≤ p ≤ 1/5. In the upper portion of

this range where 1/
√

n ≤ p ≤ 1/5 we see d(OPT,B) =
O(n log n) by Lemma 3.4. The triangle inequality and
a trivial Chernoff bound yield OPT = d(C, E) ≥
d(B, E) − d(C,B) = Ω(n2p) − O(n log n) = Ω(n2p). In
the lower portion where c8/n ≤ p ≤ 1/

√
n Lemma 3.4

implies d(OPT,B) = O(n). As before we get OPT =
d(C, E) ≥ d(B, E)− d(C,B) = Ω(n2p)−O(n) = Ω(n2p)
for sufficiently large c8 and hence p.

Second observe that if n3p2 +nn2p = Õ(1) then the
Theorem is trivial. We henceforth assume that np ≤ c8

and n3p2 + nn2p = ω(log n). We will frequently use the
fact that

max(n2p, n2) ≥
n2p + n2

2
=

n3p2 + nn2p

2np
= ω(log n).

(3.1)

A classic lower-bound on OPT is the size of any collec-
tion of VP-disjoint bad triplets (triplet packing) where
a bad triplet is a set {u, v, w} such that Euv = Evw = 1
but Euw = 0. Consider the instance B′ obtained from
B, by flipping every vertex pair with probability p/2,
analogously to how E is formed by flipping vertex pairs
with probability p. Note that Ê can be expressed as
applying noise of approximately p/2 to B′. We will use
B′ to construct a triplet packing lower bound.

We first construct a large matching M of B′ size
Ω(n2 + n2p) as follows.

If n2 ≥ min(n2p, n/2) note that a max matching of
B has size at least n2/3, which is at least (the smaller
of n/6 and) ω(log n) using (3.1). With high probability
only a O(p) fraction of these edges are not in B′ so M
has size Ω(n2) = Ω(n2 + n2p) w.h.p.

In the case that n2 < min(n2p, n/2) we find a
matching among the at least n/2 vertices that are
singletons in B. We have n2p = ω(log n) by (3.1),
so by a Chernoff bound the number of noisy edges
is Ω(n2p). Consider generating these noisy edges one
by one, adding each to the matching M if possible.
As long as |M | ≤ n/8 = Ω(n2p) (otherwise we are
done) each new edge has probability at least (1/2)2 of
being added to the matching. These events are not
independent but with a little technical effort one can
create related events that are. Another Chernoff bound
yields |M | = Ω(n2p) = Ω(n2 + n2p) w.h.p.

Label the vertices V = {v1, v2 . . . vn} so that
(v2i−1, v2i) is in the matching M for all 1 ≤ i ≤ |M |.
Let α = min(|M |, n/4). Note that α = Ω(n2 + n2p).
We construct a triplet packing as follows. For each iter-
ation 1 ≤ i ≤ α check if there exists some n/2 < j ≤ n
such that (v2i−1, v2i, vj) is a bad triplet. If so, pick an
arbitrary such j and add triplet (v2i−1, v2i, vj) to the
triplet packing.

Consider the probability that iteration i produces

a triplet for some 1 ≤ i ≤ α. By construction v2i−1

and v2i are in the same cluster of B′. Each vertex vj

with n/2 < j ≤ n, whether in the same base cluster or
different, has probability Θ(p) of forming a bad triplet.
Therefore the probability that iteration i produces a bad
triplet is Θ(min(np, 1)) = Θ(np). The expected number
of triplets packed is therefore Θ(np)|α| = Θ(nn2p +
n3p2) = ω(log n). The iterations are independent so a
Chernoff bound implies OPT = Ω(n3p2 + nn2p) with
high probability as well.

3.4 Probabilistic Lemmas The following Lemma is
a trivial application of Chernoff bounds and will be used
frequently.

Lemma 3.5. Let Z be a sum of independent indicator
random variables. We have Z ≤ 2E [Z] + 9 lnn w.h.p.
If E [Z] ≥ 20 logn then 1

2E [Z] ≤ Z ≤ 2E [Z] with high
probability.

Lemma 3.6. W.h.p. Euv = Êuv for all u, v within any
base cluster of size at least 6 lg n, where E and Ê are as
defined in Algorithm MainCluster.

In other words, edges within base clusters of size
at least 6 lg n are unaffected by the first line of Main-
Cluster.

Proof. (Of Lemma 3.6) Fix edge u, v of E,6 with u
and v both within a single base cluster of size k. For
any other vertex w in the same base cluster we have
Euw = Evw = 1 with probability at most 2p−p2 ≤ 3/4.
These events are independent so the edge u, v is part of
no triangles with probability at most (3/4)k−2. When
k ≥ 6 lg n this probability is at most 2n−3, so with
high probability every edge within a cluster is part of a
triangle, hence in Ê.

Lemma 3.7. The expected number of edges u, v (of E)
within base clusters of size at least 3 that are affected
by the first line of MainCluster (i.e. Euv = 1 and

Êuv = 0) is O(n3p), where n3 is the number of vertices
in base clusters of size 3 or more. A bound of Õ(n3p+1)
holds with high probability.

Proof. Each cluster of size k ≥ 3 includes in expectation
at most
(

k

2

)
(2p− p2)k−2 ≤ k2

2
(2p− p2)(3/4)k−3 = O(p)

edges that are not part of any triangles. Summing over
O(n) clusters proves the expectation part of the Lemma.

6Recall “edge” implies Euv = 1

By Lemma 3.6 we can ignore clusters of size
Ω(log n). For cluster Bi of size between 3 and Θ(log n)
let ǫi denote the event that there is some edge within
Bi that is not part of some triangle within Bi. These
events are clearly independent and as noted above have
probability O(p), so by a Chernoff bound (Lemma 3.5)
the number of ǫi that occur is O(np + log n) with high
probability. Each ǫi contributes O(log2 n) edges, com-
pleting the proof of the theorem.

Lemma 3.8. For sufficiently large constant c9 we have
with high probability all vertices are part of at most
c9

10 (np + log n)− 1 noisy pairs.

Proof. (Proof Sketch) Semi-randomness can only help,
so consider the fully random model. Fix vertex v. Each
of the other vertices u ∈ V has probability p of being a
noisy pair with v, so the total number of noisy pairs
is a sum of independent indicator random variables.
Lemma 3.5 completes the proof.

We say that a triplet of vertices {u, v, w} is an
unnatural triangle if Euv = Evw = Euw = 1 but
{u, v, w} is not contained within a single base cluster.

Lemma 3.9. The number of unnatural triangles whose
vertices are all in base clusters of size at most k is
O((np)3+(np)2k) in expectation. A bound of O((np)3 +
(np)2k + log6 n) holds with high probability.

To prove Lemma 3.9 we use an elegant generaliza-
tion of Chernoff bounds due to Kim and Vu [20, 4] to
prove the high probability portion. We present a special
case of their theorem in notation suitable for our use.

Let P denote the set of all
(|V |

2

)
possible pairs of

vertices u, v ∈ V . Let T denote a collection of triplets
(sets of size 3) of vertex pairs from P . Let {Ep}p∈P

denote a collection of independent indicator random
variables. Let random variable Y denote the number
of T ∈ T such that Ee = 1 for all e ∈ T . For any A ⊂ P
we have random variable YA equal the number of T ∈ T
such that A ⊂ T and Ee = 1 for all e ∈ T \A.

Let Ei = maxA⊂P :|A|=i E [YA]. Observe that Y =
Y{} and E0 = E [Y].

Theorem 3.4. (Kim and Vu [20]) In the scenario
above if E1, E2, E3 ≤ 1 we have

Pr
(
|Y −E [Y] | > a

√
max(E [Y] , 1)λ3

)
<

d · exp(−λ + 2 lnn)

for absolute constants a and d.

Corollary 3.1. In the scenario above if E1, E2, E3 ≤
1 we have

Y = O(E [Y] + log6 n)

with high probability.

Proof. (Of Lemma 3.9) We classify unnatural triangles
based on whether their vertices come from two or three
distinct clusters. There are O(n3) possible triplets span-
ning three different clusters, and each has probability p3

of being an unnatural triangle. Therefore the expected
number of such unnatural triangles is O(n3p3). There
are O(n2k) possible triplets spanning two different clus-
ters, and each has probability at most p2 of being un-
natural, yielding expectation O(n2p2k).

Observe that the condition E3 ≤ 1 is trivially
satisfied. In our applications every T ∈ T consists of
the edges of a triangle, so E2 ≤ 1 is trivially satisfied as
well.

For simplicity we assume the fully random model;
the reader can readily verify that our arguments hold in
the semi-random model as well. To apply Corollary 3.1
we let E be the edges in the fully random model.

Let T (1) denote the collection of possible triangles
with vertices in three distinct base clusters, where the
triangles are represented by three vertex pairs from P .
In order to apply Corollary 3.1 we need to bound E1

and E2 by 1. Recall E1 is a maximization over sets
A ⊂ P of size 1 and fix A = {e} for some e ∈ P . If
e is within a single cluster then YA = 0. If e spans
two clusters there are at most n possible T ∋ e, each
of which has probability p2, so E1 ≤ np2. Therefore
by Corollary 3.1 proves the Lemma with respect to the
unnatural triangles with vertices in three distinct base
clusters.

Let T (2) denote the collection of possible triangles
with vertices in two distinct base clusters, where the
triangles are represented by three vertex pairs from P .
Fix A = {e} for some e ∈ P . If e is within a single
cluster we bound E [YA] by np2 as before. If e spans
two distinct clusters, then the third vertex to form a
triangle must be one of at most 2k vertices. Each
possible triangle has probability p, so E1 ≤ 2kp = o(1).
Corollary 3.4 proves the Lemma w.r.t. the unnatural
triangles with vertices in two distinct base clusters. This
concludes the proof of Lemma 3.9.

3.5 Proof of Theorem 2.1 (2) when p ≤ n−2/3.
In this part, we analyze the algorithm in the semi-

random model, assuming that p ≤ n−2/3. The case
p ≥ n−2/3 is deferred to Section 3.6.

Lemma 3.10. There exists c9 such that with high proba-
bility the semi-definite program finds all base clusters B
of size at least c9(np + log n) exactly. That is, X∗

uv = 1
if u, v ∈ B, and X∗

uv = 0 if u ∈ B and v /∈ B.

Proof. We choose constant c9 equal to the constant of
the same name from Lemma 3.8. We say that vertex
pair u, v is B-incident if at least one of u and v is in B.

Let X∗ be an arbitrary optimal solution of the semi-
definite program. Consider the solution X ′ obtained
from X∗ by modifying X∗

uv for B-incident vertex pairs
as follows:

X ′
uv =





X∗
uv if uv not B-incident

0 if |{u, v} ∩B| = 1
1 if |{u, v} ∩B| = 2

We will prove the Lemma by arguing that X ′ =
X∗. Following terminology from [1], say that a triplet

{u, v, w} of vertices is a bad triplet if Êuv = Êvw = 1

and Êuw = 0. We enrich the semidefinite program by
adding the constraint that Xuv = X∗

uv for every vertex
pair uv that is not B-incident. This creates a new semi-
definite program (P’) that has the same value as the
original (so X∗ is also optimal for (P’)). Then, we relax
the constraints by removing the constraint that X be
positive semidefinite, and by only writing the ijk con-
straint for {i, j, k} bad triplet such that all three vertex
pairs are B-incident. Moreover, we change variables by

defining yuv =

{
Xuv if Êuv = 0

1−Xuv if Êuv = 1
for B-incident

vertex pairs. Finally, we translate the objective func-
tion by the quantity

∑
uv not B-incident(1−X∗

uv)Êuv+

X∗
uv(1 − Êuv). We obtain the following linear program

(P):

(P)
min

∑
uv B-incident yuv s.t.

yuv + yvw + yuw ≥ 1 for uvw bad triplet, |uvw ∩B| ≥ 2
yuv ≥ 0 for uv B-incident

We say that vertex pair u, v is removed if Êuv 6=
Buv. A feasible solution to (P) is obtained by setting

y′
uv equal to 1 if Êuv 6= Buv and to 0 otherwise. It

is clearly feasible, and its value is the number of B-
incident removed pairs. We will argue that y′ is the
unique optimal solution of (P). What does that imply?
Observe that y′ is precisely the solution obtained from
X ′ by our change of variables. Since it is straightforward
to see that X ′ is feasible in (P’), and (P) is essentially
a relaxation of (P’), this implies that X ′ is the unique
optimal solution of (P’). Since X∗ is optimal for (P’),
we conclude that X = X∗, hence the Lemma.

It only remains to prove that y′ is the unique op-
timal solution of (P). Consider the linear programming
dual (D) of (P).

(D)
max

∑
T πT s.t.∑

T⊇{u,v} πT ≤ 1 for uv B-incident

πT ≥ 0 for T bad triplet, |T ∩B| ≥ 2

A feasible solution to (D) is constructed as follows. We
say that vertex pair u, v is noisy if Euv 6= Buv. We say
that a bad triplet of vertices is broken if at least two of
the vertices from B and exactly one of the three vertex
pairs are removed. We set

πT =





1/#
{
broken T ′ that share if T is broken

their removed edge with T
}

0 otherwise

Let us prove that, with high probability, π is feasible.
If vertex pair e = uv is removed then, by definition

of π, we have
∑

T :e∈T πT = 1.
If vertex pair e = uv is not removed, then any

broken triplet T = uvw must have either uw or vw
removed, hence noisy. Using Lemma 3.8, the packing
constraint associated to e therefore has

∑

T :e∈T

πT ≤
∑

w:uw noisy

πuvw +
∑

w:vw noisy

πuvw

≤ 2
c9

10
(np + log n)max

T
πT .

To bound maxT πT , fix a broken T with removed edge
e = uv. Observe for every vertex w ∈ B \ {u, v}, triplet
T ′ = uvw is broken, except when uw or vw is removed.
By Lemma 3.6, every B-incident removed pair is also
noisy, so by Lemma 3.8 we can write

πT ≤
1

|B| − 2c9

10 (np + log n)
≤ 10

8c9(np + log n)

using the assumption of Lemma 3.10 that |B| ≥ c9(np+
log n). This implies

∑
T :e∈T πT ≤ 1/4, proving feasibil-

ity of π.
Now, observe that the value of π is exactly the

number of B-incident removed pairs. This equals the
value of y′, so y′ and π are both optimal.

Moreover, consider a non-removed pair e = uv.
Observe that for π, the packing constraint associated
to e has positive slackness (≥ 3/4). By complementary
slackness conditions (and optimality of π) this implies
that every optimal primal solution y satisfies yuv =
0. Now, consider a removed pair e = uv, and let
w ∈ B − {u, v} be such that neither uw nor vw are
removed (such a w exists by Lemma 3.8, Lemma 3.6,
and our assumption on |B|). Then (P) has a constraint
associated to uvw, which, for an optimal solution, reads
yuv+yvw+yuw = yuv ≥ 1. By optimality again, we infer
yuv = 1. Therefore y′ is the unique optimal solution of
(P), as desired.

Proof. (Of Theorem 2.1 (2) when p is small) By
Lemma 3.3,

Cost(Output) ≤ OPT + d(A, Ê).

By Lemma 3.10, we know that the optimal solution X∗

of the semi-definite program matches B precisely on all
vertex pairs incident to at least one cluster of size at
least c10(np + log n). By the design of the rounding
algorithm, this implies that A also matches B precisely
on for those clusters; moreover, X∗ is also optimal in
the subgraph induced by the vertices in the remaining
clusters. So we can ignore the large clusters and assume
that all clusters have size at most k = c9(np + log n).

Consider the clustering B′ obtained from B by
splitting clusters of size 2 in two. By Theorem 3.1,

Ealg

[
d(A, Ê)

]
≤ 2.5 d(B′, Ê).

We now proceed to compare d(B′, Ê) to OPT.
First, consider the case np ≤ c8, where c8 is

the constant from Theorem 3.3. We will bound the
expected value, over the noisy process, of d(B′, Ê) and
use Markov’s inequality. Clearly a vertex pair u, v only
contributes to d(B′, Ê) if one of the following three
conditions holds.

• B′
uv = 0 and Euv = Êuv = 1. We bound

the expected number of such pairs by three times
the expected number of unnatural triangles, i.e.
O((np)3 + (np)2k) by Lemma 3.9.

• B′
uv = 1 and Euv = Êuv = 0. We bound the

expected number of such pairs by O(n3kp) trivially,
where n3 is the number of vertices in base clusters
of size at least 3 and k = c9(np+log n) is the upper-
bound on cluster size.

• B′
uv = 1, Euv = 1 and Êuv = 0. We bound the

number of such pairs by O(n3p) using Lemma 3.7.

Altogether,

Egraph

[
d(B′, Ê)

]

= O
(
[(np)3 + (np)2k] + [n3kp] + [n3p]

)

= Õ((np)2 + n3p)(3.2)

since k = O(log n) in this case. By Theorem 3.3
we have OPTfull = Ω(n2np + n3p2) w.h.p.7 and so

E
[
d(B′, Ê)

]
= Õ(OPTfull/n), hence by Markov’s in-

equality, with high probability we have d(B′, Ê) =
O(n−1/6)OPTfull.

Second, consider the case np > c8. Then k =
Õ(np). Lemmas 3.9, 3.5 and 3.7 allow us to redo the

7If OPTfull = 0 the present part 2 of Theorem 2.1 follows
from part 1.

proof of (3.2), replacing expectations by high probabil-
ity statements, to show that
(3.3)

d(B′, Ê) = O
(
[(np)3 + (np)2k] + [n3kp] + [n3p] + log6 n

)

with high probability. Now, (3.3) simplifies to

d(B′, Ê) = Õ((np)3) ≤ Õ(n2p)np2 ≤ Õ(n−1/3)OPTfull

w.h.p. using Theorem 3.3. Together, the two cases com-
pletes the proof.

3.6 Proof of Theorem 2.1 (2) when p ≥ n−2/3

Define M•N ≡∑u,v MuvNuv, and for any {0, 1}matrix
M , let

M̃uv =

{
−1 if Muv = 1
1 if Muv = 0.

This gives a way to rewrite the objective of our semi-
definite program. The following Lemma is trivial.

Lemma 3.11. For any symmetric matrices M and N
with Muv ∈ {0, 1} and 0 ≤ Nuv ≤ 1, we have

d(M, N) = (1/2)(M̃ •N − M̃ •M)

The next Lemma is key. It is eventually used for
X = X∗, the optimal solution to the SDP.

Lemma 3.12. With high probability over the noisy
model, the following holds: for every positive semi-
definite matrix X with trace n,

|Ẽfull •X −E
[
Ẽfull

]
•X | ≤ 5

√
pn3/2.

Proof. Let M = Ẽfull −E
[
Ẽfull

]
. Since X is symmet-

ric, we can write X =
∑n

i=1 λiviv
T
i where λi are the

eigenvalues of X and vi are corresponding unit-length
eigenvectors. By elementary linear algebra, (using the
fact that Tr(AB) = Tr(BA) for two (m, n) and (n, m)
matrices),

M •X = Tr(MT X) =
∑

i

Tr(MT λiviv
T
i)

=
∑

i

λiTr(vT
i Mvi) =

∑

i

λiv
T
i Mvi.

Since X is positive semi-definite, the λis are non-
negative and we get

|M •X | ≤
∑

i

λi|vT
i Mvi| ≤

∑

i

λiρ(M)

= Tr(X)ρ(M) = nρ(M),

where ρ(M) is the spectral radius of M . By [15] we have
ρ(M) ≤ 5

√
np, hence the Lemma.

Proof. (Of Part 2 of Theorem 2.1 when p ≥ n−2/3)
Since the maximum matching of U can only improve the
cost, the cost of the output is at most d(A, E), where A
denotes the output of SDPCluster. By the triangle
inequality and Theorem 3.2,

Ealg [d(A, E)] ≤ Ealg [d(A, X∗)] + d(X∗, E)

≤ 3d(B, X∗) + d(X∗, E).

Let C be an optimal clustering satisfying the conditions
of Lemma 3.2. Since the semi-definite program is a
relaxation, d(X∗, Ê) ≤ d(C, Ê). Lemma 3.2 implies that

(3.4) d(X∗, E) ≤ d(C, E) + n/2 = OPT + O(n).

To see this, transform Ê into E by switching vertex pairs
one at a time. Each time vertex pair uv is switched,
either u, v is a cluster of size 2 in C or the cost of C
increases by 1. The cost of X∗, as that of any fractional
clustering, increases by at most 1, hence Equation (3.4).

By Lemma 3.11, d(B, X∗) = (1/2)(B̃ •X∗− B̃ • B).
In the fully random model, it is straightforward that

E
[
Ẽfull

]
= (1− 2p)B̃, and so

(B̃•X∗−B̃•B) =
1

1− 2p
(E
[
Ẽfull

]
•X∗−E

[
Ẽfull

]
•B).

Applying Lemma 3.12 to both X = X∗ and X = B, we
can write

d(B, X∗) ≤ 1

2(1− 2p)
(Ẽfull•X∗−Ẽfull•B−10

√
pn3/2).

Applying Lemma 3.11 again, once to Ẽfull • X∗ and

once to Ẽfull • B, we get

Ẽfull •X∗ − Ẽfull • B = 2(d(Efull, X
∗)− d(Efull,B)).

We observe that

(3.5) d(X∗, Efull)− d(B, Efull) ≤ d(X∗, E)− d(B, E).

To see that, transform Efull into E by switching vertex
pairs one at a time. Each time the adversary is
“nice” (taking advantage of the semi-random model)
and declines to add noise to vertex pair uv, the value
of B decreases by 1 whereas the value of X∗, as that of
any fractional clustering, decreases by at most 1, hence
Equation (3.5).

We further claim that
(3.6)

d(X∗, E)− d(B, E) ≤ d(X∗, Ê)− d(B, Ê) + Õ(np + 1).

To see that, we transform E into Ê by switching vertex
pairs one at a time. Each time the algorithm removes

an edge of E that are between different clusters of B,
the value of B decreases by 1 whereas the value of X∗,
as that of any fractional clustering, decreases by at most
1. Each time the algorithm removes an edge of E that
is inside a cluster of B, the value of B changes by 1 and
the value of X∗, as that of any fractional clustering,
changes by at most 1, so the difference changes by at
most 2. Hence the difference from d(X∗, E)−d(B, E) to

d(X∗, Ê)−d(B, Ê) is at most twice the number of edges
inside clusters of B that are removed by the algorithm.
By Lemma 3.7 there are Õ(np + 1) such pairs, hence
Equation (3.6).

By optimality of X∗, we have d(Ê, X∗)−d(Ê,B) ≤
0. Clearly O(n)+Õ(np+1) = O(

√
pn3/2) for p ≥ n−2/3.

Altogether this yields

Cost(OUT) ≤ OPT + O

(√
pn3/2

1− 2p

)
.

By Theorem 3.3, OPTfull = Ω(n2p) , and so

(Cost(OUT)−OPT)/OPTfull = O

(
1√

np(1/2− p)

)
.

It is easy to check that for n−2/3 ≤ p ≤ 1/2 − n−1/3,
this quantity is O(n−1/6).

3.7 Proof of Theorem 2.1 (3) Part (3) of Theo-
rem 2.1 is proved using the same techniques as used to
prove part (2). When p is large we choose lower bound
L = d(X∗, E) − n/2, which is valid by Equation (3.4)
and was implicitly shown to be sufficiently tight in the
last section.

When p is small the argument is a bit more in-
volved. First note that the proof of Lemma 3.10 can be
readily converted into a polynomial-time algorithm for
certifying that a particular cluster is in every optimal
clustering. This algorithm succeeds with high probabil-
ity on any base cluster B of size at least c9(np + log n).
We run this algorithm (solve an LP and check comple-
mentary slackness) on every output cluster A ∈ Output.
We discard those clusters that this algorithm success-
fully certifies and compute initial lower bound L1 equal
to what Output (and hence C) pays for the edges in-
cident to the discarded clusters. Lemma 3.3 implies
thatL2 = d′(Output, E)− d′(A, Ê) is a lower bound on
the instanced induced by the remaining vertices, where
d′(·, ·) is like d(·, ·) but is limited to the subgraph in-
duced by the remaining vertices. Our overall lower
bound is L = L1 + L2.

4 Proof of Theorem 2.2

This proof is inspired by the analysis in [14] for the
planted clique problem. Our key innovation is ex-

tending the results of Füredi and Komlós [15] to ran-
dom matrices with entries only partially independent
(Lemma 4.5).

4.1 Overall Proof First we give a brief outline of our
proof. First we define a new SDP (4.7) which is (up to
scaling) a relaxation of the SDP in our SDPCluster
algorithm. Then we write its dual (4.8). We define
a dual solution (Π, Υ) in (4.9). Finally we analyze
eigenvalues (Lemmas 4.1-4.4) to prove that our dual
solution is feasible. Finally we use the fact that our
dual feasible solution has the same objective value as B
in the primal, plus a few more arguments, to prove the
theorem.

By Lemma 3.6 with high probability all edges
within base clusters remain in Ê. Edges between
clusters that are not in Ê can be accounted for as semi-
randomness, so we can ignore the distinction between
Ê and E. Semi-randomness can be dealt with easily
(using Equation (3.5) in Section 3.6) so we focus on the
fully random case.

Throughout this section we assume that there are b
clusters of size at least γ ≥ c5

√
n for some constant c5

to be decided later. Let µ = 1− 2p ≥ 1/3.
Let Juv denote a matrix with u, v entry equal to

1 and all others 0. Following [2], we write M � N if
M − N is positive semi-definite. Recall the definition

Ẽuv =

{
−1 if Euv = 1
1 if Euv = 0

. Observe that X∗ is feasible

in the following SDP:

max
X
−Ẽ •X s.t.

(4.7)





Juu •X = 1 ∀u ∈ V (Dual variable Πu)

−Juv •X ≤ 0 ∀u, v ∈ V (Dual variable −Υuv)

X � 0 (positive semi-definite)

Recall from Lemma 3.11 that d(E, X) = (1/2)(Ẽ •X −
Ẽ •E) so up to rescaling SDP (4.7) relaxes the SDP in
SDPCluster (by eliminating the triangle inequalities).

For convenience we package the dual variables Πu

and −Υuv (the minus sign will be convenient later) into
diagonal matrix Π and symmetric matrix −Υ. Here is
the dual of SDP (4.7):

min
Π,Υ

∑

v

Πv s.t.

(4.8)





Π− (−Υ) � −Ẽ

Π diagonal

−Υ ≥ 0 (All entries non-negative)

We rewrite the first constraint in the dual as M ≡
Ẽ + Π + Υ � 0.

Recall that the vertex set V is partitioned into b
base clusters B1, . . . , Bb. For this proof we subdivide8

the clusters into subclusters S1, . . . , Sr so that γ/2 ≤
|Si| ≤ γ for all i. For vertex u let B(u) and S(u) denote
the cluster and subcluster u is in respectively. We now
present our dual solution (Π, Υ). We choose

Πuu = −
∑

v∈B(u)

Ẽuv.(4.9)

Let Υuv be zero when B(u) = B(v) and

∑

i∈S(u),j∈S(v)

Ẽij

|S(u)||S(v)| −
∑

i∈S(u)

Ẽiv

|S(u)| −
∑

j∈S(v)

Ẽuj

|S(v)|

otherwise. This dual solution satisfies two key (and
easily verified) properties:

1. The vector with all components in one base cluster
equal to 1 and all others zero is an eigenvector of
M with eigenvalue 0.

2. The dual objective value
∑

v Πv equals −Ẽ •B, the
primal value of B.

Let us first show that −Υuv > 0 with high proba-
bility for any u, v with B(u) 6= B(v). Observe that each
of the three sums in the definition of Υuv are an average
of Ω(γ) independent −1/1 random variables each with
mean µ. Each of the three sums therefore equals its ex-

pectation, namely µ, plus or minus O
(√

log n
γ

)
< µ/10

by the Azuma-Hoeffding inequality. We conclude that

(4.10) Υuv < 0.

As noted above M has b orthogonal eigenvectors
with eigenvalue 0. We next show that the b+1 smallest
eigenvalue of M is strictly positive, which will imply
that M is positive semi-definite. To do so we decompose
M as

M = Ẽ + Π + Υ

= Π +
(
E
[
Ẽ + Υ

])

︸ ︷︷ ︸
≡M(1)

+
(
Ẽ −E

[
Ẽ
])

︸ ︷︷ ︸
≡M(2)

+
(
Υ−E [Υ]

)

︸ ︷︷ ︸
≡M(3)

and analyze the eigenvalues of Π, M (1), M (2) and M (3)

separately. In particular we will prove the following four
Lemmas:

8On first reading consider the special case of all clusters having
size exactly γ and Bi = Si.

Lemma 4.1. All eigenvalues of Π are Ω(
√

γ) with high
probability.

Lemma 4.2. The b + 1 smallest eigenvalue of M (1) is
µ.

Lemma 4.3. M (2) has all eigenvalues at least −Θ(
√

n)
with high probability.

Lemma 4.4. M (3) has all eigenvalues at least −Θ(
√

n)
with high probability.

Before proving these Lemmas we show how they
imply Theorem 2.2. We use the following corollary of
the Courant-Fischer Theorem, due to Weyl:

Theorem 4.1. (Weyl [17]) For any n×n symmetric
matrices A and B and integer 1 ≤ k ≤ n the kth
smallest eigenvalue of A+B is at least the kth smallest
eigenvalue of A plus the smallest eigenvalue of B.

We apply Theorem 4.1 three times with k = b + 1
together with Lemmas 4.1, 4.2, 4.3 and 4.4. This shows
that the b + 1 smallest eigenvalue of M is at least
Ω(
√

γ)− µ− Θ(
√

n)− Θ(
√

n) > 0 for sufficiently large
γ = c5

√
n. We conclude M � 0 and hence our dual

assignment is feasible. As already remarked this dual
assignment has the same objective value as B in the
primal, so we conclude that both are optimal.

We will now prove Theorem 2.2 by showing that B
is not only a primal optimal but the unique optimum.

Proof. (Of Theorem 2.2) Let X∗ be an arbitrary op-
timal solution of the SDPCluster SDP. First con-
sider some u, v in different clusters. We previously
showed (4.10) that dual variable −Υuv is strictly pos-
itive, hence by the complementary slackness condition
X∗

uv · −Υuv = 0 we conclude X∗
uv = 0.

For u, v in different clusters we use the complemen-
tary slackness condition MX∗ = 0 [2]. This implies that
any eigenvector of X∗ with non-zero eigenvalue must be
in the nullspace of M . In the previous paragraph we
showed that X∗ is block diagonal with one block per
cluster so w.l.o.g. assume eigenvectors of X∗ each have
their support contained within a single cluster. Our pre-
vious analysis of the eigenspectrum of M implies that
the nullspace of M is spanned by vectors x1, x2, . . . , xb

where xi has components equal to 1 within base cluster
Bi and 0 elsewhere. We can therefore write X∗ as a
linear combination of rank-one outer product matrices
xix

T
i . The constraint Xuu = 1 imply that the linear

combination has coefficients all 1, i.e. X∗ = B.

4.2 Eigenvalue analysis The following Lemma,
proved shortly in Section 4.3, will be helpful for prov-
ing Lemmas 4.3 and 4.4. Füredi and Komlós [15]
showed that a symmetric matrix with independent ran-
dom entries, each with variance σ2, has spectral ra-
dius (2 + o(1))σ

√
n. Our Lemma generalizes their re-

sult to matrices whose entries are not completely inde-
pendent, but independent outside certain roughly equal
sized blocks.

Lemma 4.5. (Generalization of [15]) Let set V ,
|V | = n ≥ 64, be partitioned into r classes S1 . . . Sr,
all of size between β/2 and β for some 1 ≤ β ≤ n. Let
S(v) denote the class that v ∈ V is in. Let N be a
matrix-valued random variable indexed by V where:

• Nuv = Nvu for all u, v ∈ V (symmetric)

• E [N] = 0

• The blocks of matrix N induced by the class struc-
ture are mutually independent. The block indexed
by 1 ≤ i, j ≤ r is the set of all random variables
Nuv with {S(u), S(v)} = {i, j}.

• E
[
N2

uv

]
≤ σ2 and |Nuv| ≤ K for all u, v ∈ V and

some uniform K and σ with K ≥ σ > 0.

• β · K2

σ2 ≤ n/(800 lg4 n) = Õ(n)

Then with probability at least 1− n−8 all eigenvalues of
N have absolute value at most 20σ

√
βn, i.e. the spectral

radius of N is O(σ
√

βn).

Lemma 4.5 with β = 1 is equivalent up to constants
to [15]. We use Lemma 4.5 twice, once with β = 1 and
once with β equal to the cluster size lower-bound γ.

Proof. (Of Lemma 4.1) Matrix Π is diagonal so its
eigenvalues are simply the entries on its diagonal. Con-
sider entry Πu for vertex u in cluster B(u). Clearly Πu

consists of the sum of |B(u)| − 1 independent random
variables each with mean µ. Therefore by the Azuma-
Hoeffding inequality we have Πu = µ(|B(u)| − 1) ±
O(
√
|B(u)− 1| logn) = Ω(γ) with high probability. A

union bound over vertices completes the proof.

Proof. Of Lemma 4.2) Note that E [Υij] = −E
[
Ẽij

]

for all i and j in different clusters hence M (1) is
block diagonal with one block per cluster. Consider
some block N corresponding to cluster Bi. Clearly
N = −µJ + µI, hence N has eigenvalue −µ|Bi| + µ
with multiplicity 1 and eigenvalue µ with multiplicity
|Bi|−1. Unioning these spectra over the clusters proves
the Lemma.

Proof. (Of Lemma 4.3) Observe that the entries of M (2)

are independent, have variance O(p) and are bounded
by 2. The result of Füredi and Komlós, i.e. Lemma 4.5
with s = n and β = 1, proves the Lemma.

Proof. (Of Lemma 4.4) It is easy to verify that M (3)

satisfies the conditions of Lemma 4.5 with β = γ,

σ = Θ(1√
γ) and K = Θ

(√
log n

γ

)
, the last by Azuma-

Hoeffding inequality. Applying Lemma 4.5 proves the
Lemma.

4.3 Proof of Lemma 4.5 We extend the techniques
of Füredi and Komlós [15]. Let λi denote the ith
eigenvalue of matrix N . Let k = 10 ⌈lg n⌉, an even
integer. Clearly

Pr
(
max

i
|λi| ≥ 20σ

√
βn
)

≤ Pr

(
∑

i

λk
i ≥ (20σ

√
βn)k

)

≤ E

[
∑

i

λk
i

]
/(20σ

√
βn)k (Markov).(4.11)

The sum of λk
i is the trace of Nk, which can

alternatively be written as
∑

q

∏
e∈q Ne, where the sum

is over walks q of length k whose ending point equals
their starting point. Consider such a walk q.

If there are two classes Si and Sj such that q has
exactly one edge f between Si and Sj , then

E

[
∏

e∈q

Ne

]
= E [Nf]E


 ∏

e∈q,e6=f

Ne


 = 0

by independence and since E [Nf] = 0 by assumption.
If not, let p denote the number of classes visited

by walk q. Let Si and Sj be two of them and assume
that q has ℓ ≥ 2 visits of edges between them. Then
one can check (using the inequalities of Hölder and

Cauchy-Schwarz) that E
[∏

e∈q,e∈Si×Sj
Ne

]
≤ σ2Kℓ−2.

By independence,9 we deduce

E

[
∏

e∈q

Ne

]
≤ σ2(p−1)Kk−2(p−1)

We group walks q of this type by the corresponding
walk q′ over the classes, where walk q over V refines
walk q′ over the set of classes if the class of each point
in q is equal to the corresponding point in q′. Any such
q′ must clearly use each superedge between classes at

9And the assumption σ ≤ K.

least twice or not at all. For any fixed q′ there are at
most βk walks q that refine q′. Therefore for any q′

E


 ∑

q refines q′

∏

e∈q

Ne


 ≤ βkσ2(p−1)Kk−2(p−1)(4.12)

We now use the following Lemma implicit in [15]:

Lemma 4.6. ([15]) The number of walks (cyclic or not)
of k steps on the complete graph with r vertices that visit
exactly p distinct vertices and visit each non-loop edge
at least twice (in either direction) is at most

r·(r−1)·. . .·(r−p+1)·
(

k

k − 2p + 2

)
p2(k−2p+2) 1

p

(
2p− 2

p− 1

)
.

Let T (p) denote the contribution of walks that
visit p distinct classes to the expected trace of Nk.
Combining Lemmas 4.6 and (4.12) we see that for any
p ≤ k/2 + 1.

T (p) ≤

(4.13)

rp

(
k

k − 2p + 2

)
p2(k−2p+2) 1

p

(
2p− 2

p− 1

)
· βkσ2p−2Kk−2p+2

≤ rp2kp2(k−2p+2) · 1 · 22p−2 · βkσ2p−2Kk−2p+2

=
(
2p2βK

)k
(

4σ2r

p4K2

)p−1

r

(4.14)

≡ T̄ (p)

Recall that k = 10 ⌈lg n⌉ hence p ≤ k
2 + 1 ≤

5 ⌈lg n⌉ + 1 ≤ 6 lg n. Also recall the assumption that

β · K2

σ2 ≤ n/(400 lg4 n), hence σ2n
(lg n)4K2β ≥ 400. Finally

note the trivial fact r ≥ n/β. Putting these facts
together we conclude

(
4σ2r

p4K2

)
≥
(

4σ2n

(6 lg n)4K2β

)
≥ 4 · 800

64
> 2.(4.15)

Combining (4.14) and (4.15) we conclude

E

[
∑

i

λk
i

]
=

r∑

p=1

T (p) ≤
k/2+1∑

p=1

T̄ (p)

≤ 2T̄ (k/2 + 1) = 2
(
4βσ
√

r
)k · 2r.(4.16)

We now finish the proof of Lemma 4.5:

Pr
(
max

i
|λi| ≥ 20σ

√
βn
)

≤ E

[
∑

i

λk
i

]
/(20σ

√
βn)k (by 4.11)

≤ (4βσ
√

r)
k
2r

(20σ
√

βn)k
(by 4.16)

≤
(

1

2

)k

· 2n (r ≤ 2n/β and r ≤ n)

≤ n−8 (k = 10 ⌈lg n⌉).

5 Proof of Theorem 2.3

5.1 Preliminaries Algorithm 3 proceeds by first
identifying a candidate set of clusters A and then certi-
fying that the large clusters therein, denoted A′, are in
fact optimal. The following four Lemmas easily imply
Theorem 2.3.

Lemma 5.1. W.h.p. Algorithm 3 produces intermediate
set of clusters A that includes all clusters of the base
clustering B that have size greater than or equal to
3 ⌈70/δ⌉.

Lemma 5.2. W.h.p. Algorithm 3 produces intermediate
set of clusters A that includes no clusters except those
guaranteed by Lemma 5.1.

Lemma 5.3. Conditioned on the w.h.p. events of Lem-
mas 5.1 and 5.2 occurring Algorithm 3 outputs “failure”
with probability at most 2n−5.

Lemma 5.4. Let A′ be a clustering output by Algo-
rithm 3 and C be an optimal clustering. We have
A′ = {C ∈ C : |C| ≥ 15s′ }.

We prove each of these Lemmas in turn. Through-
out this section we assume that p ≤ n−δ/60 for some
δ > 0 and s = ⌈70/δ⌉.

For edge set E and disjoint vertex sets S and T , let
E(S, T) denote the number of edges with one endpoint
in S and the other in T . For vertex v let E(v, T) denote
E({v}, T \ {v}).

Recall that s ≥ ⌈70/δ⌉. If p ≤ n−5, then with
probability 1 − n−3 the input graph is just the base
clustering with no noise, in which case cluster-finding
is trivial. We can therefore safely assume δ < 5, and
hence s ≥ 40/δ + 5.

A mistake is an edge whose label is different in the
base clustering and in the input clustering.

Lemma 5.5. Let X be a set of edges of cardinality at
least 70/δ. Then, with probability at least 1−n−7, there
are at most |X |/10 mistakes in X.

Proof. Elementary counting:
(|X|
|X|/10

)
p|X|/10 ≤

(
e|X|p
|X|/10

)|X|/10

≤ n−δ|X|/10 ≤ n−7.

Lemma 5.6. With probability at least 1 − n−5, every
subgraph induced by a vertex set Y of size k ≥ 40/δ + 5
has at most |Y |2/40 mistakes.

Proof. Let k ≥ 40/δ + 5 be given. There are
(
n
k

)
≤ nk

subsets of size k. Each subset has
(
k
2

)
≤ k2/2 vertex

pairs within a given subset, so the mean number of
mistakes is at most k2p/2. Using Markov and Chernoff
bounds, write:

Pr (∃S of size k with at least k mistakes)

≤ nk

(
epk2/2

k2/40

)k2/40

≤ nk−δk2/40

We therefore want k − δk2/40 ≤ −5. By Taylor
series around k = 40/δ, we see that k − δk2/40 ≤
−(k − 40/δ), hence k ≥ 40/δ + 5 suffices.

Lemma 5.7. Let U, W be disjoint vertex sets and s > 0
an integer. Assume that for every subset S of U and
T of W with cardinalities |S| = |T | = s, there are at
most (resp. at least) (.35)|S||T | edges between S and
T . Then for every subset S′ of U and T ′ of W with
cardinalities |S′|, |T ′| ≥ s, there are also at most (resp.
at least) (.35)|S′||T ′| edges between S′ and T ′.

Proof. Here is a way to compute the number of edges
between S′ and T ′ divided by |S′||T ′|: Pick a random
subset S of S′ of size s and a random subset T of T ′ also
of size s, compute the number of edges between S and
T divided by s2, and average over the random choices of
S, T . The number of edges between S and T is bounded
by assumption, hence the lemma.

For every cluster B ∈ B of size at least 3s, fix an
arbitrary seed set KB ⊂ B of size s.

Let Event 1, . . . Event 4 refer to:

1. For all v ∈ V and B ∈ B with |B| ≥ 3s, E(v, KB) ≥
|KB|/2 if and only if v ∈ B.

2. For all v ∈ V and B ∈ B with |B| ≥ 3s, E(v, B) ≥
.9|B| if v ∈ B and E(v, B) ≤ .1|B| if v 6∈ B.

3. All B ∈ B and disjoint sets T, S ⊆ B with |T | =
|U | = s satisfy E(T, U) ≥ .9s2

4. For every pair of disjoint vertex sets S, T with
cardinalities |S| = |T | = s, such that no cluster
B ∈ B intersects both S and T (∀B, B ∩ S = ∅
or A ∩ T = ∅), there are at most (.1)|S||T | edges
between S and T .

Lemma 5.8. Events 1,2,3,4 all occur with probability at
least 1−O(n−5).

Proof. Events 1 and 2 occur with that probability by
Lemma 5.5 and a union bound over the O(n2) possible
combinations of base cluster B and vertex v. Events 3
and 4 follow from Lemma 5.6 using X = S ∩ T .

We henceforth assume that events 1, . . . 4 occur. We
refer to the three bullets in the first half of Algorithm 3
as Condition 1 . . . 3. We refer to the three bullets in the
second half of Algorithm 3 as Property 1 . . . 3.

5.2 Proof of Lemma 5.1 In this subsection we
prove that every cluster B ∈ B of size at least 3s is
added to A at some point.

We fix some cluster B ∈ B of size at least 3s.
Let K be its seed. We show that when Algorithm 3
considers S = K, then it adds A = B to A. Event
1 and the definition of A implies A = B. Events 3, 4
and 2 guarantee that A satisfies conditions 1, 2 and the
second part of condition 3 respectively. The first part
of condition 3 is satisfied by assumption on the size of
B.

5.3 Proof of Lemma 5.2 In this subsection we show
that every cluster A added to A satisfies |A| ≥ 3s and
A ∈ B.

Lemma 5.9. For every cluster A that satisfies condi-
tions 1–3 there exists B ∈ B such that |B \ A| < s and
|A \B| < s.

Proof. Construct a bipartition S, T of A as follows.
Consider the clusters Bi ∈ B in descending order of
|Bi ∩A|, adding Bi ∩A to whichever of S, T have fewer
vertices. It is well known that this greedy algorithm
satisfies ||S| − |T || ≤ |B+ ∩A|, where B+ is the cluster
with the largest intersection with A. Without less
of generality suppose that |T | ≥ |S|. If |S| ≥ s,
then E(S, T) ≤ .1|S||T | by event 4 and Lemma 5.7,
contradicting condition 1, which implies E(S, T) ≥
.9|S||T |, again using Lemma 5.7. Therefore |S| < s.
Therefore |T | < s + |B+ ∩ A|, so 3s ≤ |S| + |T | <
2s + |B+ ∩ A|, so |B+ ∩ A| > s. Therefore the greedy
procedure placed all other vertices in S, so |A \ B+| =
|S| < s.

By Condition 3 and |A \ B+| < s we see that
|A ∩ B+| ≥ 2s. If |B+ \ A| were s or more, we would
detect that because then E(A ∩ B+, B+ \ A) ≥ .9|A ∩
B+||B+ \A| by event 3, which contradicts condition 2.

Every A that passes is approximately equal to some
B ∈ B by Lemma 5.9. We now show that A = B.

First consider some vertex v ∈ B. We use Event 2
and properties 3 to write E(v, A) ≥ E(v, A ∩ B) ≥
|A∩B|− .1|B| ≥ (|A|− s)− .1(|A|+ s) = .9|A|− 1.1s ≥
.9|A| − 1.1

3 |A| > |A|/2, so B ⊆ A by condition 3. For
v 6∈ B, we similarly write E(v, A) = E(v, A ∩ B) +
E(v, A\B) ≤ .1|B|+s ≤ .1(|A|+s)+s = .1|A|+1.1s ≤
.1|A|+ 1.1

3 |A| < |A|/2. Therefore A = B.

5.4 Proof of Lemma 5.3 The proofs of the first
property and of the second property are identical: for
each v and A we apply Lemma 5.5 to the set of edges
between v and A, and use the union bound. (There are
at most n2 such sets.)

To prove the third property, observe that each
cluster Bi ∈ B which intersects both S and T has ci

vertices in S and c′i vertices in T , with ci + c′i ≤ 3s.
Therefore in the base clustering the number of edges
between S and T is

∑
i cic

′
i ≤

∑
i(ci + c′i)

2/4. By
convexity and using

∑
i(ci + c′i) ≤ |S ∪ T | = 12s

and maxi(ci + c′i) ≤ 3s, this is bounded by 36s2/4 =
|S||T |/4. By Lemma 5.6 applied to X = S ∪ T , the
mistakes add another (12s)2/40 = |S||T |/10 edges, for
a total of at most .35|S||T | edges.

5.5 Proof of Lemma 5.4 Let M(S, T) = 2E(S, T)−
|S||T |, which is the profit from merging clusters S and
T into a new cluster.

Lemma 5.10. Let A be the input partial clustering that
Algorithm 3 output and C be an optimal clustering. For
any C ∈ C satisfying |C| ≥ 18s there exists a unique
A ∈ A such that:

1. |C \A| < 6s

2. |A| ≥ 3|C| or C ⊆ A

Proof. Suppose |C| ≥ 18s. Let A be the cluster in A
maximizing |A ∩C|.

Relabel the clusters Ai ∈ A so that |A1 ∩ C| ≥
|Ai ∩ C| for all 1 ≤ i ≤ |A|. Let Sk =

⋃k
i=1 Ai ∩ C

and let S = Sk where k is the smallest integer such that
|Sk| ≥ 6s. (If no such k exists, let S be

⋃
i Ai ∩ C plus

sufficient additional vertices from C \⋃i Ai ∩C so that
|S| = 6s.) Let T = C \ S. If |T | were at least 6s then
Lemma 5.7 and Property 3 would contradict optimality
of C so |T | < 6s. We know |S|+ |T | ≥ 18s so therefore
|S| > 12s. The definition of k and the relabeling imply
k = 1, proving the first statement of the Lemma.

For v ∈ C \ A write E(v, C ∩ A) ≤ E(v, A) ≤ .1|A|
using Property 2b. Note that M(C \ A, C ∩ A) ≥ 0 by
optimality of C, so therefore 0 ≤ M(C \ A, C ∩ A) =∑

v∈C\A M(v, C ∩ A) =
∑

v 2E(v, C ∩ A) − |C ∩ A| ≤
|C \ A|(.2|A| − |C ∩ A|). Suppose C 6⊆ A, hence

|C \ A| > 0. Therefore 0 ≤ .2|A| − |C ∩ A| hence using
|C| ≥ 18s we see |A| ≥ 5|C ∩ A| ≥ 10

3 |C|, proving the
second statement of the Lemma.

We are now ready to prove Lemma 5.4. We first
show that A′ ⊆ {C ∈ C : |C| ≥ 45s }.

Let A be the largest cluster in A \ C. For sake
of contradiction suppose |A| > 45s. Consider the
clustering C′ = {A} ∪ {C \A : C ∈ C }. We will
prove that C′ is strictly better than C, contradicting the
optimality of C.

Let Cu denote the cluster of C containing vertex
u. Let C1, C2 . . . Cl denote the clusters of C with
non-empty intersection with A∗. For C′ and C, the
objective function only differs for pairs {u, v} such that
u ∈ Cu ∩ A, v ∈ Cu \ A (in which case we charge the
change to Cu), or such that u ∈ Cu∩A, v ∈ Cv ∩A with
Cu 6= Cv (in which case we charge half of the change to
Cu and half to Cv). The change in objective function
can thus be written as the sum, over 1 ≤ i ≤ l, of
∆profit(i), where ∆profit(i) equals

−M(Ci ∩A, Ci \A) +
1

2
M(Ci ∩A, A \ Ci).

Let D be the smaller of Ci ∩ A and A \ Ci, hence
|D| ≤ (1/2)|A|. Using Property 2a we see

E(D, A \D) =
∑

v∈D

E(v, A \D)

≥
∑

v

E(v, A) − |D| ≥ |D|(.9|A| − |D|).

Therefore

M(D, A \D) = 2E(D, A \D)− |D| · |A \D|
≥ |D|(1.8|A| − 2|D| − |A \D|)
= |D|(.8|A| − |D|) ≥ .3|D| · |A| > 0

allowing us to write

(5.17) ∆profit(i)

≥ −M(Ci ∩A, Ci \A) + min(|Ci ∩A|, |A \ Ci|) ·
· (.4|A| − (1/2)min(|Ci ∩A|, |A \ Ci|)).

We show that ∆profit(i) > 0 for all i by cases on
|Ci ∩A|.

Case 1: |Ci| < .4|A|. We trivially see M(Ci∩A, Ci\
A) ≤ |Ci ∩A|(|Ci| − |Ci ∩A|). Using (5.17)

∆profit(i)

≥ −|Ci ∩A|(|Ci| − |Ci ∩A|) +

+
1

2
|Ci ∩A|(.8|A| − |Ci ∩A|)

= |Ci ∩A|
(
−(|Ci| − |Ci ∩A|) + .4|A| − 1

2
|Ci ∩A|

)

≥ |Ci ∩A| (.4|A| − |Ci|) > 0.

Case 2: |Ci| ≥ .4|A|. We assumed |A| ≥ 45s hence
|Ci| ≥ .4 · 45s = 18s. Let A′ be the cluster promised
by Lemma 5.10. Clearly A′ 6∈ C hence |C| ≥ .4|A| ≥
.4|A′| > 1

3 |A′| so by Lemma 5.10 we have Ci ⊆ A.
Therefore M(Ci ∩ A, Ci \ A) = 0 hence using (5.17)
∆profit(i) > 0.

Thus in all cases the change in profit is positive: C′
is strictly better than C, contradicting the optimality
of C. This completes the proof that A′ ⊆ {C ∈ C :
|C| ≥ 45s }.

To show A′ ⊆ {C ∈ C : |C| ≥ 45s }, suppose for
contradiction that there is some C not in A with |C| ≥
45s. Lemma 5.10 implies there exists a cluster A′ ∈ A
that intersects C such that |A′| > |C| ≥ 45s. We know
C is a partition so A′ 6∈ C, so this contradicts the fact
that we already proved A′ ⊆ {C ∈ C : |C| ≥ 45s }.

This completes the proof of Lemma 5.4.

5.6 Runtime The runtime is dominated by that
needed to check the third property. Algorithm 3
considers O(n6s) different values the sets T and U , so
this takes time O(n12s).

References

[1] Nir Ailon, Moses Charikar, and Alantha Newman.
Aggregating inconsistent information: ranking and
clustering. In STOC ’05: Procs. 37th ACM Symposium
on Theory of Computing, pages 684–693, 2005.

[2] F. Alizadeh. Interior point methods in semidefinite
programming with applications to combinatorial opti-
mization. SIAM J. on Optimization, 5(1):13–51, 1995.

[3] Noga Alon, Michael Krivelevich, and Benny Sudakov.
Finding a large hidden clique in a random graph.
In SODA ’98: Procs. 9th ACM-SIAM Symposium on
Discrete Algorithms, pages 594–598, 1998.

[4] Noga Alon and Joel H. Spencer. The Probabilistic
Method, chapter 7.8, pages 115–116. Wiley, third
edition edition, 2008.

[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Cor-
relation clustering. Mach. Learn., 56(1-3):89–113,
2004.

[6] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clus-
tering gene expression patterns. Journal of Computa-
tional Biology, 6(3-4):281–297, 1999.

[7] Béla Bollobás. Random Graphs, chapter 11.1. Cam-
bridge University Press, second edition, 2001.

[8] R. Boppana. Eigenvalues and graph bisection: An
average-case analysis. In Procs. 28th Foundations of
Computer Science, pages 280–285, 1987.

[9] Mark Braverman and Elchanan Mossel. Noisy sorting
without resampling. In SODA ’08: Procs. 19th ACM-
SIAM Symposium on Discrete Algorithms, pages 268–
276, 2008.

[10] Moses Charikar, Venkatesan Guruswami, and Anthony
Wirth. Clustering with qualitative information. J.
Comput. Syst. Sci., 71(3):360–383, 2005.

[11] William Cohen and Jacob Richman. Learning to match
and cluster large high-dimensional data sets for data
integration. In KDD ’02: Procs. 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 475–480, 2002.

[12] Erik Demaine, Dotan Emanuel, Amos Fiat, and Nicole
Immorlica. Correlation clustering in general weighted
graphs. Theor. Comput. Sci., 361(2):172–187, 2006.

[13] Micha Elsner and Warren Schudy. Bounding and
comparing methods for correlation clustering beyond
ILP. In NAACL-HLT Workshop on Integer Linear
Programming for Natural Language Processing (ILP-
NLP 2009), pages 19–27, 2009.

[14] Uriel Feige and Robert Krauthgamer. Finding and
certifying a large hidden clique in a semirandom graph.
Random Struct. Algorithms, 16(2):195–208, 2000.

[15] Z. Füredi and J. Komlós. The eigenvalues of random
symmetric matrices. Combinatorica, 1(3):233–241,
1981.

[16] Ioannis Giotis and Venkatesan Guruswami. Correla-
tion clustering with a fixed number of clusters. Theory
of Computing, 2(1):249–266, 2006.

[17] Roger Horn and Charles Johnson. Matrix Analysis,
chapter 4.3. Cambridge University Press, 1985.

[18] M. Jerrum. Large cliques elude the metropolis process.
Random Structures & Algorithms, 3(4):347–359, 1992.

[19] Thorsten Joachims and John Hopcroft. Error bounds
for correlation clustering. In ICML ’05: Procs. 22nd

International Conference on Machine Learning, pages
385–392, 2005.

[20] Jeong Han Kim and Van H. Vu. Concentration of mul-
tivariate polynomials and its applications. Combina-
torica, 20(3):417–434, 2000.

[21] Alexandra Kolla and Madhur Tulsiani. Playing ran-
dom and expanding unique games. Unpublished
manuscript, 2008.

[22] L. Kucera. Expected complexity of graph partitioning
problems. Discrete Appl. Math., 57(2–3):193–212,
1995.

[23] F. McSherry. Spectral partitioning of random graphs.
In FOCS ’01: Procs. 42nd IEEE Foundations of Com-
puter Science, page 529, 2001.

[24] Ron Shamir and Dekel Tsur. Improved algorithms for
the random cluster graph model. Random Structures
and Algorithms, 31(4):418–449, 2007.

[25] Chaitanya Swamy. Correlation clustering: maximizing
agreements via semidefinite programming. In SODA
’04: Procs. of the 15th ACM-SIAM Symposium on
Discrete Algorithms, pages 526–527, 2004.

[26] Anke van Zuylen, Rajneesh Hegde, Kamal Jain, and
David P. Williamson. Deterministic pivoting algo-
rithms for constrained ranking and clustering prob-
lems. In SODA ’07: Procs. 18th ACM-SIAM Sym-
posium on Discrete Algorithms, pages 405–414, 2007.

