
Fast, Accurate Detection of 100,000 Object Classes on a Single Machine

Thomas Dean Mark A. Ruzon Mark Segal

Jonathon Shlens Sudheendra Vijayanarasimhan Jay Yagnik†

Google, Mountain View, CA

{tld,ruzon,segal,shlens,svnaras,jyagnik}@google.com

Abstract

Many object detection systems are constrained by the

time required to convolve a target image with a bank of fil-

ters that code for different aspects of an object’s appear-

ance, such as the presence of component parts. We ex-

ploit locality-sensitive hashing to replace the dot-product

kernel operator in the convolution with a fixed number of

hash-table probes that effectively sample all of the filter re-

sponses in time independent of the size of the filter bank.

To show the effectiveness of the technique, we apply it to

evaluate 100,000 deformable-part models requiring over a

million (part) filters on multiple scales of a target image

in less than 20 seconds using a single multi-core processor

with 20GB of RAM. This represents a speed-up of approx-

imately 20,000 times— four orders of magnitude— when

compared with performing the convolutions explicitly on the

same hardware. While mean average precision over the full

set of 100,000 object classes is around 0.16 due in large

part to the challenges in gathering training data and col-

lecting ground truth for so many classes, we achieve a mAP

of at least 0.20 on a third of the classes and 0.30 or better

on about 20% of the classes.

1. Introduction

Many object detection and recognition systems are con-

strained by the computation time required to perform a large

number of convolutions across a dense array of image win-

dows with a bank of filters. This problem can be miti-

gated somewhat by using cascades and coarse-to-fine ar-

chitectures to deploy filters conditionally based upon pre-

viously computed thresholded responses, or by sampling

image windows with a sparse grid or only at locations deter-

mined by an interest-point detector. The former method is

inherently greedy and can require traversing a tree of filters

that is both deep and broad in order to scale to a large num-

† Corresponding author.

ber of object classes and achieve a given precision/recall tar-

get. The latter method suffers from low-level salience being

a poor guide to precise identification of locations to sample

and thus requires that filters be invariant to small positional

changes, thereby reducing their discrimination.

We exploit locality-sensitive hashing [10] to replace the

dot product in the kernel operator of the convolution with a

multi-band hash-table lookup. This enables us to determine

the filters with highest responses in O(1) time independent

of the number of filters. The technique is applicable to a

variety of signal processing tasks in image processing as

well as other domains. Our approach is not restricted to

any particular method or dataset; rather it provides the basis

for scaling the number of traditionally compute-intensive

signal processing operators from the hundreds or at most

thousands applied in current practice to millions. All filters

are effectively sampled in one pass over the image with a

single probe per location/image window. A descriptor gen-

erated from the image window is divided into bands, and

each band is hashed in the table associated with that band

to retrieve a list of filters potentially responding at that loca-

tion. The indications from all bands are combined to come

up with a set of proposals for the filters with the largest re-

sponses, and exact responses are computed for these filters

only. We demonstrate the efficacy of the approach by scal-

ing object detection to one hundred thousand object classes

employing millions of filters representing objects and their

constituent parts across a wide range of poses and scales.

We allow filters to operate on diverse features and

achieve additional benefits by embedding patches of the

resulting feature map in an ordinal space using a high-

dimensional sparse feature descriptor [21]. By operating in

this ordinal space, our similarity measure becomes rank cor-

relation instead of the linear correlation implied by the dot

product in the kernel of a traditional convolution. Rank cor-

relation largely eliminates both linear and nonlinear scaling

effects (including local contrast normalization) and reduces

sensitivity to small perturbations in the underlying feature

space (see Figure 1). By performing this nonlinear embed-

ding in a high-dimensional space, we are able to simplify

1

the hashing process and apply large-scale linear solvers in

training object models. Furthermore, this hashing scheme

can be implemented exactly in the integer domain, a desir-

able property for achieving high performance.

Are there really 100,000 objects to concern ourselves

with? Humans are able to discriminate among around

30,000 visual categories [2], but many more appearances

and specific instances of classes, in much the same way

as adult vocabularies are estimated to be on the order of

20,000 words for an English speaker but much larger when

one considers all the proper nouns, hyphenated words and

arcana related to specific areas of expertise and interest. Yet

visual media are mostly opaque to machines. Much of the

progress in indexing such data depends on metadata, includ-

ing anchor text, captions, transcripts from audio, and user-

supplied tags. Standard visual descriptors relying on fea-

tures such as SIFT and HOG are semantically too low-level

to substantially complement the metadata.

If it were possible to identify a large subset of the ob-

jects in an image—their semantic categories and relative

geometries—we could apply modern document-retrieval

methods: term-frequency vectors, inverted indexes, and

common word sequences to considerably improve the abil-

ity of machines to parse visual data and search it efficiently.

We believe the present work will accelerate the state of

the art in object detection by increasing the number of vi-

sual categories by an order of magnitude or more while

simultaneously reducing run times by a comparable fac-

tor. We demonstrate our approach in an implementation

that achieves respectable performance on a standard bench-

mark for object detection, and exhibits graceful degradation

in performance with larger, automatically curated datasets

consisting of tens of thousands of classes.

2. Related Work

Traditionally, object detection is reduced to binary clas-

sification and a sliding window classifier is applied at all po-

sitions, scales and orientations of an image [20, 4, 8, 19, 22].

This leads to a complexity of O(LC) where L is the number

of locations or window proposals that need to be evaluated

and C is the number of classifiers (object classes) that are

being searched for. Most existing work on improving object

detection complexity focuses on reducing L.

Following the success of Viola and Jones [20], cascades

have been successfully applied to the star-structured mod-

els of [8] in [7] and [12] for this purpose. Cascades work by

applying simpler tests to each hypothesized object location

in order to eliminate most of them very quickly. Felzen-

szwalb et al. [7] utilize a variation on probably approximate

learning (PAC) to learn a cascade of detectors that provides

a 20-fold speedup of their earlier model, and [12] introduce

a new coarse-to-fine method that complements the approach

in [7], and can be combined with it to achieve up to two or-

ders of magnitude speedup in some cases.

Alternative approaches to reducing L advocate the use

of interest points in the form of jumping windows [19],

salience operators like objectness [1, 14], and segmenta-

tions [18, 9] as cues for generating object-like window

proposals, thus pruning out most of the background re-

gions that a naive approach like sliding window cannot

avoid. While these approaches produce similar accuracies

to sliding-window-based methods by evaluating only a frac-

tion of the windows in an image, they are primarily used for

bag-of-words-based models that require large vocabularies

and costly sparse coding or kernel operations in order to

obtain state-of-the-art accuracies.

Very recently, [13, 17] consider scaling category-level

detection by learning a set of shared basis parts in the form

of steerable filters or sparselets. Using these learned ba-

sis parts, approximate part responses can be computed for a

large number of classes using a sparse matrix-vector prod-

uct. They perform convolutions only for the basis part fil-

ters. While sparse products reduce the dependence of filter

convolutions on the number of classes, the overall complex-

ity is still linear in C and it remains to be seen if these ap-

proaches can scale to hundreds of thousands of categories.

It also remains to be seen just how large the set of basis

filters has to grow in order to support a large number of

classes. We suspect it will be significant, and that our ap-

proach will complement the sparselet work. Moreover, once

we largely eliminate the overhead of performing convolu-

tions using a method such as ours, we expect researchers

will find ample use for new classes of filters.

Overall, in contrast to most previous work, our approach

reduces object detection complexity by targeting its depen-

dence on the number of object classes C. Our hashing-

based framework is the first approach to reduce object de-

tection complexity from O(LC) to O(L). Furthermore,

since most previous methods concentrate on reducing L,

they complement our technique and can therefore be com-

bined with ours to further reduce computational costs.

3. Technical Details

The architecture described in this paper applies to a wide

range of feature types, e.g., histogram of oriented gra-

dients (HOG) [4] and locally adaptive regression kernels

(LARK) [16]. The application and experiments presented

here make use of the deformable part model (DPM) of

Felzenszwalb et al. [8]. Many other object detection mod-

els can be adapted to use our approach, including multi-

class cascades [14], recursive compositional models [22],

and variants of convolutional neural networks [11].

3.1. Winner­Take­All Hashing

Following [8], we compute a HOG feature pyramid by

converting each level of a standard image pyramid into a

A B C D E A B C D E A B C D E

A ≥ B ≥ C ≥ E ≥ D

In linear space: F ● G ≈ F ● H

In ordinal space: F ● G > F ● H

F G H

Figure 1. An ordinal measurement A ≥ B ≥ C ≥ E ≥ D is

robust to variations in individual filter values (top row). Ordinal

measures of similarity capture filter response differences not re-

flected in linear measures (dot product) of similarity (bottom row).

HOG image using a filter roughly equivalent to the Dalal

and Triggs model [4]. Rather than operate in the space of

HOG features, we encode each filter-sized window of the

HOG pyramid as a high-dimensional sparse binary descrip-

tor called a winner-take-all (WTA) hash [21].

We restrict our attention to a subfamily of the hash func-

tions introduced in [21] such that each WTA hash is de-

fined by a sequence of N permutations of the elements in

the fixed-sized window that we use in computing filter re-

sponses in the HOG pyramid. Each permutation consists of

a list of indices into the vector obtained by flattening such a

window of HOG coefficients; we need only retain the first

K indices for each of the N permutations to implement a

WTA hash function.

The term “winner take all” refers to each (N ∗K)-length

descriptor comprising N spans of length K consisting of all

zeros except the kth entry, which is set to one to encode the

index of the maximum value in the first K entries of the

permutation. Each descriptor is compactly represented in

N ∗ ⌈log
2
K⌉ bits. For example, given N = 2 and K = 3,

the flattened-window vector [0.3, 0.7, 0.2, 0.5], and the per-

mutations [1, 4, 3, 2] and [2, 1, 4, 3], the resulting WTA de-

scriptor is [0110]: the first K indices of each permutation,

[1, 4, 3] and [2, 1, 4] select [0.3, 0.5, 0.2] and [0.7, 0.3, 0.5]
whose maximum values have the indices 2 and 1 encoded—

least significant bit leftmost—in the binary vector. Note

that since the only operation involved in the entire process

is comparison, the hashing scheme can (a) be implemented

completely with integer arithmetic and (b) can be efficiently

coded without branching, and thus without branch predic-

tion penalties.

Each WTA hash function defines an ordinal embed-

ding and an associated rank-correlation similarity measure,

which offers a degree of invariance with respect to pertur-

bations in numeric values [21] and is well suited as a basis

for locality-sensitive hashing. These deterministic functions

are nonlinear and produce sparse descriptors that have been

shown to yield significant improvements on VOC 2010 us-

ing simple linear classifiers that can be trained quickly [21].

Intuitively, the information stored in a WTA hash allows

one to reconstruct a partial ordering of the coefficients in

the hashed vector. The top row of Figure 1 highlights how

partial-order statistics can be invariant to deformations and

perturbations of individual filter values. In an image pro-

cessing domain, all three filters in the top row of Figure 1

are qualitatively similar edge filters — this qualitative prop-

erty follows from all three filters obeying the same ordinal

statistic. Likewise, linear measures of similarity can be in-

sensitive to qualitative differences easily captured by an or-

dinal measure of similarity. For instance, in the bottom row

of Figure 1, filter F is qualitatively more similar to filter G
than it is to filter H . A linear measure of similarity (dot

product), however, regards F to be equally similar to G and

H . An ordinal measure of similarity based on partial-order

statistics would correctly identify F to be more similar to G
than H .

3.2. Deformable Parts Models

A DPM consists of a set of part filters, a set of defor-

mations that provide geometric information regarding the

expected placement of parts in a patch, a scoring func-

tion that provides the basis for combining the deformations

and part-filter responses, and a threshold tuned to meet a

given precision-recall target. A filter is a matrix specify-

ing weights for subwindows of a HOG pyramid. The score

of a filter with respect to a subwindow of a HOG pyra-

mid is the dot product of the weight vector and the features

comprising the subwindow. A deformation is a symmetric,

two-dimensional Gaussian mask superimposed on the tar-

get subwindow, with mean location specified relative to the

subwindow.

The model for a particular object class is implemented as

a mixture of DPMs, in which each component DPM is de-

signed to capture one aspect of the class. In our implemen-

tation, each model comprises three mixture components

representing three common aspect ratios for the bounding

box of an object instance. This implies that a single model

with, say, ten parts per component could have as many as

thirty filters, requiring the same number of convolutions.

3.3. DPM with WTA

Figure 2 illustrates the basic detection and training archi-

tecture. In the results reported in this paper, we use the same

basic training method as [8], and so to economize on space

we focus the discussion on detection. The first step is to

compute an image pyramid and the associated HOG pyra-

mid for the target image. Felzenszwalb et al. [8] employ a

Figure 2. An illustration of the key steps in detecting objects and training the models: Training takes as input examples comprising filter-

sized subwindows of a HOG pyramid as in [8] and produces as output a model that includes a set of filter-sized weight vectors called

part filters. We compute the WTA hash for each weight vector, decompose the resulting descriptor into M bands consisting of W spans

of length K, construct M hash tables and store each band in its respective table along with the index P of the corresponding part filter.

During detection we compute the WTA hash of each filter-sized window of the target HOG pyramid, break the hash into bands, look up

each band in its corresponding hash table, and count of how many times each part turns up in a table entry. We use these counts to identify

candidate filters for which we compute the exact dot products.

root filter in addition to the part filters. In scoring a win-

dow at a specified level in the HOG pyramid, they combine

the responses of the root filter within the selected window

at that level and the responses of the part filters in an appro-

priately adjusted window at a level one octave higher than

the specified level.

The contribution of a given part filter to the score of a

subwindow is obtained by convolving the filter with the se-

lected subwindow of the HOG pyramid, multiplying it by

the deformation Gaussian mask and taking the maximum

value. Instead of a response corresponding to the dot prod-

uct of the filter weights and a filter-sized block of the HOG

pyramid, we compute the WTA hash of that same filter-

sized block of the feature map. We employ locality sen-

sitive hashing [10] to recover the R largest responses corre-

sponding to what the dot products would have been had we

actually computed them.

During detection we employ hashing as a proxy for ex-

plicitly computing the dot product of the convolution sub-

window with each of the weight vectors for all the part fil-

ters in all object models without actually enumerating the

filters. To do so, we employ a multi-band LSH-style hash

table to reconstruct the dot products that have a significant

number of hash matches [15].

Consider the (N ∗ K)-dimensional binary vectors pro-

duced by the WTA hash function. Divide the vector into

equal-sized bands of size W ∗ K . For N = 2400 and

K = 16, W = 4 produces N/W = M = 600 bands,

each taking W ∗ ⌈log
2
K⌉ = 16 bits. Create one hash ta-

ble for each band to accommodate the hashed subvectors of

length W ∗ K . Let w be the vector of weight coefficients

for a part filter and u be the binary vector corresponding to

the WTA hash of w.

Let Bm denote the mth hash table and um the mth

(W ∗ K) span of weight coefficients in u. The hash bin

returned from hashing um in Bm is a list of filter indices,

which we use to update a histogram of filter match scores.

After we select the filters that are above threshold, we con-

tinue with Felzenszwalb et al.’s method, spreading now-

sparse filter activations into a more dense map using the

part deformation scores. Maxima in this map are our object

detections.

A limitation of our hashing approach is that all part filters

must be the same size. Because the object’s bounding box

has arbitrary aspect ratio, we cannot use a corresponding

root filter. Since hashing is inexpensive, however, we miti-

gate the lack of a root filter by tiling the bounding box with

part filters and obtaining activations for all of the tiles as we

slide the bounding box over the scaled array of features.

Additionally, the filter match score generated through

hashing is a lower bound on the filter response at that patch

(due to hash grouping in bands). Once a candidate part is

found, therefore, we compute the actual dot product of the

underlying image features with the associated filter and use

this in evaluating the location-based deformation. This re-

sult is combined with those of other parts for the candidate

object to obtain the object’s score, and we use this combined

score to suppress all but the best detection in a region.

It is possible to train DPM models not on HOG data as

explained in this section but rather on a hashed WTA ver-

sion of the HOG data. This approach has several technical

advantages but represents a more significant departure from

the original DPM approach than we have space to present

here. In the technical supplement associated with this pa-

per, however, we sketch the basic algorithms for training

and applying such WTA-based models.

4. Experimental Results

In the following, we use the term baseline algorithm or

just baseline to refer to the detection algorithm described

in [6] utilizing models generated by the training method

from the same paper. By performing several experiments,

we compare the performance of the baseline algorithm with

the hashing-based detection algorithm described in the pre-

vious section, utilizing models generated by the training

method from [6] but sans root filters as mentioned ear-

lier. First, we demonstrate that the hashing-based algo-

rithm compares favorably with the baseline algorithm on

the PASCAL VOC 2007 dataset. Second, we show that the

hashing-based algorithm can scale object detection to hun-

dreds of thousands of object classes and provide insight into

the trade-offs involving accuracy, memory and computation

time. Finally, we show the results of training 100,000 ob-

ject classes using our system and running the hashing-based

algorithm on the resulting models on a single machine.

4.1. Datasets and Implementation Details

We employed the standard benchmark detection dataset,

PASCAL VOC 2007, to test our detector. The PASCAL

dataset contains images from 20 different categories with

5000 images for training and validation and a test set of

size ∼5000. Further, to test our system at scale, we cre-

ated a new dataset called ImageSearch-100k which contains

training and validation images for 100,000 object concepts.

We compiled a list of 100,000 Freebase entities [3] from

notable types deemed to contain visual objects and queried

Google Image Search with these entities. For each query,

we downloaded at most 500 images resulting in a dataset of

32 million images with an average of 300 images per query.

We divided this dataset into a training set containing 80%

of the images and a validation set containing the other 20%.

Note that, since Image Search does not provide bounding

box annotations, this is a weakly supervised dataset, and

furthermore the dataset is noisy since the labels are based

on text accompanying the images. Hand labeling this data

even at the image level is infeasable.

For all experiments we used the extended HOG features

with three mixture components, as proposed in [6]. All

models were trained using parts consisting of a 6×6 grid of

HOG cells. Training was carried out training in two stages

initializing the models using warped examples in the first

iteration and computing latent variables in subsequent iter-

ations. We fixed the C parameter to 0.003 as recommended

in [6] based on cross-validation on the PASCAL dataset.

4.2. PASCAL VOC 2007

In this section we compare the hashing-based algorithm

with the baseline algorithm. Table 1 shows the average pre-

cision scores of each category for the two algorithms. Note

that we report the results for the base system of [6], since

we do not use bounding box prediction or context rescoring

which were reported to provide further improvements. For

the hashing parameters in this experiment, we use K = 4
and W = 4 for 8-bit hash keys and M = 3000 hash tables.

Our hashing-based algorithm compares favorably with

the baseline with a mAP of 0.24 compared to their 0.26. We

perform better than the baseline on three categories, similar

to the baseline on eight categories and are worse on nine

categories. The lack of a root filter in our implementation

is responsible for much of the deficit, especially the per-

son category which includes many examples too small to be

captured by the high-resolution part filters. We are explor-

ing options for restoring the root filter that would reduce

this deficit with a small added computational cost.

4.3. Accuracy Versus Speed and Memory

In the previous section we showed that our hashing-

based detector performs comparably to the baseline exhaus-

tive detector using the best set of hash parameters. In this

section we illustrate how the performance, along with the

speed and memory requirements of the detector, change

with the hash parameters.

Figure 3(a) shows the mAP on the PASCAL VOC 2007

dataset for K = {2, 4, 8, 16, 64} and the different numbers

of hashes. For each case we choose W such that we obtain

comparable hash keys of 16 or 18 bits. For all values of

K we see that the accuracy increases with more hashes (as

expected) and saturates beyond a certain number of hashes.

K = 16 performs best for all values of K , which we believe

is a property of the feature dimension and the percentage of

useful dimensions.

Figure 3(b) shows the same set of results mapped onto

the amount of memory used by the system. The memory

required is a function of M , the number of hash tables. For

K = 16, performance saturates at 5 KB per filter, which

translates to 5 GB for storing 100,000 classes with 10 fil-

ters each. This demonstrates we can store filters for up to

100,000 classes on a single modestly-equipped workstation.

Figure 3(c) describes the trade-off between the accuracy

and the total computation time for detecting all 20 object

classes. At 5 seconds per image, we obtain a speed-up of

approximately 20× over the base exhaustive system, which

compares well with cascade-based approaches for speeding

up detection [7]. Note, however, that our approach scales

arp bike bird boat bttl bus car cat chr cow tbl dog hrs mbke prsn plnt shp sofa trn tv Mean

Ours 0.19 0.48 0.03 0.10 0.16 0.41 0.44 0.09 0.15 0.19 0.23 0.10 0.52 0.34 0.20 0.10 0.16 0.28 0.34 0.34 0.24

[6] (base) 0.29 0.55 0.01 0.13 0.26 0.39 0.46 0.16 0.16 0.17 0.25 0.05 0.44 0.38 0.35 0.09 0.17 0.22 0.34 0.39 0.26

Table 1. Comparison of the hashing-based and baseline algorithms on the PASAL VOC 2007 dataset

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Hashes (1000s)

m
A

P

k = 2

k = 4

k = 8

k = 16

k = 64

(a)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Memory (KB per filter)

m
A

P

k = 2

k = 4

k = 8

k = 16

k = 64

(b)

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Time (secs)

m
A

P

k = 2

k = 4

k = 8

k = 16

k = 64

(c)

Figure 3. Effect of hashing parameters on the accuracy, speed and memory required by the system.

constantly over the number of object classes after a fixed

overhead, and, therefore, our speed-up increases with an in-

creasing number of classes.

4.4. Training 100,000 Object Detectors

In this section we show that our hashing-based algorithm

can be used to scale object detection to 100,000 classes.

For this experiment, we train our object models using the

ImageSearch-100K training set. Since this dataset does not

contain bounding boxes we pursue a simple bootstrapping

approach.

Bootstrapping. In the first iteration of training we ini-

tialize the model by using either the whole image as the

bounding box, or, in simple images with plain backgrounds,

by automatically cropping out any smoothly varying back-

ground regions. For most images, this is highly inaccurate.

In subsequent iterations, we first compute a bounding box

by running the detectors on each training image. If the

detection score is higher than the score for the bounding

box from the previous iteration we use the newly computed

bounding box. This strategy works especially well on Im-

age Search images, since most of the images contain the

object of the interest and there is significantly less clutter

than in the PASCAL VOC dataset. Training was performed

using a cluster of 5000 machines for 10 iterations in under

24 hours. For detection, we use K = 16, W = 4 and

N = 2400 in order to obtain a model of size 20 GB which

can be run on a single machine.

Figure 4(a) shows a summary of the mean average preci-

sions of 100,000 objects on the validation set for three dif-

ferent parameter settings that trade off speed and accuracy

for the same memory. For a speed-up of 17, 857× (5 hours

to 1 second), we obtain a mAP of 0.11 over 100,000 ob-

ject classes, which is a significant result when considering

the fact that the current state-of-the-art for object detection

time t = 8 t = 28 t = 76

mAP 0.07 0.11 0.16

speed-up 62, 500× 17, 857× 6, 580×
(a)

0 0.2 0.4 0.6 0.8 1
 0

10000

20000

30000

40000

50000

60000

70000

mAP

N
u
m

b
e
r

o
f
o
b
je

c
ts

 w
it
h
 m

A
P

 >
 x

t = 8 secs
t = 28 secs
t = 76 secs

(b)

Figure 4. Summary of mean average precision scores over the

100,000 objects for three different parameter settings.

is at 0.40 mAP over just 20 classes [5]. Furthermore, the

Image Search dataset frequently contains images from mul-

tiple concepts for ambiguous entities such as apple (fruit,

company), jaguar (animal, vehicle), etc.

Figure 4(b) shows the number of object classes with

mAP above different levels. As expected, this follows an

exponential trend; however, close to one-third of the objects

have a mAP of 0.20, and one-fifth of the objects have a mAP

of 0.30 for comparison with results on PASCAL VOC. Fi-

nally, Figure 5 shows the top six detection results (from both

positive and negative images) for a representative set of cat-

egories for t = 8 seconds. Our detector is able to correctly

rank images containing each object concept with the high-

est scores despite the large size of the negative set (images

Ariane Bandurria Gherkin
Liberty

Overcoat
Jefferson

Bell Memorial

Figure 5. Top few detections on the validation set for a representa-

tive set of categories ordered by detection score.

from all other categories).

Hand-labeled Ground Truth. Because our training

sets come from Google Image Search, there is considerable

noise in the data. We set a threshold at 80% precision on

the validation set and sampled a set of 545 common objects

whose detectors fired on a statistically significant number of

images out of a set of 12 million random thumbnails from

YouTube for which we had no ground truth. A number of

detections for each object were labeled by hand using Me-

chanical Turk operators, and the full set was used to calcu-

late the mean average precision.

Figure 6 shows the results. Some objects converged

on generic patterns, resulting in precision near zero, while

more than 10% have precision of at least 90%. 21 ob-

jects, including “rubber duck,” “eyeglasses,” “malamute,”

and “person,” have 100% precision. Of course, since we

cannot calculate the false negative rate of these detectors on

our test set, 100% precision means only that all true posi-

tives in the labeled set appeared before the first false positive

when sorted by decreasing score. It does show that there are

acceptable high-precision operating points for many objects

even using weakly-labeled, noisy training data.

4.5. Revisiting VOC 2007 with 10,000 Detectors

In this section we examine the prediction accuracy of the

hashing-based detector as the number of unique objects in

the system systematically increases. Section 4.3 demon-

strated the inherent trade-off between the prediction accu-

racy and computational resources for our object detector.

While it is theoretically possible to maintain the prediction

accuracy of the object detector by increasing the number

0 0.2 0.4 0.6 0.8 1
0

50

100

150

N
u
m

b
e
r

o
f
o
b
je

c
ts

mAP

Figure 6. Histogram of mean average precisions on ground truth

data for 545 objects with significant detection rate.

0 10 100 1000 10000
0

0.05

0.1

0.15

0.2

0.25

Number of distractors

B
e
s
t
a
c
h
ie

v
a
b
le

 m
A

P

0−0.1 min

0.1−0.5 min

0.5−1.0 min

1−2 min

2−5 min

Figure 7. Increasing the number of objects gracefully degrades

prediction accuracy on PASCAL VOC 2007 for a fixed compu-

tational budget.

hashes, as we vary the number of objects, this approach is

problematic in that arbitrarily increasing the number of ob-

jects will inevitably lead to impractical computational de-

mands and unacceptably slow computation times.

To explore how a hashing-based object detector scales to

a large number of objects, we instead measure the predic-

tion accuracy as we increase the number of unique objects

for a fixed computational budget. We systematically per-

form an exhaustive search of ∼1000 sets of hashing model

parameters 1. For each set of model parameters we calculate

(1) the average computational time for processing an image

and (2) the mean average precision (mAP) on the subset of

20 objects labels from the PASCAL VOC 2007 validation

data set. For a given number of object labels, we record

the highest mAP from all of the models that process images

within a specified time window.

Figure 7 plots the best achievable mAP for the subset of

20 PASCAL objects for a given time window across a range

of object labels. Several trends are worth noting. First,

1We explored all combinations of the following parameters: K = 4;

number of hash tables = 100, 200, 500, 1000; number of permutations per

hash band = 2, 3, 4, 5, 6, 7; number of additional objects = 0, 10, 20, 50,

100, 200, 500, 1000, 2000, 5000, 10000; number of matches per hash = 0,

1, 2, 3, 4.

models that process images faster exhibit worse prediction

accuracy (e.g. 0-0.1 min, cyan curve). This observation re-

inforces the result from Figure 3. Second, as the number of

objects increases, the prediction accuracy on the subset of

20 PASCAL VOC 2007 objects gracefully decreases. This

is to be expected as the frequency of errant hash collisions

increases, and the entropy of the hash table reaches capacity.

Nonetheless, the far right point on the red curve indicates

that for a particular set of model parameters, we achieve a

minimal degradation in the prediction accuracy while still

achieving a throughput of 2-5 minutes per image. This set

of model parameters demonstrates that a hashing-based ob-

ject detector can be scaled up to a large number of objects

while achieving reasonable balance between prediction ac-

curacy and evaluation throughput. We note that the absolute

times reported here are based on unoptimized code.

5. Conclusions

Our key contribution is a scalable approach to object de-

tection that replaces linear convolution with ordinal con-

volution by using an efficient LSH scheme. This ap-

proach is applicable to a variety of object detection meth-

ods. Through extensive empirical tests on DPM detectors,

we have shown that (a) the system performs comparably

to the original DPM detectors, (b) performance degrades

gracefully as the number of object classes is increased, and

(c) up to 100,000 object classes can be simultaneously de-

tected on a single machine in under 20 seconds.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 73–80, 2010. 2

[2] I. Biederman. Aspects and extensions of a theory of human

image understanding. In Z. W. Pylyshyn, editor, Computa-

tional processes in human vision: An interdisciplinary per-

spective, pages 370–428. Ablex, Norwood, NJ, 1988. 2

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.

Freebase: a collaboratively created graph database for struc-

turing human knowledge. In ACM SIGMOD International

Conference on Management of Data, pages 1247–1250, New

York, NY, USA, 2008. 5

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, volume 1, pages

886–893, 2005. 2, 3

[5] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2007 Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/. 6

[6] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32:1627–1645, 2010. 5, 6

[7] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cas-

cade object detection with deformable part models. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2241–2248, 2010. 2, 5

[8] P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A

discriminatively trained, multiscale, deformable part model.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1–8, 2008. 2, 3, 4

[9] C. Gu, P. A. Arbeláez, Y. Lin, K. Yu, and J. Malik. Multi-

component models for object detection. In European Con-

ference on Computer Vision, pages 445–458, 2012. 2

[10] P. Indyk and R. Motwani. Approximate nearest neighbors:

Towards removing the curse of dimensionality. In ACM Sym-

posium on Theory of Computing, pages 604–613, 1998. 1,

4

[11] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet

classification with deep convolutional neural networks. In

P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Wein-

berger, editors, Advances in Neural Information Processing

Systems 25, pages 1106–1114, 2012. 2

[12] M. Pedersoli, A. Vedaldi, and J. Gonzàlez. A coarse-to-fine

approach for fast deformable object detection. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1353–1360, 2011. 2

[13] H. Pirsiavash and D. Ramanan. Steerable part models. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3226–3233, 2012. 2

[14] E. Rahtu, J. Kannala, and M. B. Blaschko. Learning a cat-

egory independent object detection cascade. In IEEE Inter-

national Conference on Computer Vision, pages 1052–1059,

2011. 2

[15] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2011. 4

[16] H. J. Seo and P. Milanfar. Training-free, generic object

detection using locally adaptive regression kernels. IEEE

Transactions Pattern Analysis and Machine Intelligence,

32(9):1688–1704, 2010. 2

[17] H. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz,

C. Geyer, P. Felzenszwalb, and T. Darrell. Sparselet models

for efficient multiclass object detection. In European Con-

ference on Computer Vision, 2012. 2

[18] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and

A. W. M. Smeulders. Segmentation as selective search for

object recognition. In IEEE International Conference on

Computer Vision, pages 1879–1886, 2011. 2

[19] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multi-

ple kernels for object detection. In IEEE International Con-

ference on Computer Vision, pages 606–613, 2009. 2

[20] P. Viola and M. Jones. Robust real-time object detection.

International Journal of Computer Vision, 57(2):137–574,

2002. 2

[21] J. Yagnik, D. Strelow, D. A. Ross, and R.-s. Lin. The power

of comparative reasoning. In IEEE International Conference

on Computer Vision, 2011. 1, 3

[22] L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hi-

erarchical structural learning for object detection. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1062–1069, 2010. 2

