
574 IEEE TRANSACTIONS ON SYSTEMS. MAN, ANI) CYBERNETICS. VOI.. 19. NO. 3, MAY/JIJNE 1989

Persistence and Probabilistic Projection
THOMAS DEAN A N D KEIJI KANAZAWA

Abstract -Predicting the future is an essential component of decision-
making. In most situations, however, there is not enough information to
make accurate predictions. A theory of causal reasoning for predictive
inference under uncertainty is developed. A common type of prediction
that involves reasoning about persistence is emphasized whether or not a
proposition once made true remains true at some later time. A decision
procedure with a polynomial time algorithm for determining the probability
of the possible consequences of a set events and initial conditions is
provided. The integration of simple probability theory with temporal pro-
jection circumvents problems in dealing with persistence by nonmonotonic
temporal reasoning schemes. These ideas have been implemented in a
prototype system that refines a database of causal rules in the course of
applying those rules to construct and carry out plans in a manufacturing
domain.

I. INTRODUCTION

E ARE interested in the design of robust inference W systems for generating and executing plans in rou-
tine manufacturing situations. We hope to build au-
tonomous agents capable of dealing with a fairly circum-
scribed set of possibilities in a manner that demonstrates
both strategic reasoning (the ability to anticipate and plan
for possible futures) and adaptive reasoning (the ability to
recognize and react to unanticipated conditions). In this
paper, we develop a computational theory for temporal
reasoning under uncertainty that is well suited to a wide
variety of dynamic domains.

The domains that we are interested in have the following
characteristics: 1) thmgs cannot always be predicted accu-
rately in advance, 2) plans made in anticipation of pending
events often have to be amended to suit new information,
and 3) the knowledge and ability to acquire predictive
rules is severely limited by the planner’s experience. Rea-
soning in such domains often involves making choices
quickly on the basis of incomplete information. Although
predictions can be inaccurate, it is often worthwhile for a
planner to attempt to predict what conditions are likely to
be true in the future and generate plans to deal with them.

Our theory concerns the development of efficient mech-
anisms to support t h s type of reasoning. It includes a

Manuscript received March 3, 1988; revised August 10, 1988. This
paper was partially presented at the Canadian Conference on Artificial
Intelligence, Edmonton, AB, Canada, June 1988. Shorter versions of this
paper were presented at CSCSI-88 and at the 1988 Workshop for Uncer-
tainty in Artificial Intelligence. This work was supported in part by the
National Science Foundation under grant IRI-8612644 and in part by an
IBM faculty development award.

The authors are with the Department of Computer Science. Brown
University, P.O. Box 1910, Providence, RI 02912.

IEEE Log Number 8927051.

polynomial-time decision procedure for probabilistic infer-
ence about temporally dependent information, a space and
time efficient method for refining probabilistic causal rules,
and a mechanism to support planners in recognizing po-
tential plan failures. Simple decision theoretic [l], [2] meth-
ods are employed in the course of generating plans.

11. PROBABILISTIC CAUSAL THEORIES

To explore some of the issues that arise in causal reason-
ing, we will consider some examples involving a robot
foreman that directs activity in a factory. The robot has a
plan of action that it is continually executing and revising.
Among its tasks is the loading of trucks for clients. If our
robot learns that a truck is more likely to leave than it
previously believed, then it should consider revising its
plans so that this truck will be loaded earlier. If, on the
other hand, it predicts that all trucks will be loaded ahead
of schedule, then it should take advantage of the opportu-
nity to take care of other tasks that it did not previously
consider possible in the available time.

To construct and revise its plan of action, the robot
makes use of a fairly simple model of the world: a special-
purpose theory about the cause-and-effect relationships
that govern processes at work in the world (referred to as a
causal theoy) . The robot’s causal theory consists of two
distinct types of rules, which we will refer to as projection
rules and persistence rules. We will defer discussion of
persistence rules for just a bit.

As an example of a projection rule, the robot might have
a rule that states that if a client calls in an order, then,
with some likelihood, the client’s truck will eventually
arrive to pick up the order. The consequent prediction, in
this case the arrival of a client’s truck, is conditioned on
two things: an event referred to as the triggering event, in
this case the client calling in the order, and an enabling
condition corresponding to propositions that must be true
at the time the triggering event occurs. For example, the
rule just mentioned might be conditioned on propositions
about the type of items ordered, whether or not the caller
has an account with the retailer, or the time of day. The
simplest form of a projection rule is P R O J E C T (P ~ A
Pz * * A P,,, E , R , K) . This says that R will be true, with
probability K immediately following the event E , given
that P, through P,, are true at the time E occurs. Restated
as a conditional probability. this would be

p ((R , t + r) l (P , A P , . . . A P , , , t) A ((E , t)) = K . (I)

0018-9472/89/0500-0574$01.00 01989 IEEE

DEAN A N D KANAZAWA: PERSISTENCE A N D PROBABILISTIC PROJECTION 575

For simplicity, in the present work we assume that P, - P,,
are independent. In [13], we outline methods by which
restriction can be removed. Projection rules are applied in
a purely antecedent fashion (as in a production system) by
the inference engine we will be discussing. The objective is
to obtain an accurate picture of the future in order to
support reasoning about plans [3].

Our approach, as described up to this point, is fairly
traditional and might conceivably be handled by some
existing approach [4], [5]. What distinguishes our approach
from that of other probabilistic reasoning approaches is
that we are very much concerned with the role of time and,
in particular, the tendency of certain propositions (often
referred to as fluents [6]) to change with the passage of
time. By adding time as a parameter to our causal rules, we
have complicated both the inference task and the knowl-
edge acquisition task. Complications notwithstanding, the
capability to reason about change in an uncertain environ-
ment remains an important prerequisite to robust perfor-
mance in most domains. We simply have to be careful to
circumscribe a useful and yet tractable set of operations.
In our case, we have allowed the computational complexity
of the reasoning tasks and the availability and ease of
acquisition of the data to dictate the limitations of our
inference mechanism.

Our inference system needs to deal with the imprecision
of most temporal information. Even if a robot is able to
consult a clock in order to verify the exact time of occur-
rence of an observed event, most information the robot is
given is imprecise (e.g., a client states that a truck will pick
up an order at around noon, or a delivery is scheduled to
arrive sometime in the next 20 minutes). One of the most
important sources of uncertainty involves predicting how
long a condition lasts once it becomes true (i.e., how long
an observed or predicted condition is likely to persist). In
most planning systems (e.g., [7]) there is a single (often
implicit) default rule of persistence [8] that corresponds
more or less to the intuition that a proposition once made
true will remain so until something makes it false. The
problem with using th s rule is that it is necessary to
predict a contravening proposition in order to get rid of a
lingering or persistent proposition, a feat that often proves
difficult in nontrivial domains. If a commuter leaves his
newspaper on a train, it is not difficult to predict that the
paper is not likely to be there the next time he rides on
that train; however, it is quite unlikely that he will be able
to predict what caused it to be removed or when the
removal occurred.

When McDermott first proposed the notion of persis-
tence as a framework for reasoning about change [9], he
noted that persistence might be given a probabilistic inter-
pretation. That is exactly what we do here. We replace the
single default rule of persistence used in most planning
systems with a set of (probabilistic) rules: one or more for
each fluent that the system is aware of. Our robot might
use a persistence rule to reason about the likelihood that a
truck driver will still be waiting at various times following
his arrival at the factory. The information derived from

applying such a rule might be used to decide which truck
to help next or how to cope when a large number of trucks
are waiting simultaneously. Each persistence rule has the
form PERSIST(P , g), where P is a fluent and g is a function
of time referred to as a suruiuor function [lo]. In our
implementation, we consider only two types of survivor
functions: exponential decay functions and piecewise lin-
ear functions. Piecewise linear functions are described in
Appendix 11. Exponential decay functions are of the form
e-hr , where A is the constant of decay. Persistence rules
referring to exponential decay functions are simply no-
tated PERSIST(P , A). Such functions are used, for example,
to indicate that the probability of a truck remaining at the
dock decreases by 5 percent every 15 minutes. The persis-
tence rule PERSIST(P , A) encodes the fact that

p ((P , t) I (P , t - - A))

where A is a positive number indicating the length of an
interval of time. Exponential decay functions are insensi-
tive to changes in the time of occurrence of events that
cause such propositions to become true, and hence are
easy to handle efficiently.

There are a number of issues that every computational
approach to reasoning about causality must deal with. One
such issue involves reasoning about dependent causes [4]
(e.g., the application of two probabilistic causal rules that
have the same consequent effects, both of which appear to
apply in a given set of circumstances but whose conditions
are correlated). Another issue concerns handling other
forms of incompleteness and nonmonotonic inference [l l] ,
[12] (e.g., the robot might have a general rule for reasoning
about the patience (persistence) of truck drivers waiting to
be served and a special rule for how they behave right
around lunch time or late in the day). While we agree that
these problems are important, we do not claim to have any
startling new insights into their solution. There is one area,
however, in which our theory does offer some new insights,
and that concerns the form of probability functions used
in causal rules, how they are acquired and modified in the
course of assimilating new information, and finally how
the system uses these functions to support reasoning about
plans. The next three sections treat each of these issues in
turn.

111. PROBABILISTIC PROJECTION

In t h s section, we will try to provide some intuition
concerning the process of reasoning about persistence,
which we will refer to as probabilistic projection. A planner
is assumed to maintain a picture of the world changing
over time as a consequence of observed and predicted
events. This picture is formed by extrapolating from cer-
tain observed events (referred to as basic facts) on the
basis of rules believed to govern objects and agents in a
particular domain. These governing rules are collectively
referred to as a causal theory.

Fig. 1 depicts a sample causal theory. Predicates
(ATDOCK), and constants TRUCK^^) are in upper case,

576 IEEE TRANSACTIONS O N SYSTEMS, MAN, A N D CYBERNETICS, VOL. 19, NO. 3, MAY/JUNE 1989

I p(<ATDOCK(truc,k),t> I <ATDOCK(truck),t-A>)= g(A)

t = O 1 2 3 4 5 6 7 8 9 10

Fig. 1. Simple causal theory illustrating use of survivor functions.

<ARRIVE(TRUCK74), tI> and 13 < t l 5 15

<CLOSEfSTOREI), f2> and 16.5 5 t2 5 17.5

t = 13 14 15 16 17

Fig. 2. Set of basic facts and their probabilistic interpretation

while functions (p , g) and variables (t,truck) are in
lower case. We refer to an instance of a fact (type) be-
ing true over some interval of time as a time token, or
simply token. For example, A R R I V E (T R U C K ~ ~) denotes a
general type of event whereas (A R R I V E (T R U C K ~ ~) , t) de-
notes a particular instance of A R R I V E (T R U C K ~ ~) becoming
true. The predicate ALWAYS is timelessly true (i.e., for all
t(ALwAYS,t)). The function g, a survivor function, de-
scribes how certain types of propositions are likely to
persist in lieu of further supporting or contravening infor-
mation.

Fig. 2 shows a set of basic facts corresponding to two
events assumed in our example to occur with probability
1.0 within the indicated intervals. The system assumes that
there is a distribution describing the probability of each
event occurring at various times, and uses some default
distribution if no distribution is provided.

Evidence concerned with the occurrence of events and
the persistence of propositions is combined to obtain a
probability function T for a proposition Q being true at
various times in the future by convolving the density
function f for an appropriate triggering event with the
survivor function associated with Q:

We can explain this equation as follows: for Q to hold at
time t , it must have become true at some time z d t , and it
must not have become false in the interim. The degree to
which the probability of Q being true has decayed by t is

t

t = 13 14 15 16 17

Fig. 3 . Example of simple probabilistic inference about persistence.

given by multiplying the probability that Q was true at
z , f(z) , with the decay parameter given by e p X (r p r) . Sum-
ming this product over all points of time less than t
provides us with the desired probability.’

Fig. 3 illustrates a simple instance of this kind of infer-
ence. Note that the range of the resulting probability
function is restricted; after the point in time labeled 17,
the persistence of ATDOCK(TRUCK14) is said to be clipped,
and thereafter its probability is represented by another
function not shown.

All probability computations are performed incremen-
tally in our system. Each token has associated with it a
vector which is referred to as its expectation vector that
records the expected probability that the proposition cor-
responding to the token’s type will be true at various times
in the future.

The system updates the expectation vectors every time
new propositions are added to the database, and also at
regular intervals as time passes. In the update, a single
pass sweep forward in time is made through the database.
There is, according to the domain and granularity of data,
a fixed time step, or a quantum by which we partition
time. Starting at the “present time,” we compute for each
proposition its expected probability for the time step ac-
cording to the causal theory governing that type of propo-
sition, and record it in the expectation vector. We compute
the probability for all propositions, before moving on to
the next time step. The process is repeated for some finite
number of time steps.

For event causation, the update is straightforward; in
the simplest cases, it is just a table lookup and copying of
the density function into the vector. For the convolution, i t
is necessary to take steps to avoid computing the convolu-
tion integral afresh at each time step. We compute the
convolution as a kemann sum, successively summing over
the time axis with a mesh of fixed size (the time step). By
using the exponential decay form of survivor functions, it
is possible to compute the convolution at a time step by
looking only at the value for the last time step, indepen-
dent of the time at which the proposition of interest

‘A proposition Q is an instance of some fact type: hence the distribu-
tion f never sums to more than 1.

DEAN AND KANAZAWA: PERSISTENCE A N D PROBABILISTIC PROJECTION 511

p(<ATDOCK(truck),t>)

-6- t = 0

time step

Fig. 4. Computing convolution integral incrementally

became true. All that is required is to multiply the last
value by the constant decay rate, and add it to any
contribution from the causal distribution for that time
step. The process is illustrated graphically in Fig. 4.

There are many details concerned with indexing and
applying projection rules that will not be mentioned in this
paper (see [SI). The details of probabilistic projection are
described in Appendix I of this paper for those interested.
Our update algorithm is polynomial in the product of the
number of causal rules, the size of the set of basic facts,
and the size of the mesh used in approximating the inte-
grals. For many practical situations, performance is closer
to linear in the size of the set of basic facts.

The convolution equation can be easily extended to
handle the case of clipping. We add to (2) a term, the
function g, corresponding to the distribution of an event
that contradicts the proposition Q:

r (t) = / ' f(z)e-'('-')
- m

The cumulative distribution of g defines the degree to
which it becomes unlikely that the proposition remains
true. It is easy to interpret this equation in terms of (2): the
quantity to integrate, the product of the likelihood that Q
occurred at time z , and the amount of decay between z
and t is modified now by the degree to which we expect Q
to have become false during that time. The latter is given
by the integral of the disabling distribution g between z
and t . What we are interested in is the probability that Q
remains true; therefore we multiply the product term by 1
minus the probability that Q has become false. We see
that under certain conditions, (3) describes exactly what
we desire. Unfortunately, there will be a tendency for the
exponential decay term and g to count the same effects
twice. We describe in [13] methods by which this, and
other issues about dependent causes might be handled in a
different probabilistic framework.

update of its probability data in the course of its everyday
operation.

The general problem of generating causal rules about
the world from experience is very difficult. However, i t is
straightforward to acquire default persistence rules of the
kind which our system uses for probabilistic projection. To
acquire persistence rules, we need to collect data about the
duration of time tokens. From information that a particu-
lar state has become true, the system must periodically
execute actions to determine whether or not it remains
true. Duration data for each type of fact is gathered and
used to construct a survivor function for that type.

To illustrate, suppose that the system has seen n in-
stances of a given proposition P , and that the system has
recorded how long each instance lasted. If the shortest
instance lasted for k minutes, then the expectation for P
given a new instance is 1.0 up to k minutes, and then it
drops by l / n . Sweeping forward along the time axis, the
expectation drops by l / n for each instance, until it drops
to 0.0 after the longest instance. In our implementation, we
assume that the system already knows the general form of
survivor function for a given fact type and that all it has to
learn is the parameters that determine the type's specific
persistence behavior (see Appendix I11 for details concern-
ing the update algorithms).

There are several obvious opportunities in the process of
assimilating new data to refine survivor functions. If the
frequency information can be clustered and then parti-
tioned so as to indicate two or more distinct survivor
functions, then it is ,quite likely that the persistence rule
refers to a class of propositions. Since as a matter of course
it would be prohibitive to retain enough information to
actually support the necessary distinctions once the need is
detected, all this really tells the planner is that it should
explicitly plan to gather additional information in the
future. For example, a human foreman will eventually
learn that all truck drivers do not behave the same, and
will undoubtedly develop a means of identifying truck
drivers with particular survivor functions. Abrupt changes
in a survivor function (relative discontinuities in the piece-
wise linear approximations) are a good indication of events
that have not been accounted for, and warrant increased
vigilance and the addition of new projection and persis-
tence rules. The foreman might note that a 15-minutes-til-
closing message broadcast over the factory's public address
system will precipitate a certain number of departures,
whereas an announcement of free coffee and donuts will
increase some truck drivers' reserves of patience.

We are in the process of designing a planner that is
capable of managing its own causal theory in a cycle of
planning and execution. We hope to extend existing infor- IV. ACQUIRING PROBABILISTIC CAUSAL THEORIES

Ideally, the component of a planner corresponding to
our system should engage in a cycle of activity: not merely
to predict but to predict and observe, and modify its
predictions in the future according to its observations. Our
system does not depend on a priori data in order to make
its predictions. It is capable of routine acquisition and

mation gathering schemes used-in handling timeless infer-
ences [14], and take advantage of certain specialized tem-
poral techniques such as those proposed for handling
multistep predictions [15]. Appendix IV describes some
preliminary results on using probabilistic causal theories
for planning in the warehouse domain.

57x IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 3, MAY/IIJNE 19x9

V. MONITORING THE REASONS FOR uncertainty based on the idea of continuous probabilistic
PLANNING DECISIONS projection.

In the traditional approach to planning in AI, a protec-
tion is a constraint on a plan that a particular consequence
of an action be preserved over some interval in order that
the action achieve its intended effect. If some other action
or event intervenes to undo this intended effect, then the
protection is said to be violated. Noticing and responding
to protection failures have become important issues in
automated planning research, but protections are just a
specific case of a more general concept having to do with
the reasons for decisions made during planning. In general
the planning process might be characterized by the follow-
ing steps: 1) make a decision to commit to particular
actions or schedules, 2) determine the reasons why those
decisions appear to be sound, 3) set up a process to
monitor those reasons and to respond if those reasons
appear to weaken sufficiently to necessitate reassessment
of the commitments originally suggested-by those reasons.

In the case of our factory robot, one reason for choosing
to serve a set of trucks in a particular order might be that
they arrived in that order and that, according to current
projections, if they are handled as planned, there is a good
chance that they will actually be loaded rather than a truck
driver becoming impatient and leaving. The decision to
commit to a plan can depend upon some notion of utility
[16]. Using utilities and probabilistic projection one can
compute a standard decision theoretic expected utility
measure.

If the robot is delayed in handling the trucks, then the
utility associated with the proposed schedule will change.
Computing t h s change is simple and is performed rou-
tinely by an incremental update algorithm. The basic idea
is that in committing to a plan, the planner explicitly notes
the reasons (often couched in terms of expected utility
estimates) for initially making the commitment. In ad-
dition, the planner explicitly states the conditions for re-
considering its decision (usually couched in terms of a
threshold that the expected utility must drop below). A
protection fails when the expected utility drops below the
specified threshold.

VI. CONCLUSION

In this paper, we have sketched a theory of reasoning
about change that extends previous theories [9], [17]. In
particular, we have shown how persistence can be modeled
in probabilistic terms. Probabilistic projection is a special
case of reasoning about continuously changing quantities
involving partial orders and other sorts of incomplete
information, and as such it represents an intractable prob-
lem. We have tried to identify a tractable core in the
inferences performed by probabilistic projection.

We believe that the inferential and causal rule refine-
ment capabilities designed into our system are essential for
robots to perform robustly in routine manufacturing situa-
tions. We hope that our current investigations will yield a
new view of strategic planning and decisionmaking under

APPENDIX I
ALGORITHMIC DETAILS

Probabilistic causal theories are composed of two types
of rules: projection rules

PROJECT(P* A P 2 . . . A Pn, E , R , K) (4)

PERSIST(Q , X) (5)

and persistence rules

where PI through P,, R , and Q are all fact types, and E is
an event type. We assume (statistical) independence of fact
types so that, if we are interested in the conjunction
P, A P 2 . . . A P,, we can assume that

n

P ((P ~ A P ~ . . . ~ ~ n , t)) = I ~ P ((P , , ~)) . (6)
I =1

We define a relation <c on fact types so that Q <c R just
in case there exists a rule of the form PROJECT(P, A
P 2 . . . A Pn, E , R , K) , where P, = Q for some i. For any
given set of causal rules, the graph 9<c whose vertices
correspond to fact types and whose arcs are defined by <c
is likely to have cycles; this will be the cause of a small
complication that we will have to resolve later. In this
paper we distinguish between fact types corresponding to
propositions that hold over intervals and event types corre-
sponding to instantaneous (point) events. For each occur-
rence (token) of a point event of type E , we will need its
density function p ((E , t)) . Probabilistic projection takes
as input a set of initial events and their corresponding
density functions. Given the restricted format for projec-
tion rules, the only additional point events are generated
by the system in response to the creation of new instances
of fact types. For each token of fact type P , we identify a
point event of type Ep corresponding to the particular
instance of P becoming true. In the process of probabilis-
tic projection, we will want to compute the corresponding
density function p ((E , , t) . In addition to computing den-
sity functions, we will also want to compute the mass
functions p ((P , t)) for instances of propositions persisting
over intervals of time.

In order to describe the process of probabilistic projec-
tion, we will divide the process into two different stages:
deterministic causal projection and probabilistic causal re-
finement. The actual algorithms are more integrated to take
advantage of various pruning techniques, but this simpler
staged process is somewhat easier to understand. Deter-
ministic causal projection starts with a set of tokens and a
set of projection rules and generates a set of new tokens T
by scanning forward in time and applying the rules with-
out regard for the indicated probabilities. This stage can be
carried out using any number of simple polynomial algo-
rithms (see [8], [18]) and will not be further detailed here.
Probabilistic causal refinement is concerned with comput-
ing density and mass functions for tokens generated by
deterministic causal projection. In the following, all den-

U t A N ANI) KANAZAW’A: I‘ERSISTENCL ANI) PROBARl1.ISTIC PROJECTION 519

sity and mass functions are approximated by step (i.e.,
piecewise constant) functions. We represent these func-
tions of time using vectors (e.g., mass(T) denotes the mass
function for the token T and mass(T)(i) denotes the value
of the function at t = i). For each fact token Tp, we create
a corresponding event token T,, and define a vector
mass(Tp). For each event token T,, we define a vector
density(T,). We define an upper bound Cl on projection
and assume that each mass and density vector is of length
Cl.2 Initially, we assume that

V T ~ T : l < i < f l :

(density(T)(i) = 0) A (mass(T) (i) = 0) .

Event tokens are supplied by the user in the form

where “est” and “1st” correspond, respectively, to the
earliest and latest start time for the token and K is the
probability that the event will occur at all. We assume that
the density function for such an event is defined by a
Gaussian distribution over the interval from est to 1st. For
a token T, corresponding to a user-supplied initial event,
it is straightforward to fill in density(TE). Probabilistic
causal refinement is concerned with computing mass(Tp)(i)
and density(TEp)(i) for all fact tokens Tp and all event
tokens TE,. We partition the set of tokens T into fact
tokens T, and event tokens T,. Probabilistic causal refine-
ment can be defined as follows:

Procedure: refine(T)
for i = l to Cl:
for T E T,: density-update(T, i);

for T E T,: mass-update(T, i) .

There is one problem with this formulation: it relies on
all the mass and density functions for the antecedent
conditions already being computed for the instant i. In the
present algorithm, “refine” takes no care in ordering the
tokens in T. There are a number of ways of ensuring that
the updates are performed in the correct order. The easiest
is to partially order T according to +c and insist that Y X c
be acyclic, but this would preclude the use of most interest-
ing causal theories. A more realistic method is to partition
T with respect to an instant i into those tokens that are
open and those that are closed. Deterministic causal pro-
jection defines an earliest start time (est) for each token;
for event tokens a latest start time (1st) is specified. An
event token is open throughout the interval est to 1st and
closed otherwise. For fact tokens, we modify probabilistic
causal refinement so that it closes a fact token Tp as soon
as mass(Tp)(i) drops below a fixed threshold. A fact token
is open from its est until it is closed. All we require then is
that for any i the set of tokens that are open define an
acyclic causal dependency graph using +c. This restric-
tion still allows for a wide range of causal theories. To get
“refine” to do the right thing, we would have to apply
“refine” only to open tokens and either sort the tokens
using <=, or (as is actually done) define “refine” so that
if in the course of updating a consequent token, “refine”
finds an antecedent token that has not yet been updated, it
applies itself recursively.

The derivation of a token T, corresponds to a rule of the
form PERSIST(P, A) where h is the constant of decay for
the fact type P, and an event token TEp. The procedure
“mass-update’’ is a bit more difficult to define than “den-
sity-update” since it depends upon the type of decay
functions used in persistence rules. In the case of exponen-
tial decay functions, the operation of “density-update’’ is
reasonably straightforward. Recall the basic combination
rule for probabilistic projection:

Of course, all of the real work is done by “density-
update” and “mass-update.’’ Each token has associated
with it a specific derivation that is used in computing its
mass or density. For a token TER, this derivation corre-
sponds to a rule of the form

PROJECT(P~ A P 2 . . . A P,,, E , R , K)

= /‘ f (x) g (t - x) d x
-- oc

and suppose that g is of the form e-‘’, where X is some
constant of decay, and that f can be approximated by a
step function as in

and a set of antecedent tokens { T,, T,,, Tp,. . . Tp,,} used to
instantiate the rule and generate the consequent token TR.
Given that

and, assuming independence (6), we have We will take advantage of the fact that

Procedure: density-update(T,,, i)
density(T,,)(i) +-

h - 1

/ “ f (x) d x = / “ f (x) dx
I = ! sj SI

I ,
~*densi ty(T,)(i)* n mass(Tp,)(i). and

/ =1
g (s , + , - x) = e P h s g (s k - x)

’There are some obvious optimizations to be made here. where 6 = s k + - s k ,

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 3, MAY/JUNE 1989

Making appropriate substitutions, we have

*‘k

It should be clear that updates depending upon such
simple survivor functions can be performed quite quickly.
Integration is approximated using Riemann sums with a
mesh of fixed size (roughly) corresponding to 6. We define
the procedure “mass-update” as

Procedure: mass-update (Tp, i)
mass(T,)(i) +

eAgmass(T,)(i - 1) +density(TEp)(i).

The actual algorithms are complicated somewhat by the
fact that the choice of mesh size may not coincide precisely
with the steps in the step functions approximating survivor
functions and distributions. We compensate for this by
using a somewhat finer mesh in the update algorithms. The
fact that we employ a fixed mesh size still causes small
errors in the accuracy of the resulting mass and density
functions, but these errors can be controlled. We have
tried to make a reasonable tradeoff, taking into account
that the finer the mesh the larger the mass and density
vectors. Given that the step functions used for encoding
survivor functions and distributions are only approxima-
tions, there is a point past which employing a finer mesh
affords no additional information. We have found that a
mesh size of half the smallest step in any step function
works quite well in practice.

APPENDIX I1
LINEAR DECAY SURVIVOR FUNCTIONS

The exponential decay function used in our previous
examples have many features which make it particularly
attractive for temporal probabilistic projection. It is com-
putationally tractable and is especially suited to incremen-
tal computation. It is conceptually simple and occurs in
many forms in nature.

However, there are also problems with the exponential
decay function. Many of the types of processes whose
persistence behavior we would like to track with proba-
bilistic projection have the following sort of general behav-

t = 0 1 2 3 4

Fig. 5. Exponential decay and other functions as persistence functions.

ior: our expectation of their persistence is initially very
high and remains so for some time; then there is a gradual
and accelerating descent, with the fastest descent around
the mean time of persistence; and finally a gradual taper-
ing off, until it levels off in the end.

The exponential decay function is not a good approxi-
mation to such processes. Exponential decay is character-
ized by the opposite behavior; steep descent in the begin-
ning, with a relatively quick leveling off. To contrast the
two types of functions, when the first type of function is
almost constant at unity, the exponential decay function
will be experiencing its fastest descent while, conversely,
by the time the first type of process begins its descent, the
exponential decay is past its major descent, perhaps level-
ing off at a relatively low probability (see Fig. 5).

It should be clear that any inference procedures relying
upon probabilistic information derived from such an ap-
proximation will often draw unsound or, at best, unex-
pected conclusions. For example, a planner attempting to
maximize expected utility values using decision theoretic
heuristics may actually make the decisions opposite from
those we would like. Consider a situation in which two
trucks having similar persistence functions arrive at the
loading dock. As usual, the planner’s task is to figure out
the best order to load the trucks. With the exponential
decay function, the expected persistence for each truck
drops very rapidly in the beginning, and they become
virtually indistinguishable in a very short period of time.
Therefore, no matter which truck is loaded first, the ex-
pected success for the second truck will be about the same
as that for the first. However, for the first truck the
expected success is higher for the truck which arrived later;
therefore the planner will decide to load the second truck
first, which, of course, is probably not a good choice.
(Does this show up too much weakness?)

In our current implementation, t h s has been countered
with the introduction of a new quantity, which we call the
(persistence) delay. Intuitively, the delay is a simple entity:
it is an initial time duration, starting from a token’s “est,”
during which the expected persistence of the token experi-
ences no decay. The probabilistic update algorithms will
refrain from applying the token’s persistence function until
the delay is over. While the introduction of the delay tends
to counter the ill effects of the exponential decay function,
it seems worthwhile to consider other functions which
might better describe the kinds of processes we are likely

DEAN A N D KANAZAWA: PERSISTENCE AND PROBABILISTIC PROJECTION 581

\

C - d e l a y 4 - T
1 .o \

\ slope m = I / T

\
simple extension of this case:

h (t) =Jr f (z) (l - m (t - z)) dz
f -(1/m)

= (1 - m t) J r f(z) dz + m Z f (4 dz
f - (1 / m)

and similarly,

A possible candidate is the class of piecewise linear
functions (see Fig. 6). Another is a reverse normal distribu-
tion (we model the persistence of a proposition in terms of
the occurrence, with a normal distribution, of the event of
the proposition becoming false; in other words, the com-
plement event of the proposition being true is considered
as the cumulative probability of a normal distribution).
While piecewise linear functions, or linear decay functions,
are perhaps no less a simplification of real processes than
the exponential decay function; they avoid the major
shortcoming of exponential decay, namely, the significant
distortion in the initial stages. Conceptually, the linear
decay function is just as simple, and when the initial delay
is factored in, intuitively more satisfying. Furthermore, the
linear decay function is no less amenable to acquisition
than the simple exponential decay function. For this rea-
son, in this section we will illustrate how a simplified
version of the linear decay function might be used as an
alternative in temporal probabilistic projection.

The linear decay function is defined by

f (z) dz = J' - f (z) d z + S f (t) - S f
f - (l / m) - 6

and

zf (z) dz = Jr - zf (z) dz + Stf (t)
r - l / m - 6

and the preceding equations to derive the expression we
desire:

h (r) = h (t - S) + S (l - m t)

- msJr - f (4
r - (l / m) - 6

= h (t - S) + S(1- mt + mt) f (t)

g (t) = min(I,max(O,I- m (t - e))) - s l - m t + m t - - f t - - i i 9) i li
- m s J r - f (z) dz

or
t - (l / m) - 6

if 0 G t < 8;

otherwise
if BGt<B+i/m; = h (t - S) + Sf (1) - m s J r - s f (z > dz

t - (l / m) - 6

With the exponential decay function, we had
where m is the slope, and 8 is the delay. Recall that the
convolution is

h (t) = e-% (t - 6) + S f (t)
so the main difference is the need for computing the
integral

h (t) = 1' f (z) g (t - z) dz .

We would like to be able to compute h (t) in terms of
h (t - S) and f . In this paper, we will show the derivation
for the simpler function will make such derivation for the
simpler function

--M J f (4 dz.

Recall that f is some function describing the probability
distribution of the occurrence of an event. The preceding
integral is the cumulative mass probability that the event
has occurred, and in the recursive definition, it is the
cumulative probability that the event occurred between
two points of time. It is then possible to compute mass
probabilities via the convolution with linear decay persis-
tence functions, by a relatively simple and painless expedi-
ent-the addition of a token for the cumulative probabil-

1 - rnt, if 0 < t < I / m ;
otherwise h (d = (o,

without the delay. The case with the delay is a relatively

i ty of the event being convolved. I t should be clear that
many simple inference tasks might actually require this
fact token anyway, so this new requirement of probabilis-
tic projection may not add unnecessarily to a set of tokens.

APPENDIX 111
ACQUIRING PERSISTENCE RULES

Statistical methods have not seen particularly wide ap-
plication in AI. This is largely due to problems concerning
the availability of the data necessary to employ such
methods. Data provided from experts has been labeled as
unreliable. The use of priors in Bayesian inference has
been much maligned. An alternative to expert judgements
and estimating priors is to integrate the data acquisition
process into the system: have it gather its own data. I n
such a scheme, all predictions made by the system are
conditioned only upon what the system has directly ob-
served. Of course, this is unrealistic in many cases (e.g.,
diagnostic systems whose decisions could impact on the
health or safety of humans). In the industrial automation
applications considered in this paper, however, not only is
it practical but it also appears to be crucial if we are to
build systems capable of adapting to new situations.

In this section, we describe a system for continually
refining a database of probabilistic causal rules in the
course of routine planning and execution. Given the focus
of this paper, we will concei’n ourselves exclusively with
the acquisition (or refinement) of persistence rules. Our
warehouse planner keeps track of how long trucks stay
around and uses this information to construct survivor
functions for various classes of trucks. The system must be
told which quantities it is to track and how to distinguish
different classes of trucks, but that given, the rules it
acquires are demonstrably useful and statistically valid in
the limit.

The survivor function for a given class of trucks is
computed from a set of data points corresponding to
instances of trucks observed arriving and then observed
leaving without being 10aded.~ It should be clear that, in
general, a collection of data points will not define a
survivor function uniquely. There are many ways i n which
to derive a reasonable approximation for such a function.
For example, we might employ some form of curve fitting
based on an expected type of function and the sample
data. While such methods may yield more accurate ap-
proximations in some cases, for our application there are
simpler and more efficient methods.

Our system derives two parameters for constructing
survivor functions. The first is an estimate of the delay
(i.e., the initial interval of time during which the function
remains constant), and the second corresponds to the rate
of decay during the function’s period of descent. We

3There is actually more information to be had. For example, instances
of trucks observed arriving and subsequentlv observed to be abhent (the
exact time of leaving unknown) are presumably relevant to the problem
at hand, and in fact it is possible to make use of such information by
making various additional assumptions. We will not. however, consider
such complications here.

simply use the arithmetic mean of the samples to compute
the rate of decay. With both of the simple classes of
functions we have considered, the exponential decay and
the linear decay functions computing the persistence pa-
rameter (A) and the slope, respectively, is trivial. In the
case of an exponential decay, we use the mean as the
half-life of the function.

Computing the delay interval is also quite simple. Recall
that in our examples the delay corresponds to the interval
of time during which no trucks are likely to leave. Each
data point is represented as an integer corresponding to
how long a particular truck stayed. Keeping in mind that
there will be occasional aberrations, we choose to ignore
some percentage of the data points corresponding to those
that are far from the mean. There are more sophisticated
means of doing this, but we simply sort the data points for
each class of trucks in increasing order and set the delay to
be the length of time corresponding to some data point in
the kth percentile of the resulting sorted list, where k
defaults to 5. This provides a reasonable approximation to
the actual functions and it is very fast to compute.

We can now sketch the simple algorithm utilized in our
system. As noted, we need to collect data for each class of
interest. The data for each class is collected in a data
structure along with various intermediate quantities used
by the update algorithm (e.g., since the algorithm calls for
the arithmetic mean of the data points, it is convenient to
incrementally compute the sum of the elements of the
collection). The class data type has the following accessor
functions associated with it (c is an instance of class):

lambda(c):
delay(c):
history((,):

instances(e) :

sum(e) :
offset(e) :

the type of the associated survivor func-
tion: linear or exponential,
the rate or slope,
the delay,
a vector corresponding to the sorted col-
lection of data points (individual data
points are referenced using history(c)(i),
where i is an integer index),
the number of data points in the collec-
tion,
the sum of the items in the collection,
a percentile indicating the bottom n data
points in the sorted collection to be ig-
nored in computing the delay (defaults to
5 percent).

Assuming that c is an instance of class and p is a new
data point, the acquisition algorithm can be described as
follows:

Procedure: acquire(e , p)
begin

history(c) + insert(p , history(c));
instances(e) + instances(e) + 1;
sum(e) + sum(c) + p ;
lambda(e) + rate(e, ((sum(e)/instances(c)) -
delay(c))) ;
delay(e) + history(c)([instances(e) * offset(e)])

end.

D U N A N D KANAZAWA: PERSISTENCt AND PKOBAUII.ISTIC PROJECrION 5x3

The function “insert” is assumed to insert a data point
into a sorted collection. The function “rate” depends on
the type of survivor function used:

Function: rate(c, p)

then + m
else if type(c) = linear

i f p = O

then 0.5,’~
else if type(c) = exponential

then (ln2)/p.

Although we have tested our approach extensively in
simulations and have found the acquired persistence data
to converge very rapidly to the correct values (these results
are described further in Appendix IV), we do not claim
that the aforementioned methods have any wider applica-
tion. The simplicity of the algorithm and its incremental
nature is attractive, but the most compelling reason for
using it is that it works well in practice. Probabilistic
projection does not rely upon a particular method for
coming up with persistence rules. As an alternative, the
data might be integrated off line, using more complex (and
possibly more accurate) methods.

It should be noted that our system is given the general
form of the rules it is to refine. It cannot, on the basis of
observing a large set of trucks, infer that trucks from one
company are more impatient than those from another
company, and then proceed to create two new persistence
rules where before there was only one. The general prob-
lem of generating causal rules from experience is very
difficult. We are currently exploring methods for distin-
guishing different classes of trucks based on statisti-
cal clustering techniques (e.g., Kolmogorov-Smirnov’s
D-statistic [19] and Shapiro-Wilk‘s W-statistic [20]). Using
such methods, it appears to be relatively straightforward to
determine that a given data set corresponds to more than
one class, and even to suggest candidate survivor functions
for the different classes. However, figuring out how to
distinguish between the classes in order to apply the differ-
ent survivor functions is considerably harder.

APPENDIX IV
EXPERIMENTS

To help in evaluating temporal probabilistic projection
for robot planning, we carried out a series of simple
experiments. The experiments involved a simulated factory
environment similar in many respects to the warehouse
domain from which we have drawn most of the examples
in this paper. The experiments were designed to test the
ability of a system to make reasonable predictions in the
face of uncertainty. Since the predictions made by our
system are based on expected outcomes, it was necessary
to run experiments involving hundreds of planning deci-
sions and many times that many predictions. We measured
the performance of a simulated robot engaged in loading
trucks over the course of many (simulated) days. We
considered several strategies for deciding which truck to

“group.” In this section, we will describe the experiments
we conducted, the different strategies that we compared,
and the results that we obtained.

In our simulated warehouse, a robot is charged with
loading all trucks that arrive at a particular loading dock.
If there is one truck waiting at the dock and the robot is
otherwise unoccupied, then it will load that truck. If more
than one truck is waiting, then the robot must decide
whch one to load first. How it makes this decision will
determine how successful it is in carrying out its charge.
Success is measured in terms of the number of trucks that
the robot loads. We assume that trucks do not sit around
waiting to be loaded forever. Trucks are not, however,
completely arbitrary in their behavior; we assume that
there are different classes of trucks, red, green, and blue,
and that individuals in each class have similar persistence
behavior. If all of the trucks were in the same class, then
loading the trucks in the order of their arrival (first come
first served) would be the best strategy. If there is more
than one class and the robot has some idea of how
members of each class are likely to behave, then it would
seem that the robot could do somewhat better. In our
experiments, we consider three basic strategies.

Temporal probabilistic projection (TPP)- the robot
uses the techniques described in this paper to pre-
dict the consequences of various loading sequences
and to refine the persistence rules used in the pro-
cess of prediction.
No acquisition (NA): Same as the preceding but the
robot does not acquire its persistence rules; it is
given the same probability distributions as the simu-
lator uses in determining when a truck actually will
leave. The robot cannot, however, determine the
simulator’s outcome with certainty.
First come first served (FCFS)-the robot does no
prediction at all; it simply loads the trucks in the
order that they arrive.

It would seem that TPP should approach NA in the
limit; how fast and how much performance suffers in the
interim depend critically on how fast it learns the survivor
functions that govern the various classes of trucks. It is
relatively easy to concoct situations in which FCFS will do
badly (simply have the longer persisting trucks arrive be-
fore the shorter persisting ones). On the other hand, it is
difficult to conceive of FCFS doing any better; it should at
best do only as good as TPP. Therefore, on the average, we
would expect FCFS to perform somewhat less well than
TPP. The interesting thing about the experiments is that
TPP converges very quickly on an approximation to the
actual survivor functions, allowing the TPP-guided robot
to perform on a par with the NA-guided robot.

The robot’s knowledge of its simulated environment is
obtained through a status board that reports the arrivals
and departures of trucks at the loading dock. When the
robot has nothing to do, it checks this status board fre-
quently. At other times it can only check the status board
at irregular, possibly long, intervals between loading tasks. - -

unload next. Each of the strategies constituted a test In our- current simplistic world, the only kinds ofevents

5 x4 I I ~ ‘TRANSACTIONS ON SYsrCMs. MAN. A N I) CYBI:RNI:TI(’S, VOI . 19. NO. 3. MAY/JUNE 1989

TABLE I
EXPERIMENTAL R~SULTS IN A SIMULATED RUN OF 300 DAYS

Experiment Total Success Failure Success Rate

TPP 5898 4669 1229 79.2%
NA 5830 4638 1192 79.6%
FCFS 6058 4123 1935 68.1%

TABLE I1
ACQUIRED PLKSISTENCE RATES AFTER 300 DAYS

Truck Class Acquired X True X Difference in ex’

Red 0.400 0.346 3.7%
Blue 0.368 0.346 1.5%

Green 0.369 0.346 1.6%

that occur are those that are displayed on the status board.
In other words, no events occur such that the robot must
interrupt a task and respond. This makes the simulator
quite simple; the world has to be updated only when the
robot looks at the status board.

The simulator consists of two parts: a set of oracles,
which determine what type of events will occur and when,
and an agenda, used to determine how those events impact
on the robot’s behavior. Whenever the simulator is called,
i t first runs each oracle, placing any events that are deter-
mined to occur onto the agenda. Then it makes a sweep of
the agenda and returns to the robot (i.e., “displays” to the
status board) all the events that were deemed to occur
before the current time. Since the simulator is called at
irregular intervals, and since some types of events are
defined to occur at regular intervals (e.g., red trucks might
arrive with a 3-percent probability every ten minutes), the
simulator actually runs the oracles as often as is necessary.
This is an important consideration in allowing for repeat-
able experiments.

In our experiments, two oracles were assigned to each
class of truck, to determine when a truck of the class
arrived, and once arrived, to determine how long it would
stay if it failed to be loaded. The oracles were implemented
in a way that enabled repeatable behavior so that the three
different strategies could be tried on exactly the same
sequence of events.

The results of the simulations were generally very en-
couraging. A typical simulation run consisted of 300 work
days (see Table I). On the whole, the TPP strategy per-
formed favorably against the NA strategy. While our ex-
pectation was that our methods should approach the ideal
in the limit, in practice it did so very rapidly, and the
survivor functions it learned converged very quickly to-
wards the right numbers. For the typical run depicted in
the table, it took less than 20 data points for the survivor
function to come to within 1 percent of the correct func-
tion initially, and it took less than 1500 total trucks (about
100 data points for each class) for cumulative success rate
to come to within 1 percent of NA.

By contrast, the FCFS strategy did relatively poorly, as
expected. Although the FCFS strategy ran significantly
faster (it cut out projection altogether), it is difficult to

TABLE I11
ACQIJIRI:~) PERSISTENCE FOR A TRUCK CLASS A S A FIJNCIION OF

SA3fPI.ES
(AGAINSI REAL PLRSISTENCL OF 0.346)

Difference
Samples Acquired (percent)

0 0.000 29
5 0.495 9
10 0.533 12
15 0.335 0
20 0.347 0
25 0.361 1
30 0.378 2
35 0.398 3
40 0.375 1
45 0.371 1
50 0.369 1

TABLE IV
DIK-tKENC‘I; I N ~ U M U I . A T I V E SIJCCESS Of. TPP AND NA S’IKATEGIES

Difference
Day TPP NA (percent)

25 0.7689 0.8162 4.73
50 0.7878 0.8015 1.37
75 0.7867 0.7957 0.s0
100 0.7885 0.7990 1.05
125 0.7952 0.8038 0.86
150 0.7937 0.7990 0.52
175 0.7930 0.7972 0.41
200 0.7925 0.7978 0.53
225 0.7948 0.7980 0.32
250 0.7943 0.7927 0.15
275 0.7928 0.7929 0.01
300 0.7916 0.7955 0.39

draw any conclusions about how such a speed difference
might scale up in real systems.

ACKNOWLEDGMENT

The authors would like to thank Linda Mensinger Nunez
for her suggestions on how to extend the rule acquisition
algorithms using statistical clustering techniques.

REFERENCES

H. Rruffa, Decrsioti A tiulvsrs: Itirroducrori. Lecrures oti Choices uiider
Uiicertuiiitv. Reading, MA: Addison-Wesley, 1968.
R. D. Shachter, “Evaluating influence diagrams.” Operur. Res.. vol.
34, pp. 871-882, Nov./Dec. 1986.
T. Dean. “An approach to reasoning about the effects of actions
for automated planning systems,” Ann. Operur. Res., vol. 12, pp.
147-167, 1988.
J. Pearl, “A constraint propagation approach to probabilistic rea-
soning,” in Proc. I985 A A A I / I E E E Spotisored Workshop on Uticer-
fuitifv r f i Arrrficrul Inrelligetice, 1985.
R. Duda, P. Hart. and N. J. Nilsson “Subjective Bayesian methods
for rule-based inference systems,” in Reudings in Arrrficrul ltirellr-
getice. B. Webber and N. Nilsson, Eds. Palo Alto, CA: Tioga, 1981.
J. McCarthy and P. J. Hayes. “Some philosophical problems from
the standpoint of artificial intelligence,” Much. Itifell.. vol. 4, 1969.
E. Sacerdoti, A Srructure for Pluns orid Behuoior. New York:
American Elsevier, 1977.
T. Dean and D. V. McDermott. “Temporal data base management.”
Arrrfic. Itifell.. vol. 32, pp. 1-55, 1987.
D. V. McDermott, “A temporal logic for reasoning about processes
and plans,” Cogtirr. Scr.. vol. 6, pp. 101-155. 1982.

DFAN A N D KANALAWA PLRSISILNCF A N D PROUABILISrlC PKOJkClION 5 x 5

R. Syski, Raiidom Processes.
M. Ginsberg, “Does probability have a place in non-monotonic
reasoning?” in Proc. IJCAI 9, IJCAI. 1985, pp. 107-110.
T. Dean and M. Boddy. “Incremental causal reasoning.” in Proc.

T. Dean and K. Kanazawa, “Probabilistic temporal reasoning ” in
Proc. AAAI -88 , AAAI, 1988, pp. 524-528.
J . R. Quinlan, “A task-independent experience-gathering scheme
for a problem solver,” in Proc. IJCAI 1. IJCAI, 1969, pp. 193-197
R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Tech. Rep. TR87-5091, GTE Laboratories, Walthani.
MA, 1987.
V. Barnett, Contpurutiue Stutisticul Inference. New York: John
Wiley and Sons, 1982.
Y. Shoham and T. Dean. “Temporal notation and causal terminol-
ogy,” in Proc. Seventh Aim. Conf. Cognitirv Sciemx, Society. Cogni-
tive Science Society, 1985, pp. 90-99.
S. Hanks and D. V. McDermott. “Default reasoning. nonmono-
tonic logics, and the frame problem.” in Proc. AAAI -86 . AAAI.

0. J. Dunn and V. A. Clark, Applied Srorisric.~: Aiiulrsis of Vuriuric,r
atid Regression.
S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality,” Biometrika, vol. 52, pp. 591-612, 1965.

New York: Marcel Dekker, 1979.

AAAI -K7 . AAAI, 1987, pp. 196-201.

1986, pp. 328-333.

New York: John Wiley and Sons, 1974.

Thomas Dean received the B.A. degree in mathematics from Virginia
Polytechnic Institute and State University in 1982 and the Ph.D. in
computer science from Yale University in 1986.

He is currently an Assistant Professor on the faculty of the Department

of Computer Science at Brown University in
Providence. RI. His general research intercsta
include deductive retrieval methods for applica-
tions in artificial intelligence. logic programming.
robot problem solving. and probabilistic infer-
ence. Current research is concerned with theorieh
of temporal and spatial inference for reasoning
about actions and processes Recent work ha5
led to the design and implementation of a teni-
poral database system for applications invol\ ing
mobile robots and factory automation. The main

thread c,: ’ the robotics work is concerned with decisionmaking under
uncertainty. Of particular interest are problems in which the notion of
risk is complicated by there being limited time for both deliberation and
act ion.

Keiji Kanamna received the H.A. degree in niath-
ematics from Bennington College in 19x5. and
the M.S. in computer science from Brown Uni-
versity in 1988.

He is currently a doctoral candidate in thc
Department of Computer Science at Brown Uni-
versity in Providence, RI. His research intcrcsts
include robot problem solving, probabilistic in-
ference. and ncuromorphic systems. Current re-
search focuses on temporal inference, decision-
making under uncertainty. and computational

methods for probabilistic inference.

