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Persistence and Probabilistic Projection 
THOMAS DEAN A N D  KEIJI KANAZAWA 

Abstract -Predicting the future is an essential component of decision- 
making. In most situations, however, there is not enough information to 
make accurate predictions. A theory of causal reasoning for predictive 
inference under uncertainty is developed. A common type of prediction 
that involves reasoning about persistence is emphasized whether or not a 
proposition once made true remains true at some later time. A decision 
procedure with a polynomial time algorithm for determining the probability 
of the possible consequences of a set events and initial conditions is 
provided. The integration of simple probability theory with temporal pro- 
jection circumvents problems in dealing with persistence by nonmonotonic 
temporal reasoning schemes. These ideas have been implemented in a 
prototype system that refines a database of causal rules in the course of 
applying those rules to construct and carry out plans in a manufacturing 
domain. 

I. INTRODUCTION 

E ARE interested in the design of robust inference W systems for generating and executing plans in rou- 
tine manufacturing situations. We hope to build au- 
tonomous agents capable of dealing with a fairly circum- 
scribed set of possibilities in a manner that demonstrates 
both strategic reasoning (the ability to anticipate and plan 
for possible futures) and adaptive reasoning (the ability to 
recognize and react to unanticipated conditions). In this 
paper, we develop a computational theory for temporal 
reasoning under uncertainty that is well suited to a wide 
variety of dynamic domains. 

The domains that we are interested in have the following 
characteristics: 1) thmgs cannot always be predicted accu- 
rately in advance, 2 )  plans made in anticipation of pending 
events often have to be amended to suit new information, 
and 3) the knowledge and ability to acquire predictive 
rules is severely limited by the planner’s experience. Rea- 
soning in such domains often involves making choices 
quickly on the basis of incomplete information. Although 
predictions can be inaccurate, it is often worthwhile for a 
planner to attempt to predict what conditions are likely to 
be true in the future and generate plans to deal with them. 

Our theory concerns the development of efficient mech- 
anisms to support t h s  type of reasoning. It includes a 
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polynomial-time decision procedure for probabilistic infer- 
ence about temporally dependent information, a space and 
time efficient method for refining probabilistic causal rules, 
and a mechanism to support planners in recognizing po- 
tential plan failures. Simple decision theoretic [l], [2] meth- 
ods are employed in the course of generating plans. 

11. PROBABILISTIC CAUSAL THEORIES 

To explore some of the issues that arise in causal reason- 
ing, we will consider some examples involving a robot 
foreman that directs activity in a factory. The robot has a 
plan of action that it is continually executing and revising. 
Among its tasks is the loading of trucks for clients. If our 
robot learns that a truck is more likely to leave than it 
previously believed, then it should consider revising its 
plans so that this truck will be loaded earlier. If, on the 
other hand, it predicts that all trucks will be loaded ahead 
of schedule, then it should take advantage of the opportu- 
nity to take care of other tasks that it did not previously 
consider possible in the available time. 

To construct and revise its plan of action, the robot 
makes use of a fairly simple model of the world: a special- 
purpose theory about the cause-and-effect relationships 
that govern processes at work in the world (referred to as a 
causal theoy ) .  The robot’s causal theory consists of two 
distinct types of rules, which we will refer to as projection 
rules and persistence rules. We will defer discussion of 
persistence rules for just a bit. 

As an example of a projection rule, the robot might have 
a rule that states that if a client calls in an order, then, 
with some likelihood, the client’s truck will eventually 
arrive to pick up the order. The consequent prediction, in 
this case the arrival of a client’s truck, is conditioned on 
two things: an event referred to as the triggering event, in 
this case the client calling in the order, and an enabling 
condition corresponding to propositions that must be true 
at the time the triggering event occurs. For example, the 
rule just mentioned might be conditioned on propositions 
about the type of items ordered, whether or not the caller 
has an account with the retailer, or the time of day. The 
simplest form of a projection rule is P R O J E C T ( P ~  A 
Pz * * A P,,, E ,  R ,  K ) .  This says that R will be true, with 
probability K immediately following the event E ,  given 
that P, through P,, are true at the time E occurs. Restated 
as a conditional probability. this would be 

p ( ( R , t + r ) l ( P , A  P , . . .  A P , , , t ) A ( ( E , t ) )  = K .  ( I )  
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For simplicity, in the present work we assume that P,  - P,, 
are independent. In [13], we outline methods by which 
restriction can be removed. Projection rules are applied in 
a purely antecedent fashion (as in a production system) by 
the inference engine we will be discussing. The objective is 
to obtain an accurate picture of the future in order to 
support reasoning about plans [3]. 

Our approach, as described up to this point, is fairly 
traditional and might conceivably be handled by some 
existing approach [4], [5].  What distinguishes our approach 
from that of other probabilistic reasoning approaches is 
that we are very much concerned with the role of time and, 
in particular, the tendency of certain propositions (often 
referred to as fluents [6]) to change with the passage of 
time. By adding time as a parameter to our causal rules, we 
have complicated both the inference task and the knowl- 
edge acquisition task. Complications notwithstanding, the 
capability to reason about change in an uncertain environ- 
ment remains an important prerequisite to robust perfor- 
mance in most domains. We simply have to be careful to 
circumscribe a useful and yet tractable set of operations. 
In our case, we have allowed the computational complexity 
of the reasoning tasks and the availability and ease of 
acquisition of the data to dictate the limitations of our 
inference mechanism. 

Our inference system needs to deal with the imprecision 
of most temporal information. Even if a robot is able to 
consult a clock in order to verify the exact time of occur- 
rence of an observed event, most information the robot is 
given is imprecise (e.g., a client states that a truck will pick 
up an order at around noon, or a delivery is scheduled to 
arrive sometime in the next 20 minutes). One of the most 
important sources of uncertainty involves predicting how 
long a condition lasts once it becomes true (i.e., how long 
an observed or predicted condition is likely to persist). In 
most planning systems (e.g., [7]) there is a single (often 
implicit) default rule of persistence [8] that corresponds 
more or less to the intuition that a proposition once made 
true will remain so until something makes it false. The 
problem with using th s  rule is that it is necessary to 
predict a contravening proposition in order to get rid of a 
lingering or persistent proposition, a feat that often proves 
difficult in nontrivial domains. If a commuter leaves his 
newspaper on a train, it is not difficult to predict that the 
paper is not likely to be there the next time he rides on 
that train; however, it is quite unlikely that he will be able 
to predict what caused it to be removed or when the 
removal occurred. 

When McDermott first proposed the notion of persis- 
tence as a framework for reasoning about change [9], he 
noted that persistence might be given a probabilistic inter- 
pretation. That is exactly what we do here. We replace the 
single default rule of persistence used in most planning 
systems with a set of (probabilistic) rules: one or more for 
each fluent that the system is aware of. Our robot might 
use a persistence rule to reason about the likelihood that a 
truck driver will still be waiting at various times following 
his arrival at the factory. The information derived from 

applying such a rule might be used to decide which truck 
to help next or how to cope when a large number of trucks 
are waiting simultaneously. Each persistence rule has the 
form PERSIST( P ,  g), where P is a fluent and g is a function 
of time referred to as a suruiuor function [lo]. In our 
implementation, we consider only two types of survivor 
functions: exponential decay functions and piecewise lin- 
ear functions. Piecewise linear functions are described in 
Appendix 11. Exponential decay functions are of the form 
e-hr , where A is the constant of decay. Persistence rules 
referring to exponential decay functions are simply no- 
tated PERSIST( P ,  A).  Such functions are used, for example, 
to indicate that the probability of a truck remaining at the 
dock decreases by 5 percent every 15 minutes. The persis- 
tence rule PERSIST( P ,  A )  encodes the fact that 

p ( ( P , t ) I ( P , t - - A ) )  

where A is a positive number indicating the length of an 
interval of time. Exponential decay functions are insensi- 
tive to changes in the time of occurrence of events that 
cause such propositions to become true, and hence are 
easy to handle efficiently. 

There are a number of issues that every computational 
approach to reasoning about causality must deal with. One 
such issue involves reasoning about dependent causes [4] 
(e.g., the application of two probabilistic causal rules that 
have the same consequent effects, both of which appear to 
apply in a given set of circumstances but whose conditions 
are correlated). Another issue concerns handling other 
forms of incompleteness and nonmonotonic inference [ l l ] ,  
[12] (e.g., the robot might have a general rule for reasoning 
about the patience (persistence) of truck drivers waiting to 
be served and a special rule for how they behave right 
around lunch time or late in the day). While we agree that 
these problems are important, we do not claim to have any 
startling new insights into their solution. There is one area, 
however, in which our theory does offer some new insights, 
and that concerns the form of probability functions used 
in causal rules, how they are acquired and modified in the 
course of assimilating new information, and finally how 
the system uses these functions to support reasoning about 
plans. The next three sections treat each of these issues in 
turn. 

111. PROBABILISTIC PROJECTION 

In t h s  section, we will try to provide some intuition 
concerning the process of reasoning about persistence, 
which we will refer to as probabilistic projection. A planner 
is assumed to maintain a picture of the world changing 
over time as a consequence of observed and predicted 
events. This picture is formed by extrapolating from cer- 
tain observed events (referred to as basic facts) on the 
basis of rules believed to govern objects and agents in a 
particular domain. These governing rules are collectively 
referred to as a causal theory. 

Fig. 1 depicts a sample causal theory. Predicates 
(ATDOCK), and constants   TRUCK^^) are in upper case, 
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I p(<ATDOCK(truc,k),t> I <ATDOCK(truck),t-A>)= g(A) 

t = O  1 2  3 4 5 6 7 8 9 10 

Fig. 1.  Simple causal theory illustrating use of survivor functions. 

<ARRIVE(TRUCK74), tI> and 13 < t l  5 15 

<CLOSEfSTOREI), f2> and 16.5 5 t2 5 17.5 

t =  13 14 15 16 17 

Fig. 2.  Set of basic facts and their probabilistic interpretation 

while functions ( p ,  g )  and variables (t,truck) are in 
lower case. We refer to an instance of a fact (type) be- 
ing true over some interval of time as a time token, or 
simply token. For example, A R R I V E ( T R U C K ~ ~ )  denotes a 
general type of event whereas ( A R R I V E ( T R U C K ~ ~ ) ,  t ) de- 
notes a particular instance of A R R I V E ( T R U C K ~ ~ )  becoming 
true. The predicate ALWAYS is timelessly true (i.e., for all 
t(ALwAYS,t)). The function g, a survivor function, de- 
scribes how certain types of propositions are likely to 
persist in lieu of further supporting or contravening infor- 
mation. 

Fig. 2 shows a set of basic facts corresponding to two 
events assumed in our example to occur with probability 
1.0 within the indicated intervals. The system assumes that 
there is a distribution describing the probability of each 
event occurring at various times, and uses some default 
distribution if no distribution is provided. 

Evidence concerned with the occurrence of events and 
the persistence of propositions is combined to obtain a 
probability function T for a proposition Q being true at 
various times in the future by convolving the density 
function f for an appropriate triggering event with the 
survivor function associated with Q: 

We can explain this equation as follows: for Q to hold at 
time t ,  it must have become true at some time z d t ,  and it 
must not have become false in the interim. The degree to 
which the probability of Q being true has decayed by t is 

t 

t =  13 14 15 16 17 

Fig. 3 .  Example of simple probabilistic inference about persistence. 

given by multiplying the probability that Q was true at 
z ,  f( z ) ,  with the decay parameter given by e p X ( r p r ) .  Sum- 
ming this product over all points of time less than t 
provides us with the desired probability.’ 

Fig. 3 illustrates a simple instance of this kind of infer- 
ence. Note that the range of the resulting probability 
function is restricted; after the point in time labeled 17, 
the persistence of ATDOCK(TRUCK14) is said to be clipped, 
and thereafter its probability is represented by another 
function not shown. 

All probability computations are performed incremen- 
tally in our system. Each token has associated with it a 
vector which is referred to as its expectation vector that 
records the expected probability that the proposition cor- 
responding to the token’s type will be true at various times 
in the future. 

The system updates the expectation vectors every time 
new propositions are added to the database, and also at 
regular intervals as time passes. In the update, a single 
pass sweep forward in time is made through the database. 
There is, according to the domain and granularity of data, 
a fixed time step, or a quantum by which we partition 
time. Starting at the “present time,” we compute for each 
proposition its expected probability for the time step ac- 
cording to the causal theory governing that type of propo- 
sition, and record it in the expectation vector. We compute 
the probability for all propositions, before moving on to 
the next time step. The process is repeated for some finite 
number of time steps. 

For event causation, the update is straightforward; in 
the simplest cases, it is just a table lookup and copying of 
the density function into the vector. For the convolution, i t  
is necessary to take steps to avoid computing the convolu- 
tion integral afresh at each time step. We compute the 
convolution as a kemann sum, successively summing over 
the time axis with a mesh of fixed size (the time step). By 
using the exponential decay form of survivor functions, it 
is possible to compute the convolution at a time step by 
looking only at the value for the last time step, indepen- 
dent of the time at which the proposition of interest 

‘A proposition Q is an instance of some fact type: hence the distribu- 
tion f never sums to more than 1. 



DEAN AND KANAZAWA: PERSISTENCE A N D  PROBABILISTIC PROJECTION 511 

p(<ATDOCK(truck),t>) 

-6- t =  0 

time step 

Fig. 4. Computing convolution integral incrementally 

became true. All that is required is to multiply the last 
value by the constant decay rate, and add it to any 
contribution from the causal distribution for that time 
step. The process is illustrated graphically in Fig. 4. 

There are many details concerned with indexing and 
applying projection rules that will not be mentioned in this 
paper (see [SI). The details of probabilistic projection are 
described in Appendix I of this paper for those interested. 
Our update algorithm is polynomial in the product of the 
number of causal rules, the size of the set of basic facts, 
and the size of the mesh used in approximating the inte- 
grals. For many practical situations, performance is closer 
to linear in the size of the set of basic facts. 

The convolution equation can be easily extended to 
handle the case of clipping. We add to (2) a term, the 
function g, corresponding to the distribution of an event 
that contradicts the proposition Q: 

r ( t ) = / '  f(z)e-'('-') 
- m  

The cumulative distribution of g defines the degree to 
which it becomes unlikely that the proposition remains 
true. It is easy to interpret this equation in terms of (2): the 
quantity to integrate, the product of the likelihood that Q 
occurred at time z ,  and the amount of decay between z 
and t is modified now by the degree to which we expect Q 
to have become false during that time. The latter is given 
by the integral of the disabling distribution g between z 
and t .  What we are interested in is the probability that Q 
remains true; therefore we multiply the product term by 1 
minus the probability that Q has become false. We see 
that under certain conditions, (3) describes exactly what 
we desire. Unfortunately, there will be a tendency for the 
exponential decay term and g to count the same effects 
twice. We describe in [13] methods by which this, and 
other issues about dependent causes might be handled in a 
different probabilistic framework. 

update of its probability data in the course of its everyday 
operation. 

The general problem of generating causal rules about 
the world from experience is very difficult. However, i t  is 
straightforward to acquire default persistence rules of the 
kind which our system uses for probabilistic projection. To 
acquire persistence rules, we need to collect data about the 
duration of time tokens. From information that a particu- 
lar state has become true, the system must periodically 
execute actions to determine whether or not it remains 
true. Duration data for each type of fact is gathered and 
used to construct a survivor function for that type. 

To illustrate, suppose that the system has seen n in- 
stances of a given proposition P ,  and that the system has 
recorded how long each instance lasted. If the shortest 
instance lasted for k minutes, then the expectation for P 
given a new instance is 1.0 up to k minutes, and then it 
drops by l / n .  Sweeping forward along the time axis, the 
expectation drops by l / n  for each instance, until it drops 
to 0.0 after the longest instance. In our implementation, we 
assume that the system already knows the general form of 
survivor function for a given fact type and that all it has to 
learn is the parameters that determine the type's specific 
persistence behavior (see Appendix I11 for details concern- 
ing the update algorithms). 

There are several obvious opportunities in the process of 
assimilating new data to refine survivor functions. If the 
frequency information can be clustered and then parti- 
tioned so as to indicate two or more distinct survivor 
functions, then it is ,quite likely that the persistence rule 
refers to a class of propositions. Since as a matter of course 
it would be prohibitive to retain enough information to 
actually support the necessary distinctions once the need is 
detected, all this really tells the planner is that it should 
explicitly plan to gather additional information in the 
future. For example, a human foreman will eventually 
learn that all truck drivers do not behave the same, and 
will undoubtedly develop a means of identifying truck 
drivers with particular survivor functions. Abrupt changes 
in a survivor function (relative discontinuities in the piece- 
wise linear approximations) are a good indication of events 
that have not been accounted for, and warrant increased 
vigilance and the addition of new projection and persis- 
tence rules. The foreman might note that a 15-minutes-til- 
closing message broadcast over the factory's public address 
system will precipitate a certain number of departures, 
whereas an announcement of free coffee and donuts will 
increase some truck drivers' reserves of patience. 

We are in the process of designing a planner that is 
capable of managing its own causal theory in a cycle of 
planning and execution. We hope to extend existing infor- IV. ACQUIRING PROBABILISTIC CAUSAL THEORIES 

Ideally, the component of a planner corresponding to 
our system should engage in a cycle of activity: not merely 
to predict but to predict and observe, and modify its 
predictions in the future according to its observations. Our 
system does not depend on a priori data in order to make 
its predictions. It is capable of routine acquisition and 

mation gathering schemes used-in handling timeless infer- 
ences [14], and take advantage of certain specialized tem- 
poral techniques such as those proposed for handling 
multistep predictions [15]. Appendix IV describes some 
preliminary results on using probabilistic causal theories 
for planning in the warehouse domain. 
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V. MONITORING THE REASONS FOR uncertainty based on the idea of continuous probabilistic 
PLANNING DECISIONS projection. 

In the traditional approach to planning in AI, a protec- 
tion is a constraint on a plan that a particular consequence 
of an action be preserved over some interval in order that 
the action achieve its intended effect. If some other action 
or event intervenes to undo this intended effect, then the 
protection is said to be violated. Noticing and responding 
to protection failures have become important issues in 
automated planning research, but protections are just a 
specific case of a more general concept having to do with 
the reasons for decisions made during planning. In general 
the planning process might be characterized by the follow- 
ing steps: 1) make a decision to commit to particular 
actions or schedules, 2) determine the reasons why those 
decisions appear to be sound, 3) set up a process to 
monitor those reasons and to respond if those reasons 
appear to weaken sufficiently to necessitate reassessment 
of the commitments originally suggested-by those reasons. 

In the case of our factory robot, one reason for choosing 
to serve a set of trucks in a particular order might be that 
they arrived in that order and that, according to current 
projections, if they are handled as planned, there is a good 
chance that they will actually be loaded rather than a truck 
driver becoming impatient and leaving. The decision to 
commit to a plan can depend upon some notion of utility 
[16]. Using utilities and probabilistic projection one can 
compute a standard decision theoretic expected utility 
measure. 

If the robot is delayed in handling the trucks, then the 
utility associated with the proposed schedule will change. 
Computing t h s  change is simple and is performed rou- 
tinely by an incremental update algorithm. The basic idea 
is that in committing to a plan, the planner explicitly notes 
the reasons (often couched in terms of expected utility 
estimates) for initially making the commitment. In ad- 
dition, the planner explicitly states the conditions for re- 
considering its decision (usually couched in terms of a 
threshold that the expected utility must drop below). A 
protection fails when the expected utility drops below the 
specified threshold. 

VI. CONCLUSION 

In this paper, we have sketched a theory of reasoning 
about change that extends previous theories [9], [17]. In 
particular, we have shown how persistence can be modeled 
in probabilistic terms. Probabilistic projection is a special 
case of reasoning about continuously changing quantities 
involving partial orders and other sorts of incomplete 
information, and as such it represents an intractable prob- 
lem. We have tried to identify a tractable core in the 
inferences performed by probabilistic projection. 

We believe that the inferential and causal rule refine- 
ment capabilities designed into our system are essential for 
robots to perform robustly in routine manufacturing situa- 
tions. We hope that our current investigations will yield a 
new view of strategic planning and decisionmaking under 

APPENDIX I 
ALGORITHMIC DETAILS 

Probabilistic causal theories are composed of two types 
of rules: projection rules 

PROJECT(P* A P 2 . .  . A Pn,  E ,  R ,  K )  (4) 

PERSIST( Q ,  X ) ( 5 )  

and persistence rules 

where PI through P,, R ,  and Q are all fact types, and E is 
an event type. We assume (statistical) independence of fact 
types so that, if we are interested in the conjunction 
P, A P 2 .  . . A P,, we can assume that 

n 

P ( ( P ~ A P ~ . . .  ~ ~ n , t ) ) =  I ~ P ( ( P , , ~ ) ) .  (6) 
I =1 

We define a relation <c on fact types so that Q <c R just 
in case there exists a rule of the form PROJECT(P, A 
P 2 .  . . A Pn, E ,  R ,  K ) ,  where P, = Q for some i. For any 
given set of causal rules, the graph 9<c whose vertices 
correspond to fact types and whose arcs are defined by <c 
is likely to have cycles; this will be the cause of a small 
complication that we will have to resolve later. In this 
paper we distinguish between fact types corresponding to 
propositions that hold over intervals and event types corre- 
sponding to instantaneous (point) events. For each occur- 
rence (token) of a point event of type E ,  we will need its 
density function p ( (  E ,  t ) ) .  Probabilistic projection takes 
as input a set of initial events and their corresponding 
density functions. Given the restricted format for projec- 
tion rules, the only additional point events are generated 
by the system in response to the creation of new instances 
of fact types. For each token of fact type P ,  we identify a 
point event of type Ep corresponding to the particular 
instance of P becoming true. In the process of probabilis- 
tic projection, we will want to compute the corresponding 
density function p ( ( E , ,  t ) .  In addition to computing den- 
sity functions, we will also want to compute the mass 
functions p ( (  P ,  t ) )  for instances of propositions persisting 
over intervals of time. 

In order to describe the process of probabilistic projec- 
tion, we will divide the process into two different stages: 
deterministic causal projection and probabilistic causal re- 
finement. The actual algorithms are more integrated to take 
advantage of various pruning techniques, but this simpler 
staged process is somewhat easier to understand. Deter- 
ministic causal projection starts with a set of tokens and a 
set of projection rules and generates a set of new tokens T 
by scanning forward in time and applying the rules with- 
out regard for the indicated probabilities. This stage can be 
carried out using any number of simple polynomial algo- 
rithms (see [8], [18]) and will not be further detailed here. 
Probabilistic causal refinement is concerned with comput- 
ing density and mass functions for tokens generated by 
deterministic causal projection. In the following, all den- 
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sity and mass functions are approximated by step (i.e., 
piecewise constant) functions. We represent these func- 
tions of time using vectors (e.g., mass( T )  denotes the mass 
function for the token T and mass(T)(i) denotes the value 
of the function at t = i). For each fact token Tp, we create 
a corresponding event token T,, and define a vector 
mass(Tp). For each event token T,, we define a vector 
density(T,). We define an upper bound Cl on projection 
and assume that each mass and density vector is of length 
Cl.2 Initially, we assume that 

V T ~ T : l < i < f l :  

(density( T )( i )  = 0) A (mass( T )  ( i  ) = 0 ) .  

Event tokens are supplied by the user in the form 

where “est” and “1st” correspond, respectively, to the 
earliest and latest start time for the token and K is the 
probability that the event will occur at all. We assume that 
the density function for such an event is defined by a 
Gaussian distribution over the interval from est to 1st. For 
a token T, corresponding to a user-supplied initial event, 
it is straightforward to fill in density( TE). Probabilistic 
causal refinement is concerned with computing mass( Tp)( i )  
and density(TEp)(i) for all fact tokens Tp and all event 
tokens TE,. We partition the set of tokens T into fact 
tokens T, and event tokens T,. Probabilistic causal refine- 
ment can be defined as follows: 

Procedure: refine(T) 
for i = l  to Cl: 
for T E T,: density-update(T, i); 

for T E T,: mass-update( T, i ) .  

There is one problem with this formulation: it relies on 
all the mass and density functions for the antecedent 
conditions already being computed for the instant i. In the 
present algorithm, “refine” takes no care in ordering the 
tokens in T. There are a number of ways of ensuring that 
the updates are performed in the correct order. The easiest 
is to partially order T according to +c and insist that Y X c  
be acyclic, but this would preclude the use of most interest- 
ing causal theories. A more realistic method is to partition 
T with respect to an instant i into those tokens that are 
open and those that are closed. Deterministic causal pro- 
jection defines an earliest start time (est) for each token; 
for event tokens a latest start time (1st) is specified. An 
event token is open throughout the interval est to 1st and 
closed otherwise. For fact tokens, we modify probabilistic 
causal refinement so that it closes a fact token Tp as soon 
as mass(Tp)(i) drops below a fixed threshold. A fact token 
is open from its est until it is closed. All we require then is 
that for any i the set of tokens that are open define an 
acyclic causal dependency graph using +c.  This restric- 
tion still allows for a wide range of causal theories. To get 
“refine” to do the right thing, we would have to apply 
“refine” only to open tokens and either sort the tokens 
using <=, or (as is actually done) define “refine” so that 
if in the course of updating a consequent token, “refine” 
finds an antecedent token that has not yet been updated, it 
applies itself recursively. 

The derivation of a token T, corresponds to a rule of the 
form PERSIST(P, A )  where h is the constant of decay for 
the fact type P, and an event token TEp. The procedure 
“mass-update’’ is a bit more difficult to define than “den- 
sity-update” since it depends upon the type of decay 
functions used in persistence rules. In the case of exponen- 
tial decay functions, the operation of “density-update’’ is 
reasonably straightforward. Recall the basic combination 
rule for probabilistic projection: 

Of course, all of the real work is done by “density- 
update” and “mass-update.’’ Each token has associated 
with it a specific derivation that is used in computing its 
mass or density. For a token TER, this derivation corre- 
sponds to a rule of the form 

PROJECT(P~ A P 2 . . .  A P,,, E ,  R ,  K )  

= /‘ f ( x ) g ( t  - x )  d x  
-- oc 

and suppose that g is of the form e-‘’, where X is some 
constant of decay, and that f can be approximated by a 
step function as in 

and a set of antecedent tokens { T,, T,,, Tp,. . . Tp,,} used to 
instantiate the rule and generate the consequent token TR. 
Given that 

and, assuming independence (6), we have We will take advantage of the fact that 

Procedure: density-update( T,,, i )  
density( T,,)( i )  +- 

h - 1  

/ “ f (  x )  d x  = / “ f (  x )  dx 
I = !  sj SI 

I ,  
~*densi ty(T,)( i )*  n mass(Tp,)(i). and 

/ =1 
g ( s , + , - x )  = e P h s g ( s k  - x )  

’There are some obvious optimizations to be made here. where 6 = s k +  - s k ,  
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Making appropriate substitutions, we have 

*‘k 

It should be clear that updates depending upon such 
simple survivor functions can be performed quite quickly. 
Integration is approximated using Riemann sums with a 
mesh of fixed size (roughly) corresponding to 6. We define 
the procedure “mass-update” as 

Procedure: mass-update ( Tp, i) 
mass( T,)( i) + 

eAgmass( T,)( i - 1) +density( TEp)(  i). 

The actual algorithms are complicated somewhat by the 
fact that the choice of mesh size may not coincide precisely 
with the steps in the step functions approximating survivor 
functions and distributions. We compensate for this by 
using a somewhat finer mesh in the update algorithms. The 
fact that we employ a fixed mesh size still causes small 
errors in the accuracy of the resulting mass and density 
functions, but these errors can be controlled. We have 
tried to make a reasonable tradeoff, taking into account 
that the finer the mesh the larger the mass and density 
vectors. Given that the step functions used for encoding 
survivor functions and distributions are only approxima- 
tions, there is a point past which employing a finer mesh 
affords no additional information. We have found that a 
mesh size of half the smallest step in any step function 
works quite well in practice. 

APPENDIX I1 
LINEAR DECAY SURVIVOR FUNCTIONS 

The exponential decay function used in our previous 
examples have many features which make it particularly 
attractive for temporal probabilistic projection. It is com- 
putationally tractable and is especially suited to incremen- 
tal computation. It is conceptually simple and occurs in 
many forms in nature. 

However, there are also problems with the exponential 
decay function. Many of the types of processes whose 
persistence behavior we would like to track with proba- 
bilistic projection have the following sort of general behav- 

t =  0 1 2 3 4 

Fig. 5. Exponential decay and other functions as persistence functions. 

ior: our expectation of their persistence is initially very 
high and remains so for some time; then there is a gradual 
and accelerating descent, with the fastest descent around 
the mean time of persistence; and finally a gradual taper- 
ing off, until it levels off in the end. 

The exponential decay function is not a good approxi- 
mation to such processes. Exponential decay is character- 
ized by the opposite behavior; steep descent in the begin- 
ning, with a relatively quick leveling off. To contrast the 
two types of functions, when the first type of function is 
almost constant at unity, the exponential decay function 
will be experiencing its fastest descent while, conversely, 
by the time the first type of process begins its descent, the 
exponential decay is past its major descent, perhaps level- 
ing off at a relatively low probability (see Fig. 5). 

It should be clear that any inference procedures relying 
upon probabilistic information derived from such an ap- 
proximation will often draw unsound or, at best, unex- 
pected conclusions. For example, a planner attempting to 
maximize expected utility values using decision theoretic 
heuristics may actually make the decisions opposite from 
those we would like. Consider a situation in which two 
trucks having similar persistence functions arrive at the 
loading dock. As usual, the planner’s task is to figure out 
the best order to load the trucks. With the exponential 
decay function, the expected persistence for each truck 
drops very rapidly in the beginning, and they become 
virtually indistinguishable in a very short period of time. 
Therefore, no matter which truck is loaded first, the ex- 
pected success for the second truck will be about the same 
as that for the first. However, for the first truck the 
expected success is higher for the truck which arrived later; 
therefore the planner will decide to load the second truck 
first, which, of course, is probably not a good choice. 
(Does this show up too much weakness?) 

In our current implementation, t h s  has been countered 
with the introduction of a new quantity, which we call the 
(persistence) delay. Intuitively, the delay is a simple entity: 
it is an initial time duration, starting from a token’s “est,” 
during which the expected persistence of the token experi- 
ences no decay. The probabilistic update algorithms will 
refrain from applying the token’s persistence function until 
the delay is over. While the introduction of the delay tends 
to counter the ill effects of the exponential decay function, 
it seems worthwhile to consider other functions which 
might better describe the kinds of processes we are likely 
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\ 

C - d e l a y  4 - T  
1 .o \ 

\ slope m = I / T 

\ 
simple extension of this case: 

h ( t )  =Jr  f ( z ) ( l -  m ( t  - z ) )  dz 
f -(1/m) 

= (1 - m t ) J r  f( z )  dz + m Z f ( 4  dz 
f - ( 1 / m )  

and similarly, 

A possible candidate is the class of piecewise linear 
functions (see Fig. 6). Another is a reverse normal distribu- 
tion (we model the persistence of a proposition in terms of 
the occurrence, with a normal distribution, of the event of 
the proposition becoming false; in other words, the com- 
plement event of the proposition being true is considered 
as the cumulative probability of a normal distribution). 
While piecewise linear functions, or linear decay functions, 
are perhaps no less a simplification of real processes than 
the exponential decay function; they avoid the major 
shortcoming of exponential decay, namely, the significant 
distortion in the initial stages. Conceptually, the linear 
decay function is just as simple, and when the initial delay 
is factored in, intuitively more satisfying. Furthermore, the 
linear decay function is no less amenable to acquisition 
than the simple exponential decay function. For this rea- 
son, in this section we will illustrate how a simplified 
version of the linear decay function might be used as an 
alternative in temporal probabilistic projection. 

The linear decay function is defined by 

f ( z ) dz = J' - f ( z ) d z + S f ( t ) - S f  
f - ( l / m ) -  6 

and 

zf ( z ) dz = Jr - zf  ( z ) dz + Stf ( t ) 
r - l / m  - 6 

and the preceding equations to derive the expression we 
desire: 

h ( r ) = h ( t - S ) + S ( l - m t )  

- msJr - f ( 4  
r - ( l / m ) - 6  

= h ( t  - S ) +  S(1- mt + mt)  f ( t )  

g ( t )  = min(I,max(O,I- m ( t -  e))) - s l - m t + m  t - -  f t - -  i i 9) i li 
- m s J r  - f ( z )  dz 

or 
t - ( l / m ) -  6 

if 0 G t < 8; 

otherwise 
if BGt<B+i/m; = h ( t  - S )  + Sf ( 1 )  - m s J r - s  f ( z >  dz 

t - ( l / m )  - 6 

With the exponential decay function, we had 
where m is the slope, and 8 is the delay. Recall that the 
convolution is 

h ( t ) = e-% ( t - 6 )  + S f (  t ) 
so the main difference is the need for computing the 
integral 

h ( t )  = 1' f ( z ) g ( t  - z )  dz .  

We would like to be able to compute h ( t )  in terms of 
h ( t  - S )  and f .  In this paper, we will show the derivation 
for the simpler function will make such derivation for the 
simpler function 

--M J f ( 4  dz.  

Recall that f is some function describing the probability 
distribution of the occurrence of an event. The preceding 
integral is the cumulative mass probability that the event 
has occurred, and in the recursive definition, it is the 
cumulative probability that the event occurred between 
two points of time. It is then possible to compute mass 
probabilities via the convolution with linear decay persis- 
tence functions, by a relatively simple and painless expedi- 
ent-the addition of a token for the cumulative probabil- 

1 - rnt, if 0 < t < I / m ;  
otherwise h ( d  = ( o, 

without the delay. The case with the delay is a relatively 



i ty  of the event being convolved. I t  should be clear that 
many simple inference tasks might actually require this 
fact token anyway, so this new requirement of probabilis- 
tic projection may not add unnecessarily to a set of tokens. 

APPENDIX 111 
ACQUIRING PERSISTENCE RULES 

Statistical methods have not seen particularly wide ap- 
plication in AI. This is largely due to problems concerning 
the availability of the data necessary to employ such 
methods. Data provided from experts has been labeled as 
unreliable. The use of priors in Bayesian inference has 
been much maligned. An alternative to expert judgements 
and estimating priors is to integrate the data acquisition 
process into the system: have it gather its own data. I n  
such a scheme, all predictions made by the system are 
conditioned only upon what the system has directly ob- 
served. Of course, this is unrealistic in many cases (e.g., 
diagnostic systems whose decisions could impact on the 
health or safety of humans). In the industrial automation 
applications considered in this paper, however, not only is 
it practical but it also appears to be crucial if  we are to 
build systems capable of adapting to new situations. 

In this section, we describe a system for continually 
refining a database of probabilistic causal rules in the 
course of routine planning and execution. Given the focus 
of this paper, we will concei’n ourselves exclusively with 
the acquisition (or refinement) of persistence rules. Our 
warehouse planner keeps track of how long trucks stay 
around and uses this information to construct survivor 
functions for various classes of trucks. The system must be 
told which quantities it is to track and how to distinguish 
different classes of trucks, but that given, the rules it 
acquires are demonstrably useful and statistically valid in 
the limit. 

The survivor function for a given class of trucks is 
computed from a set of data points corresponding to 
instances of trucks observed arriving and then observed 
leaving without being 10aded.~ It should be clear that, in 
general, a collection of data points will not define a 
survivor function uniquely. There are many ways i n  which 
to derive a reasonable approximation for such a function. 
For example, we might employ some form of curve fitting 
based on an expected type of function and the sample 
data. While such methods may yield more accurate ap- 
proximations in some cases, for our application there are 
simpler and more efficient methods. 

Our system derives two parameters for constructing 
survivor functions. The first is an estimate of the delay 
(i.e., the initial interval of time during which the function 
remains constant), and the second corresponds to the rate 
of decay during the function’s period of descent. We 

3There is actually more information to be had. For example, instances 
of trucks observed arriving and subsequentlv observed to be abhent (the 
exact time of leaving unknown) are presumably relevant to the problem 
at hand, and in fact it is possible to make use of such information by 
making various additional assumptions. We will not. however, consider 
such complications here. 

simply use the arithmetic mean of the samples to compute 
the rate of decay. With both of the simple classes of 
functions we have considered, the exponential decay and 
the linear decay functions computing the persistence pa- 
rameter ( A )  and the slope, respectively, is trivial. In the 
case of an exponential decay, we use the mean as the 
half-life of the function. 

Computing the delay interval is also quite simple. Recall 
that in our examples the delay corresponds to the interval 
of time during which no trucks are likely to leave. Each 
data point is represented as an integer corresponding to 
how long a particular truck stayed. Keeping in mind that 
there will be occasional aberrations, we choose to ignore 
some percentage of the data points corresponding to those 
that are far from the mean. There are more sophisticated 
means of doing this, but we simply sort the data points for 
each class of trucks in increasing order and set the delay to 
be the length of time corresponding to some data point in 
the kth percentile of the resulting sorted list, where k 
defaults to 5.  This provides a reasonable approximation to 
the actual functions and it is very fast to compute. 

We can now sketch the simple algorithm utilized in our 
system. As noted, we need to collect data for each class of 
interest. The data for each class is collected in a data 
structure along with various intermediate quantities used 
by the update algorithm (e.g., since the algorithm calls for 
the arithmetic mean of the data points, it is convenient to 
incrementally compute the sum of the elements of the 
collection). The class data type has the following accessor 
functions associated with it  ( c  is an instance of class): 

lambda( c): 
delay( c): 
history((,): 

instances( e ) :  

sum( e ) :  
offset( e ) :  

the type of the associated survivor func- 
tion: linear or exponential, 
the rate or slope, 
the delay, 
a vector corresponding to the sorted col- 
lection of data points (individual data 
points are referenced using history( c)( i), 
where i is an integer index), 
the number of data points in the collec- 
tion, 
the sum of the items in the collection, 
a percentile indicating the bottom n data 
points in the sorted collection to be ig- 
nored in computing the delay (defaults to 
5 percent). 

Assuming that c is an instance of class and p is a new 
data point, the acquisition algorithm can be described as 
follows: 

Procedure: acquire( e ,  p )  
begin 

history( c )  + insert( p ,  history( c)); 
instances( e )  + instances( e )  + 1; 
sum( e )  + sum( c)  + p ;  
lambda( e )  + rate( e,  ((sum( e)/instances( c)) - 
delay( c ) ) ) ;  
delay( e )  + history( c)([instances( e )  * offset( e ) ] )  

end. 
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The function “insert” is assumed to insert a data point 
into a sorted collection. The function “rate” depends on 
the type of survivor function used: 

Function: rate(c, p )  

then + m  
else if type(c) = linear 

i f  p = O  

then 0.5,’~ 
else if type( c) = exponential 

then (ln2)/p. 

Although we have tested our approach extensively in 
simulations and have found the acquired persistence data 
to converge very rapidly to the correct values (these results 
are described further in Appendix IV), we do not claim 
that the aforementioned methods have any wider applica- 
tion. The simplicity of the algorithm and its incremental 
nature is attractive, but the most compelling reason for 
using it is that it works well in practice. Probabilistic 
projection does not rely upon a particular method for 
coming up with persistence rules. As an alternative, the 
data might be integrated off line, using more complex (and 
possibly more accurate) methods. 

It should be noted that our system is given the general 
form of the rules it is to refine. It cannot, on the basis of 
observing a large set of trucks, infer that trucks from one 
company are more impatient than those from another 
company, and then proceed to create two new persistence 
rules where before there was only one. The general prob- 
lem of generating causal rules from experience is very 
difficult. We are currently exploring methods for distin- 
guishing different classes of trucks based on statisti- 
cal clustering techniques (e.g., Kolmogorov-Smirnov’s 
D-statistic [19] and Shapiro-Wilk‘s W-statistic [20]). Using 
such methods, it appears to be relatively straightforward to 
determine that a given data set corresponds to more than 
one class, and even to suggest candidate survivor functions 
for the different classes. However, figuring out how to 
distinguish between the classes in order to apply the differ- 
ent survivor functions is considerably harder. 

APPENDIX IV 
EXPERIMENTS 

To help in evaluating temporal probabilistic projection 
for robot planning, we carried out a series of simple 
experiments. The experiments involved a simulated factory 
environment similar in many respects to the warehouse 
domain from which we have drawn most of the examples 
in this paper. The experiments were designed to test the 
ability of a system to make reasonable predictions in the 
face of uncertainty. Since the predictions made by our 
system are based on expected outcomes, it was necessary 
to run experiments involving hundreds of planning deci- 
sions and many times that many predictions. We measured 
the performance of a simulated robot engaged in loading 
trucks over the course of many (simulated) days. We 
considered several strategies for deciding which truck to 

“group.” In this section, we will describe the experiments 
we conducted, the different strategies that we compared, 
and the results that we obtained. 

In our simulated warehouse, a robot is charged with 
loading all trucks that arrive at a particular loading dock. 
If there is one truck waiting at the dock and the robot is 
otherwise unoccupied, then it will load that truck. If more 
than one truck is waiting, then the robot must decide 
whch one to load first. How it makes this decision will 
determine how successful it is in carrying out its charge. 
Success is measured in terms of the number of trucks that 
the robot loads. We assume that trucks do not sit around 
waiting to be loaded forever. Trucks are not, however, 
completely arbitrary in their behavior; we assume that 
there are different classes of trucks, red, green, and blue, 
and that individuals in each class have similar persistence 
behavior. If all of the trucks were in the same class, then 
loading the trucks in the order of their arrival (first come 
first served) would be the best strategy. If there is more 
than one class and the robot has some idea of how 
members of each class are likely to behave, then it would 
seem that the robot could do somewhat better. In our 
experiments, we consider three basic strategies. 

Temporal probabilistic projection (TPP)- the robot 
uses the techniques described in this paper to pre- 
dict the consequences of various loading sequences 
and to refine the persistence rules used in the pro- 
cess of prediction. 
No acquisition (NA): Same as the preceding but the 
robot does not acquire its persistence rules; it is 
given the same probability distributions as the simu- 
lator uses in determining when a truck actually will 
leave. The robot cannot, however, determine the 
simulator’s outcome with certainty. 
First come first served (FCFS)-the robot does no 
prediction at all; it simply loads the trucks in the 
order that they arrive. 

It would seem that TPP should approach NA in the 
limit; how fast and how much performance suffers in the 
interim depend critically on how fast it learns the survivor 
functions that govern the various classes of trucks. It is 
relatively easy to concoct situations in which FCFS will do 
badly (simply have the longer persisting trucks arrive be- 
fore the shorter persisting ones). On the other hand, it is 
difficult to conceive of FCFS doing any better; it should at 
best do only as good as TPP. Therefore, on the average, we 
would expect FCFS to perform somewhat less well than 
TPP. The interesting thing about the experiments is that 
TPP converges very quickly on an approximation to the 
actual survivor functions, allowing the TPP-guided robot 
to perform on a par with the NA-guided robot. 

The robot’s knowledge of its simulated environment is 
obtained through a status board that reports the arrivals 
and departures of trucks at the loading dock. When the 
robot has nothing to do, it checks this status board fre- 
quently. At other times it can only check the status board 
at irregular, possibly long, intervals between loading tasks. - -  

unload next. Each of the strategies constituted a test In our- current simplistic world, the only kinds ofevents 
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TABLE I 
EXPERIMENTAL R~SULTS IN A SIMULATED RUN OF 300 DAYS 

Experiment Total Success Failure Success Rate 

TPP 5898 4669 1229 79.2% 
NA 5830 4638 1192 79.6% 
FCFS 6058 4123 1935 68.1% 

TABLE I1 
ACQUIRED PLKSISTENCE RATES AFTER 300 DAYS 

Truck Class Acquired X True X Difference in ex’ 

Red 0.400 0.346 3.7% 
Blue 0.368 0.346 1.5% 

Green 0.369 0.346 1.6% 

that occur are those that are displayed on the status board. 
In other words, no events occur such that the robot must 
interrupt a task and respond. This makes the simulator 
quite simple; the world has to be updated only when the 
robot looks at the status board. 

The simulator consists of two parts: a set of oracles, 
which determine what type of events will occur and when, 
and an agenda, used to determine how those events impact 
on the robot’s behavior. Whenever the simulator is called, 
i t  first runs each oracle, placing any events that are deter- 
mined to occur onto the agenda. Then it makes a sweep of 
the agenda and returns to the robot (i.e., “displays” to the 
status board) all the events that were deemed to occur 
before the current time. Since the simulator is called at 
irregular intervals, and since some types of events are 
defined to occur at regular intervals (e.g., red trucks might 
arrive with a 3-percent probability every ten minutes), the 
simulator actually runs the oracles as often as is necessary. 
This is an important consideration in allowing for repeat- 
able experiments. 

In our experiments, two oracles were assigned to each 
class of truck, to determine when a truck of the class 
arrived, and once arrived, to determine how long it would 
stay if it failed to be loaded. The oracles were implemented 
in a way that enabled repeatable behavior so that the three 
different strategies could be tried on exactly the same 
sequence of events. 

The results of the simulations were generally very en- 
couraging. A typical simulation run consisted of 300 work 
days (see Table I). On the whole, the TPP strategy per- 
formed favorably against the NA strategy. While our ex- 
pectation was that our methods should approach the ideal 
in the limit, in practice it did so very rapidly, and the 
survivor functions it learned converged very quickly to- 
wards the right numbers. For the typical run depicted in 
the table, it took less than 20 data points for the survivor 
function to come to within 1 percent of the correct func- 
tion initially, and it took less than 1500 total trucks (about 
100 data points for each class) for cumulative success rate 
to come to within 1 percent of NA. 

By contrast, the FCFS strategy did relatively poorly, as 
expected. Although the FCFS strategy ran significantly 
faster (it cut out projection altogether), it is difficult to 

TABLE I11 
ACQIJIRI:~) PERSISTENCE FOR A TRUCK CLASS A S  A FIJNCIION OF 

SA3fPI.ES 
(AGAINSI REAL PLRSISTENCL OF 0.346) 

Difference 
Samples Acquired (percent) 

0 0.000 29 
5 0.495 9 
10 0.533 12 
15 0.335 0 
20 0.347 0 
25 0.361 1 
30 0.378 2 
35 0.398 3 
40 0.375 1 
45 0.371 1 
50 0.369 1 

TABLE IV 
DIK-tKENC‘I; I N  ~ U M U I . A T I V E  SIJCCESS Of. TPP AND NA S’IKATEGIES 

Difference 
Day TPP NA (percent) 

25 0.7689 0.8162 4.73 
50 0.7878 0.8015 1.37 
75 0.7867 0.7957 0.s0 
100 0.7885 0.7990 1.05 
125 0.7952 0.8038 0.86 
150 0.7937 0.7990 0.52 
175 0.7930 0.7972 0.41 
200 0.7925 0.7978 0.53 
225 0.7948 0.7980 0.32 
250 0.7943 0.7927 0.15 
275 0.7928 0.7929 0.01 
300 0.7916 0.7955 0.39 

draw any conclusions about how such a speed difference 
might scale up in real systems. 
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