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A model for reasoning about persistence and causation
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Reasoning about change requires predicting how long a proposition, having become true, will continue to be so.
Lacking perfect knowledge, an agent may be constrained to believe that a proposition persists indefinitely simply because
there is no way for the agent to infer a contravening proposition with certainty. In this paper, we describe a model
of causal reasoning that accounts for knowledge concerning cause-and-effect relationships and knowledge concerning
the tendency for propositions to persist or not as a function of time passing. Our model has a natural encoding in
the form of a network representation for probabilistic models. We consider the computational properties of our model
by reviewing recent advances in computing the consequences of models encoded in this network representation. Finally,
we discuss how our probabilistic model addresses certain classical problems in temporal reasoning (e.g., the frame
and qualification problems).

Key words: temporal reasoning, causal reasoning, uncertainty, probabilistic models, probabilistic inference, belief
networks.

Le raisonnement a propos des modifications nécessite de prédire combien de temps une proposition demeurera vraie
une fois qu’elle I’est devenue. En I’absence de connaissances parfaites, un agent peut étre forcé de croire qu’une pro-
position persiste indéfiniment simplement parce qu’il lui est impossible d’inférer avec certitude une proposition con-
traire. Dans cet article, nous décrivons un modéle de raisonnement causal qui tient compte des connaissances concer-
nant la relation entre la cause et I’effet et 1a tendance des propositions & persister ou non en fonction du temps. Le
modéle comporte un encodage naturel sous forme de représentation en réseau pour les modeéles probabilistiques. Les
propriétés informatiques du modéle sont prises en considération a la lumiére des récents développements dans le domaine
de I’estimation des conséquences des modeéles encodés dans cette représentation en réseau. Enfin, on y discute comment
le modéle probabilistique traite certains problémes classiques de raisonnement temporel (par exemple, les probléemes

de cadre et de qualification).

Mots clés : raisonnement temporel, raisonnement causal, incertitude, modéles probabilistiques, inférence probabilisti-

que, réseau de croyances.

Comput. Intell. 5, 142-150 (1989)

1. Introduction

The commonsense law of inertia (McCarthy 1986) states
that a proposition once made true remains so until something
makes it false. Given perfect knowledge of initial conditions
and a complete predictive model, the law of inertia is suffi-
cient for accurately inferring the persistence of propositions.
In most circumstances, however, our predictive models and
our knowledge of initial conditions are less than perfect. The
law of inertia requires that, in order to infer that a proposi-
tion ceases to be true, we must predict an event with a con-
travening effect. Such predictions are often difficult to
make. Consider the following examples:

e 3 cat is sleeping on the couch in our living room
® you can leave your umbrella on the 8:15 commuter train
¢ a client on the telephone is asked to hold

In each case, there is some proposition initially observed to
be true, and the task is to determine if it will be true at some
later time. The cat may sleep undisturbed for an hour or
more, but it is extremely unlikely to remain in the same spot
for more than six hours. Your umbrella will probably not
be sitting on the seat when you catch the train the next mor-
ning. The client will probably hold for a few minutes, but
only the most determined of clients will be on the line after
15 minutes. Sometimes we can make more accurate predic-
tions (e.g., a large barking dog runs into the living room),
but, lacking specific evidence, we would like past experience
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[Traduit par la revue]

to provide an estimate of how long certain propositions are
likely to persist.

Events precipitate change in the world, and it is our knowl-
edge of events that enables us to make useful predictions
about the future. For any proposition, P, that can hold in
a situation, there are some number of general sorts of events
(referred to as event types) that can affect P (i.e., make P
true or false). For any particular situation, there are some
number of specific events (referred to as event instances)
that occur. Let O correspond to the set of events that occur
at time ¢, A correspond to that subset of O that affect P,
K(QO) that subset of O known to occur at time ¢, and K(A4)
that subset of A whose type is known to affect P. Figure 1
illustrates how these sets might relate to one another in a
specific situation. In many cases, K(O) N K(A4) will be empty
while A is not, and it may still be possible to provide a
reasonable assessment of whether or not P is true at ¢. In
this paper, we provide an account of how such assessments
can be made probabilistically.

2. Prediction and persistence

In the following, we distinguish between two kinds of
propositions: propositions, traditionally referred to as
fluents (McCarthy and Hayes 1969), that, if they become
true, tend to persist without additional effort, and proposi-
tions, corresponding to the occurrence of events, that, if true
at a point, tend to precipitate or trigger change in the world.



DEAN AND KANAZAWA 143

A K(0)

FiG. 1. Events precipitate change in the world.

Let (P, ¢) indicate that the fluent P is true at time ¢, and
(E, t) indicate that an event of type E occurs at time . We
use the notation Ep to indicate an event corresponding to
the fluent P becoming true.

Given our characterization of fluents as propositions that
tend to persist, whether or not P is true at some time 7 may
depend upon whether or not it was true at 1 — A, where
A > 0. We can represent this dependency as follows: !

+ p(P, O | 2 (P, t — ADp(— (P, t — A)

where ~ (P, ) = (~P, o).

The conditional probabilities p((P, ¢} | (P, t — A)) and
PP, O | ~ (P, t — A)) are related to the survivor function
in classical queuing theory (Syski 1979). Survivor functions
encode the changing expectation of a fluent remaining true
over the course of time. We employ survivor functions to
capture the tendency of propositions to become false as a
consequence of events with contravening effects. With sur-
vivor functions, one need not be aware of a specific instance
of an event with a contravening effect in order to predict
that P will cease being true. As an example of a survivor
function,

p«Pa >) = e‘Mp((P’ t - A))

indicates that the probability that P persists drops off as a
function of the time since P was last observed to be true
at an exponential rate determined by A (Fig. 2). The exponen-
tial decay survivor function is equivalent to the case where

PP, B | (Pt — A) =e™™
and
pUP, By | ~(P,t — A) =0

Referring back to Fig. 1, survivor functions account for that

subset of 4 corresponding to events that make P false,

assuming that K(4) = {}.

If we have evidence concerning specific events known to
affect P (i.e., K(A) N K(O) # {}), [1] is inadequate. As an
interesting special case of how to deal with events known
to affect P, suppose that we know about all events that make
P true (i.e., we know p((E,, #)) for any value of ), and
none of the events that make P false. In particular, suppose
that P corresponds to John being at the airport, and Ep
corresponds to the arrival of John’s flight. We are interested
in whether or not John will still be waiting at the airport
when we arrive to pick him up. Let o(f) = ¢ M represent

!The equality in [1] follows from the generalized addition law:
if A}, ..., A, are exclusive and exhaustive and B is any event, then

pB) = Y pB|AA).
i =1

FiG. 2. A survivor function with exponential decay.

John’s tendency to hang around airports, where \ is a
measure of his impatience. If {t) = p({Ep, £}), then we can
compute the probability of P being true at ¢ by convolving
S with the survivor function ¢ as in

21 pUP, 1) = [Ls PUE,, 2)o(t — 2) dz

A shortcoming of {2] is that it fails to account for evidence
concerning specific events known to make P false. Suppose,
for instance, that E_ p corresponds to Fred meeting John
at the airport and giving him a ride to his hotel. In certain
cases,

31 p(P, ) = §' PUEp, 2)o(t — 2)
X [1 = §; p(Ep, X)) dx] dz

provides a good approximation. Figure 3 illustrates the sort
of inference licensed by [3].

There are some potential problems with [3]. The survivor
function, o, was meant to account for all events that make
P false, but [3] counts one such event, John leaving the air-
port with Fred, twice: once in the survivor function and once
in p((E p, 1). In certain cases, this can lead to significant
errors {(e.g., Fred always picks up John at the airport). To
combine the available evidence correctly, it will help if we
distinguish the different sorts of knowledge that might be
brought to bear on estimating whether or not P is true. We
will also reinterpret the event type Ep to mean an event
known to make P true. The following formula makes the
necessary distinctions and indicates how the evidence should
be combined:?

41 p(P, 1)) =
p(<P! t) | (P’ - A) A —1(<EP5 t> V<E-\P’ t))) (Nl)
X p(<P1 r—- A) A ﬂ(<E’P’ t) v (EﬂPs t)))

+ p(P, 1) | (P, t — A) A(Ep, 1)) (N2)
X p«Pv t - A) A <EP9 t>)
+ p(P, ) | (P, t — A) AN(E_p, 1)) (N3)

X p«P’ t - A) A (EﬂPs t))
+ p«P’ t) | - <P9 t— A) A _'(<EPa t) \ <E-|P’ t))) (N4)
Xp(ﬂ<P’ t— A>A _'(<EP, t)V (EﬂPv t)))

+p(P, )| (P, t — A) A(Ep, 1)) (N3)
X p(—(P, t — &) A (Ep, 1))
+p(P, )| ~ (P, t — A) A(E-p, 1)) (N6)

X p(~ (P, t = B) N(Ep, 1)

Consider the contribution of the individual terms corre-
sponding to the conditional probabilities labeled N1 through
N6 in [4]. N1 accounts for natural attrition: the tendency
for propositions to become false given no direct evidence
of events known to affect P. N2 and N5 account for causal
accretion: accumulating evidence for P due to events known

2To justify our use of the generalized addition law in [4], we
assume that p((Ep, £) A {E_p, 1)) = 0 for all ¢.




144 COMPUT. INTELL. VOL. 5, 1989

p«P,tY)

P((E,p:‘»

p«Ep,t))

F1G. 3. Probabilistic predictions.

to make P true. N2 and NS5 are generally 1. N3 and N6, on
the other hand, are generally 0, since evidence of — P becom-
ing true does little to convince us that P is true. Finally, N4
accounts for spontaneous causation: the tendency for prop-
ositions to suddenly become true with no direct evidence of
events known to affect P.

By using a discrete approximation of time and fixing A,
it is possible both to acquire the necessary values for the
terms N1 through N6 and to use them in making useful
predictions (Dean and Kanazawa 1987). If time is represented
as integers, and A = 1, we note that the law of inertia applies
in those situations in which the terms N1, N2, and N5 are
always 1 and the other terms are always 0. In the rest of
this paper, we assume that time is discrete and linear and
that the time separating any two consecutive time points is
some constant § (see Cooper et al. (1988) for a discussion
of a related approach to probabilistic reasoning about
change using a discrete model of time). Only evidence con-
cerning events krown to make P true is brought to bear on
PUEp, ). If p({Ep, 1)) were used to summarize all evidence
concerning events that make P true, then N1 would be 1.

3. Reasoning about causation

Before we consider the issues involved in making predic-
tions using knowledge concerning N1 through N6, we need
to add to our theory some means of predicting additional
events. We consider the case of one event causing another
event. Deterministic theories of causation often use implica-
tion to model cause-and-effect relationships. For instance,
to indicate that the occurrence of an event of type E; at
time ¢ causes the occurrence of an event of type E, following
t by some 6 > 0 just in case the conjunction P; A P, A ...
A P, holds at ¢, we might write

(PyAP, AN AP, NANE,D) DIE,t+ )

If the caused event is of a type Ep, this is often referred to
as persistence causation (McDermott 1982). In our model,
the conditional probability

p((Ez, t + 6) l (Pl A P2 AL A Pm t> A (E], t)) =7

is used to indicate that, given an event of type E, occurs
at time #, and P, through P, are true at ¢, an event of type
E; will occur following ¢ by some 6 > 0 with probability .

In moving to a probabilistic model of causation, there are
some complications that we have to deal with. Consider,
for example, the two rules:

(P, ) N(E, ) D (Eg, t + &)
and
(PAQ, O ANE, ) D{(Eg, t + 8

These two rules pose no problems for the deterministic
theory of causation, since P and Q are either true or false,

and the rules either apply or not. In fact, the second rule
is redundant. However, in a probabilistic model, P and Q
usually are not unambiguously true or false. Therefore, in
the probabilistic causal theory consisting of

p(<ER’ t+ 6) I <P1 t) A <E9 t)) = m
and

PUER, 1 + ) [ (PAQ, ) AE, 1) = m,

the second rule can no longer be considered redundant. Since
the second rule is more specific than the first, it provides
us with valuable additional information. In a complete
account of the causes for Eg, we would also need

P(Eg, t + 8) | {PA Q, 1) A(E, D) = m5

and other information as well. Providing a complete account
of the interactions among causes and between causes and
their effects is important in modeling change in a prob-
abilistic framework. In the following two sections, we will
consider this issue in more detail.

4. An example

The task in probabilistic projection is to assign each prop-
ositional variable of the form (g, ¢} a certainty measure con-
sistent with the constraints specified in a problem. In this
section, we provide examples drawn from a simple factory
domain that illustrate the sort of inference required in prob-
abilistic projection. We begin by introducing some new event
types:

Cl = ““The mechanic on duty cleans up the shop”’

As = ‘“ Fred tries to assemble Widget17 in Room101”’
and fluents:

Wr = “The location of Wrenchl4 is Room101*’

Sc = ““The location of Screwdriver31 is Room101”’

Wi = “Widgetl7 is completely assembled’’

We assume that tools are occasionally displaced in a busy
shop, and that Wr and Sc are both subject to an exponential
persistence decay with a half life of 1 day; this determines
N1 in [4]:

P(WT, §) |

<WI‘, t — A) A _'((EWra t) v <E—-Wr: t>)) = e_)\A
p({Sc, 1) |

(SC’ - A) A _|(<ESC9 t) Vv (E-\Sc» t))) = e_M

where e " = 0.5 when A is 1 day.

The other terms in [4], N2, N3, N4, N5, and N6, we will
assume to be, respectively, 1, 0, 0, 1, and 0. When the
mechanic on duty cleans up the shop, he is supposed to put
all of the tools in their appropriate places. In particular,
Wrenchl4 and Screwdriver31 are supposed to be returned
to Room101. We assume that the mechanic is very diligent:

P(Ewe, t + €| (Cl, 0) = 1.0
p«ESc’ r+ 6) I (C]’ t)) = 1.0

Fred’s competence is assembling widgets depends upon
his tools being in the right place. In particular, if Screw-
driver31 and Wrench14 are in Room101, then it is certain
that Fred will successfully assemble Widget17.

PUEwi, t + € | (Wr, ) A (Sc, H A (As, 1)) = 1.0
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Let TO correspond to 12:00 p.m., February 29, 1988, and
T1 correspond to 12:00 p.m. on the following day. Assume
that e is negligible given the events we are concerned with
(i.e., we will add or subtract e in order to simplify the
analysis).

p((Cl, TO) = 0.7
p({As, T1)) =

We are interested in assigning the propositions of the form
{¢, 1) a certainty measure consistent with the axioms of prob-
ability theory. We will work through an example showing
how one might derive such a measure, noting some of the
assumptions required to make the derivations follow from
the problem specification and the axioms of probability. In
the following, we will denote this measure of belief by BEL.
What can we say about BEL({Wi, T1 + ¢))? In this partic-
ular example, we begin with

BEL((Wi, T1 + ¢))
= P(Ewi, T1 + €)
PUEwi, T1 + € | (Wr, T1) A (Sc, T1) A {(As, T1))
X p(Wr, T1) A (Se, T1) A (As, T1))
pUWr, T1) A (Sc, T1) A (As, T1))
p((Wr, T1) A {Sc, T1))

The first step follows from our interpretation of Ey,,
and the fact that there is no additional evidence for or
against Wr at T1 + e. The second step employs the addi-
tion rule and the assumption that the assembly will fail to
have the effect of (Eyw,, T1) if any one of (Wr, T1), (Sc,
T1), or (As, T1) is false. The third step relies on the fact
that assembly is always successful given that the attempt is
made and Wrenchl14 and Screwdriver3! are in Room101.
The last step depends on the assumption that the evidence
supporting {(Wr A Sc, T1) and {As, T1) are independent. The
assumption is warranted in this case given that the particular
instance of As occurring at T1 does not affect Wr A Sc at
T1, and the evidence for As at T1 is independent of any
events prior to T1. Note that if the evidence for As at T1
involved events prior to T1, then the analysis would be more
involved. It is clear that p((Wr, T1)) = 0.35, and that
p((Sc, T1)) = 0.35; unfortunately, we cannot simply combine
this information to obtain an estimate of p({Wr A Sc, T1)),
since the evidence supporting these two claims is dependent.
We can, however, determine that

P((Wr, T1) A (Sc, T1))
= p({(Wr, T1) A (Sc, T1) | (Wr, TO) A {Sc, TO))
x p({Wr, TO) A (Sc, TO))
= p((Wr, T1) | (Wr, TO) A (Sc, TO))
X p((Sc, T1) | (Wr, TO) A (Sc, TO))
x p((Wr, TO) A {Sc, TO))
P((Wr, TO) A (Sc, TO)) x 0.5 x 0.5
= p((Ew;, TO) A (Es., TO)) x 0.5 x 0.5
= p({Ewr, TO + € A (Es., TO + € | (Cl, TO))
x p({Cl, T0)) x 0.5 x 0.5

0.7 x 0.5 x 0.5
= 0.175

assuming that there is no evidence concerning events that
are known to affect either Wr or Sc in the interval from TO
to T1, that Wr and Sc are independent, and that Ey, and
Eg are conditionally independent of one another given CI.

Throughout our analysis, we were forced to make assump-
tions of independence. In many cases, such assumptions are

“E o

unwarranted or introduce inconsistencies. The inference pro-
cess is further complicated by the fact that probabilistic con-
straints tend to propagate both forward and backward in
time. This bidirectional flow of evidence can render the anal-
ysis described above useless. In the next section, we consider
a model that simplifies specifying independence assumptions,
and that allows us to handle both forward and backward
propagation of probabilistic constraints.

S. A model for reasoning about change

In this section, we take a slight modification of [4] as the
basis for a model of persistence. Formula [4] predicts (P, ¢)
on the basis of (P, t — A), (Ep, 1), and (E_p, £}, where A
is allowed to vary. In the model presented in this section,
we only consider pairs of consecutive time points, ¢ and
t + o6, and arrange things so that the value of a fluent at
time f is completely determined by the state of the world
at 6 in the past. In [4], we interpret events of type Ep occur-
ring at ¢ as providing evidence for P being true at ¢. In our
new model, we interpret events of type Ep occurring at £ as
providing evidence of P being true at r + §. This reinter-
pretation is not strictly necessary, but we prefer it since the
expressiveness of the resulting models can easily be char-
acterized in terms of the properties of Markov processes.
In our new model, we predict A = (P, r + 8) by condition-
ing on

Cl = <P’ t)
CZ = <EP! [>
C3 = (E_'P7 [>

and specify a complete model for the persistence of P as
PpA) = EpA|CLACAGC)PC ACyACy)

where the sum is over the eight possible truth assignments
for the variables C,, C,, and C;. Note that this model
requires that we have probabilities of the form p(4 | C; A
Gy A G3) and p(Cy A C; A G;) for all possible valuations
of the C,‘.

In the following, we will make use of graphical represen-
tation for probabilistic models that will serve to clearly
indicate the assumptions concerning dependence and
independence underlying our models. The graphical repre-
sentations that we will be using have been called Bayes nets
(Pear]l 1988), belief networks (Duda et al. 1981), and
influence diagrams (Howard and Matheson 1984). We will
use the generic term belief network to refer to a network
that satisfies the following basic properties common to all
three of the above representations. A belief network
represents the variables or propositions of a probabilistic
theory as nodes in a graph. The variables in our networks
correspond to propositional variables of the form (g, 7).
Dependence between two variables is indicated by a directed
arc between the two nodes associated with the variables.

Because dependence is always indicated by an arc, belief
networks make it easy to identify the conditional indepen-
dence inherent in a model simply by inspecting the graph.
Two nodes that are linked via a common neighbor, but for
which there are no other connecting paths, are conditionally
independent given the common node. For instance, in the
models described in this section, (P, t — §) is independent
of (P, t + &) given (P, f). Belief networks make it easy to
construct and verify the correctness and reasonableness of
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T T+6

Ep

Fi1G. 4. The evidence for P at time T + 4.

T T+6
EI
9
E, 4——’7
E

<

FIG. 5. The evidence for £p at time 7T + 0.

a model directly in terms of the corresponding graphical rep-
resentation. Our model for persistence can be represented
by the network shown in Fig. 4. As soon as we provide a
model for causation, we will show how this simple model
for persistence can be embedded in a more complex model
for reasoning about change over time.

Generally, we expect that the cause-and-effect relations
involving Ep will be specified in terms of constraints of the
form:

p(<EP! I+ 6> | <E11 t> A <Q17 t>) = ™
p(<EP’ !+ 6) | <E2’ t) A <Q2’ t>) = 2

p(<éPv r + 5) ‘ <Em t> A <Qns t)) = Ty

However, to specify a complete model, we will need some
more information. To predict 4 = (Ep, t + ), we condi-

Ci=(E, ) AQ, B
= (EZ’ t> A <Q21 t>

= (Ep £) A (Q D

and specify a complete model as

O
1l

pA) =EpA | CIACA . ANCYPICIANCAL.ACY)

Note that we need on the order of 2" probabilities corre-
sponding to the 2" possible valuations of the propositional
variables C, through C, to specify this model. The

n n+l n+2 m m+l

£, 1

4

T0 T0+6 T! T1+6

FIG 6. A temporal belief network.

(a)

{b)
T T+e
Sc
T T+A T T+¢
EWr Wwr Cl
Wr As Fw’
Ey. By, T ? Eg,

F1G. 7. Models for the factory example: (@) persistence of Wr;
(b) effects of the assembling action; (c) effects of the cleaning
action.

associated belief network is shown in Fig. 5. Similar net-
works would be constructed for event types other than those
involving propositions becoming true or false.

Now we can construct a complete model for reasoning
about change over time. Figure 6 illustrates the temporal
belief network for such a complete model. For each prop-
ositional variable of the form (g, 1), there is a node in the
belief network. The arcs are specified according to the
isolated models for persistence and causation illustrated in
Figs. 4 and 5. Following Pearl (1988), we can write down
the unique distribution corresponding to the model shown
in Fig. 6 as

Px1, Xz, oy Xp) = H plx; | SHp(S)
Q=1

it

where x; denotes the propositional variables in the model,
and §; is the conjunction of the propositional variables
associated with those nodes for which there exists arcs to
X; in the network. How we compute this distribution is the
subject of Sect. 6.
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TABLE 1. Data for modeling the persistence of Wr

p(<wrv [> | ) <Wr’ r - A> <EWr’ ‘- A) <EﬁWr7 - A>

e M True False False
e M True True False
0.0 True False True
0.0 False False False
e M False True False
0.0 False False True
— True True True
— False True True

TaBLE 2. Data for modeling the effects of the assembling action

PEwi, O] ...) (Sc, t — € (Wr, t — ¢ (As, t — €
0.0 False False False
0.0 True False False
0.0 False True False
0.0 True True False
0.0 False False True
0.0 True False True
0.0 False True True
1.0 True True True

As a specific instance of a temporal belief network, we
reconsider the factory example of Sect. 4. We will need
models for the persistence of wrenches and screwdrivers
remaining in place, and models for reasoning about the con-
sequences of cleaning and assembling actions. Figure 7a
shows a portion of a belief network dedicated to modeling
the persistence of Wr (i.e., the proposition corresponding
to Wrenchl14 being in Room101). To completely specify the
model for Wr persisting, we need the information given in
Table 1. The first six entries in the table correspond to terms
NI1-6 in [4]. Note that the entries corresponding to N2
and N5 — assumed to be 1 in Sect. 4 — are now the same
as NI to account for our revised interpretation of events of
type Ep. Figure 7b shows a portion of a belief network for
modeling the effects of the assembly action. The complete
model is specified in Table 2. Finally, Fig. 7¢ shows a por-
tion of a belief network for modeling the effects of the clean-
ing action. The complete model for the effect of cleaning
on the location of Wrenchl4 is shown in Table 3 and
similarly for the effect of cleaning on the location of
Screwdriver31 in Table 4.

In the discussion of the general model, the amount of time
separating time points was assumed to be the same for all
pairs of consecutive time points. In reasoning about the
factory example, it will be useful to have the time separating
pairs of consecutive time points differ, and to have different
models for handling different separations. We will need time
points close together for propagating the (almost immediate)
consequences of actions, and time points separated by
several hours so as not to incur the computational expense
of reasoning about intervals of time during which little of
interest happens. To reduce the complexity of the network
for the factory example, we assume that evidence concerning
the occurrence of actions such as cleaning and assembling
is always with regard to the end points of 24 h intervals.
Figure 8 shows the complete network for the factory
example. Note that, since the evidence for actions appears
only at 24 h intervals, we encode the models for action only

TABLE 3. Data for modeling
the effect of cleaning on Wr

PlEw, 0] ..)  (ClLt — ¢
0.0 False
1.0 True

TABLE 4. Data for modeling
the effect of cleaning on Sc

p(<ESC9 t) I "') <Clv t - €>
0.0 False
1.0 True

at the time points TO and T1; similarly, since additional
evidence for events of type Ep is only available at TO + ¢
and T1 + ¢, we use a simpler model for persistence at TO
and T1 in which, for example, (Wr, TO + ¢) is completely
determined by (Wr, T0). If we assume a prior probability
of 0 for all nodes without predecessors in Fig. 8 excepting
(Cl, TO) and (As, T1) which are, respectively, 0.7 and 1.0,
then p({(Ewi, T1 + €) is 0.175 in the unique posterior
distribution determined by the network. This is the same
as that established by the analysis of Sect. 4, but, in this
case, we have made all of our assumptions of independence
explicit in the structure of the temporal belief network.

It is straightforward to extend the model described above
to account for new observations and updating beliefs.
Suppose we have the observations o, 0y, ..., 0,, Where
each observation is of the form (O, 1) and O is an event type
corresponding to a particular type of observation. We
assume some pricr distribution specified in terms of con-
straints of the form:

(0, £) = 0.001

There are also constraints indicating prior belief regarding
the occurrence of events other than observations. For
instance, we might have

PUE, ) = 0.001

Observations are related to events by constraints such as
PUE, 1 | {0, ) = 0.70

and
PUE, t) | = {0, 1) = 0.025

To update an agent’s beliefs you can either change the priors,
20, ) = 1.0

or compute the posterior distribution,
BEL(A) = p(A | 0y, 05, ..., 0,)

Most of the standard techniques for representing and reason-
ing about evidence in belief networks apply directly to our
model.

This paper is primarily concerned with presenting a par-
ticular model for reasoning about change. Our current
research involves applying this model to problems in robotics
and exploring the expressive limitations of our model. While
we have only begun the latter research, a word about
expressive limitations is probably in order to give the reader
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some idea of the potential power of our model and to
encourage analysis by others. Most of the initial work in
analyzing the expressive power of our model has been con-
cerned with relating the predictive power of our model to
that of Markov processes and in particular Markov chains.

Suppose that the instantaneous state of the world can be
completely specified in terms of a vector of values assigned
to a finite set of Boolean variables ? = (P, Ps, ..., P,},
and suppose further that the environment can be accurately
modeled as a Markov process in which time is discrete and
the state space, Q, corresponds to all possible valuations of
the variables in “P. Given such a model including a transi-
tion matrix defined on Q, we can generate a temporal belief
network to compute the probability of any proposition in
P being true at any time ¢ based upon evidence concerning
the values of variables in P at various times, and do so in
accord with the transition probabilities specified in the
Markov model. Conversely, given a temporal belief network
such that, for all r and P € <P, all of the predecessors of
(P, t) are in the set {(P;, ¢ — &)}, the network is said to
satisfy the Markov property for temporal belief networks,
and, from this network, one can construct an equivalent
Markov chain. Nunez (1989) provides a proof of the
equivalence of networks satisfying the Markov property for
temporal belief networks and Markov chains, and provides
an algorithm for translating between the two representations.

The reason that one might use a fluent-and-event-based
temporal belief network model rather than an equivalent
state-based Markov model is because the belief network rep-
resentation facilitates reasoning of the sort required for
applications in planning and decision support (e.g., com-
puting answers to questions of the form, ‘“What is the prob-
ability of P at ¢ given everything else we know about the
situation?’’). These same answers can be computed using
the Markov model, but the process is considerably less
direct.

Satisfying the Markov property for temporal belief net-
works allows us to establish the connection between tem-
poral belief networks and Markov chains, but it sometimes
results in unintuitive network structures. Introducing a delay
between an action and its consequences may appear
reasonable given the intuition that causes precede effects.
However, introducing a delay betwen Ep and P simply to
ensure the Markov property may seem a little extreme. We
can eliminate the delay between Ep and P by returning to
the model for persistence in [4]. The resulting networks do
not satisfy the Markov property described in this section,
but they are perfectly legitimate temporal belief nets and
provide a somewhat more intuitive model for representing
change than networks that do satisfy the Markov property.

6. Computing probabilistic predictions

In this section, we consider the computational issues con-
cerned with our model of temporal reasoning. We will
chiefly be concerned with computing the joint conditional
probability distribution for a fully specified belief network,
given the available information. The problem of computing
the distribution for a partial, incomplete model will be con-
sidered briefly at the end of this section.

For networks with restricted topologies, there are efficient
methods for computing the joint distribution. A belief net-
work is said to be singly connected if there is at most one
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FIG. 8. A belief network for the factory example.

path between any two nodes in the graph. The class of singly
connected networks are basically those which form treelike
topologies; both proper trees and trees in which a node may
have more than one parent (called a generalized Chow tree
(Chow and Liu 1968)). Kim and Pearl (1983) have described
an efficient mechanism for computing the joint distribution
for singly connected networks by local propagation of Bayes
factors (i.e., the likelihood ratios p(x)/p(—x)).

The Kim-Pearl algorithm is linear in the diameter of the
network. However, it is restricted to singly connected net-
works. Unfortunately, most interesting causal theories, such
as those arising in medicine, and our own temporal models
involve multiple connected networks; networks that contain
cycles. The general problem of probabilistic inference in
belief networks, including multiple connected networks, has
been shown to be NP-hard (Cooper 1987). Although this
points towards some possible problems in terms of computa-
tional efficiency, it should not discourage us from using
belief networks for probabilistic inference. The NP-hardness
result tells us that a search for an efficient exact algorithm
for all cases is probably misguided, but it says little about
what to expect in practice. In general, asymptotic complexity
results should serve as a guide in algorithm design, not as
a justification for abandoning a research area. Such results
tell us to look for algorithms that have good expected-case
performance and to consider possible tradeoffs in terms of
efficiency, soundness, or completeness.

T ———
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There have been three principal types of algorithms pro-
posed for probabilistic inference with general belief net-
works: exact, bounding, and approximation algorithms. The
exact algorithms attempt to exploit the topology of the net-
work; they include the method of conditioning (Pearl 1988)
and the Lauritzen-Spiegelhalter (L-S) algorithm (Lauritzen
and Spiegelhalter 1988). In a multiply connected network,
if a node which has multiple children is instantiated to a
given value, then the values of the children become inde-
pendent of one another. The path(s) connecting the children
through the parent node become “‘blocked,” and the
connectivity of the graph changes. If enough nodes are
instantiated, then the resulting network becomes singly con-
nected, so that the Bayes propagation algorithm can be used.
A set of nodes which, when instantiated, render a multiply
connected network singly connected corresponds to a cutset
of the underlying graph. Conditioning computes a weighted
average of the joint conditional probability distributions for
all possible instantiations of such a cutset (for further details,
see Pearl (1988)).

In the L-S algorithm, a set of subsidiary arcs is added
to the graph to triangulate the graph, and the joint distribu-
tion can be efficiently computed in terms of the cliques of
the original graph. A graph is triangulated if there are no
cycles of length 4 or more without a chord or shortcut.
L-S represents the network in terms of a clique tree, a tree
of the cliques in the triangulated graph. Computing in terms
of the tree is very efficient, as with the Kim-Pearl algorithm;
the L-S algorithm alters the connectivity of a belief network
much like conditioning does, rendering a multiply connected
network singly connected so that an efficient Kim-Pearl type
propagation algorithm may be employed. The joint distribu-
tion for the network shown in Fig. 8 can be computed in
just a few seconds using the L-S algorithm running on a
workstation. An important characteristic of the L-S algo-
rithm is that after a relatively time-consuming initialization
step for a given network topology, it is capable of perform-
ing Bayesian updating in the network very efficiently.

Since conditioning and L-S compute exact results, they
are directly affected by the NP-hard results; both exhibit
exponential behavior in the worst case. Conditioning involves
the computation of the minimum cutset which is an NP-hard
problem, and L-S is exponential in the size of the largest
clique in the graph. In the case of the network shown in
Fig. 8, the largest clique consists of only four nodes, but
it is quite easy to generate temporal belief networks for
which the largest clique makes computing the joint distribu-
tion using the L-S algorithm impractical.

In light of the worst-case exponential behavior of the exact
algorithms, it is worthwhile to consider how the inference
task may be relaxed in order to gain efficiency. Both bound-
ing algorithms and approximation algorithms relax the
exactness criterion, trading precise answers for speed. By
a bounding algorithm, we mean an algorithm that exploits
the structure of a network and the constraints to assign some
rough bounds on each node. By an approximation algorithm,
we mean a Monte Carlo simulation algorithm. The distinc-
tion between the two types of algorithms is somewhat
arbitrary, in that it is possible to have an approximation
algorithm which in a sense bounds its answer by an error
margin. Both types of algorithms are able to supply a rough
answer in a very short time, and the reliability of the answers
increases with the amount of time spent computing the

answer. The main difference of the two types of algorithms
is that a bounding algorithm always makes sound, albeit
initially very weak, inferences, whereas an approximation
algorithm may take some time before the numbers it generates
make some sense. Although neither type of algorithm sup-
plies a good answer right away, they can provide some rough
answers fairly quickly. Because of this, using these algo-
rithms can have significant advantage in situations where
the time spent in computing is important (Dean and Boddy
1988; Horvitz 1988).

Bounding algorithms look at the constraints and bound
the distribution, typically by supplying an upper and lower
bound (Horvitz et a/. 1989; Henrion 1988b). The bounds
are successively refined such that they approach the correct
distribution in the limit. These algorithms appear promising,
but more research is needed to determine their properties.

Approximation algorithms simulate the states that a belief
network is likely to go through, given a set of constraints.
By a state of the network, we mean an assignment of a value
to each of the variables in the network. For example, given
a prior probability constraint that p(4 = 1) = 0.8 for some
variable A, we would, with the use of an oracle, assign
A = 1in 80% of the simulated states of the network. The
aim in approximation is to develop an algorithm which
comes e close to the correct answer almost all the time (i.e.,
with high probability). As noted earlier, most often, the
algorithms perform iterative refinement of the approxima-
tions, such that the error is some inversely monotonic func-
tion of the time spent in computing the answer. Monte Carlo
algorithms have a solid basis in the physical sciences
(Metropolis et al. 1953). Unfortunately, the Monte Carlo
algorithms developed to date for belief networks (Henrion
1988a; Pearl 1987) have been somewhat less than ideal; there
are no proofs with regard to convergence (we cannot say
anything about when the computed distribution is within
€ of the correct distribution, or how confident we can be
that it is within that range), and in practice convergence is
often slow (Pearl 1988).

7. Fundamental problems in temporal reasoning

Given that our model addresses many of the same prob-
lems that concern logicians working on temporal logic, we
will briefly mention how our model deals with certain classic
problems in temporal reasoning: the frame, ramification,
and qualification problems. We will begin by considering
the frame problem stated in probabilistic terms: *‘Does our
model accurately capture our expectations regarding fluents
that are considered not likely to change as a consequence
of a particular event occurring?’’ The answer is yes insofar
as frame axioms can be said to solve the frame problem in
temporal logic; persistence constraints are the probabilistic
equivalent of frame axioms. In considering the ramification
problem, we will consider two possible interpretations. First,
““Does our model enable us to compute appropriate expec-
tations regarding the value of a particular fluent at a par-
ticular point in time without bothering with a myriad of
seemingly unimportant consequences?’’ The answer to this
is a resounding no; our model commits us to predicting every
possible consequence of every possible action no matter how
implausible. A second interpretation (or perhaps facet is a
better word) of the ramification problem is *‘Does our model
enable us to handle additional consequences that follow
from a set of causal predictions?”’ For instance, if A4 is in
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box B and I move B to a new location, I should be able to
predict that 4 will be in the new location along with B. Our
model provides no provision at all for this sort of reasoning.
The basic idea of Bayesian inference can be extended to
handle this sort of reasoning, but we have not investigated
this to date. The last problem we consider concerns reasoning
about exceptions involving the rules governing cause-and-
effect relationships. Does our model solve the qualification
problem? That is to say, ‘‘Does our model accurately cap-
ture our expectations regarding the possible exceptions to
knowledge about cause-and-effect relationships?’’ The
answer is yes; conditional probabilities would seem to be
exactly suited for this sort of reasoning. It should be noted,
however, that our model imposes a considerable burden on
the person setting up the model. The model described in this
paper requires specifying all possible causes for each possi-
ble effect and the probability of each effect for every possi-
ble combination of possible causes. It is not clear, however,
that one can get away with less (Dean and Kanazawa 1988;
Hanks 1988). Given the problems inherent in eliciting such
information from experts, it would appear that we will have
to automate the process of setting up our probabilistic
models.

8. Conclusions

This paper presents a model of temporal reasoning suited
for situations involving incomplete knowledge. By expressing
knowledge of cause-and-effect relations in terms of condi-
tional probabilities, we are able to make appropriate judge-
ments concerning the persistence of propositions. By directly
encoding expectations regarding how long certain proposi-
tions are likely to persist, we are able to reason about phe-
nomena for which we do not possess an accurate cause-and-
effect model as well as phenomena for which we do possess
an accurate model but about which it is either difficult or
impossible to acquire evidence due to sensing and real-time
processing constraints. The primary contribution of this
paper is ontological. This paper builds on the temporal rep-
resentations of Allen (1984), McDermott (1982), and others
to provide an account of time and change in terms of well-
understood probabilistic models. Our model can be described
in terms of a network representation for probabilistic
theories that has recently received a great deal of attention
in the literature, and for which there now exist a number
of computational techniques that appear to be quite prom-
ising. We expect that the development of approximate
methods for computing the expectations engendered by a
given belief network will enable us to apply our methods
to solve a number of problems in robotic control and deci-
sion support that require reasoning about time and change.
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