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Abstract. Many real-world applications involve the management of large amounts of time-dependent 
information. Temporal database systems maintain this information in order to support various sorts of 
inference (e.g., answering questions involving propositions that are true over some intervals and false 
over others). For any given proposition, there are typically many different occasions on which that 
proposition becomes true and persists for some length of time. In this paper, these occasions are referred 
to as time tokens. Many routine database operations must search through the database for time tokens 
satisfying certain temporal constraints. To expedite these operations, this paper describes a set of 
techniques for organizing temporal information by exploiting the local and global structure inherent in 
a wide class of temporal reasoning problems. The global structure of time is exemplified in conventions 
for partitioning time according to the calendar and the clock. This global structure is used to partition 
the set of time tokens to facilitate retrieval. The local structure of time;is exemplified in the causal 
relationships between events and the dependencies between planned activities. This local structure is 
used as part of a strategy for reducing the computation required during constraint propagation. The 
organizational techniques described in this paper are quite general, and have been used to support a 
variety of powerful inference mechanisms. Integrating these techniques into an existing temporal 
database system has increased, by an order of magnitude or more in most applications, the number of 
time tokens that can be efficiently handled. 
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Retrieval--search process; 1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods and 
Search-heuristic methods 
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1. Introduction 
Representing and reasoning about time play a critical role in many facets of 
everyday problem solving. We continually have to make reference to what has 
happened, is happening, and might possibly happen. To make matters all the more 
difficult, we have to cope with the fact that the world is constantly changing around 
us. To plan for the future, we must be able to predict change, propose, and commit 
to actions on the basis of these predictions, and notice when certain predictions 
are no longer warranted. All of this requires handling an enormous amount of 
complexly interdependent information. 
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In the past, the problems of efficient inference in predicate-calculus databases 
used for temporal reasoning tasks have largely been ignored as researchers have 
grappled with more fundamental issues. As our representations have become more 
sophisticated and our ambitions to tackle more realistic domains have grown, the 
problems inherent in managing large temporal databases have become a major 
factor limiting growth [3, 41, 451. What is needed is a computational framework 
in which strategies for organizing temporal facts can be exploited to expedite the 
search needed to support basic temporal inference procedures. As a simple example, 
suppose that you are planning a business trip and you are trying to remember 
whether the travel agent has already confirmed your airline reservation. It should 
not be necessary to recall (i.e., search through) all of the events past, present, and 
future that involve your communicating with a travel agent. Only the most recent 
are likely to be of interest. Restricting attention to a particular interval of time 
requires that facts that change over time are indexed temporally, that is to say, 
stored in such a way that facts and events common to a given interval are easily 
accessible from one another. 

Temporal indices are subject to frequent revision. Quite often, the span of time 
associated with an event or fact is shifted, compressed, or expanded to suit a change 
of plans or reflect new information. Suppose that you decide to leave on your 
business trip a week earlier than previously planned. From this explicit change, it 
should be apparent that certain prerequisite tasks (e.g., ordering plane tickets) must 
also occur earlier. The database system described in this paper ensures that such 
implied changes are reflected directly in the data structures manipulated by the 
system. In updating a database of temporally dependent facts, it is our goal that 
the work performed by the system be proportional to the resultant changes and 
not to the size of the entire database. 

In this paper, we are concerned with expediting a particular type of temporal 
inference useful in a wide variety of applications. These applications range from 
decision support for oflice automation [ 13, 141 to robot problem-solving [ 15, 181. 
In the rest of this paper, wherever possible, we give concrete examples drawn from 
an application that involves keeping track of the status of a number of manufac- 
turing devices (e.g., engine lathes and milling machines) in an automated factory. 

For any particular application, we want to encode general knowledge about how 
various propositions relate to one another causally and temporally (e.g., “If a 
machine is repaired, then the machine will be available for use immediately 
following the repair.“) and specific knowledge about particular situations (e.g., 
“Lathe #45 was repaired at 2:00 this afternoon.“). We also want to be able to 
answer questions that bear on our general and specific knowledge (e.g., “What 
machines were repaired this afternoon?” or “Is there a lathe available for use at 
2: 15?“). 

The task of answering questions is complicated by the fact that we want the 
inference system to compensate somewhat for the inevitable gaps in its knowledge. 
For instance, suppose that lathe #45 was available for use at 2:Ol. What can we 
say about its availability at 2:02? We cannot say anything with certainty, but, 
barring information to the contrary, it is reasonable to suppose that the lathe is 
still available at 2:02. In general, we assume that a proposition having become true 
tends to persist unless something is determined to make it false. We do not require 
that the system be told exactly what propositions hold over what intervals of time; 
in fact, we would rather that the system be told only when a proposition becomes 
true and let it infer how long the proposition remains true. The system then is 
responsible for keeping track of what propositions are true over what intervals of 
time. 
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Rules like “If event occurs at time t, then proposition becomes true at t + 6.” are 
referred to as causal rules. The inference system is responsible for computing the 
consequences of events as directed by a set of causal rules and then using those 
consequences to determine the persistence of facts for processing queries. For 
instance, suppose 1 am told that lathe #45 suffered a major malfunction at 4:30 
this afternoon and, further, that major malfunctions make machines unavailable 
for use. In this case, I would expect the query “Is there a lathe available for use at 
2: 15?” to succeed, but the query “Is there a lathe available for use at 4:45?” to fail. 

The semantical issues concerning logical theories comprised of such rules are 
discussed in [40] and are beyond the scope of this article. The procedural semantics 
are rather simple and intuitive: Starting with some set of propositions known to 
hold at some earliest point, you sweep forward in time considering events known 
to occur and using the causal rules to determine which propositions become true, 
continue to persist, and cease to persist. In [ 161 and [ 171, we discuss the basic 
algorithms for performing this sort of causal reasoning. These algorithms ensure 
that the database contains accurate information concerning what propositions are 
true over what intervals of time. 

All of the algorithms described in [ 171 run in time polynomial in the size of the 
input (i.e., the specific and general knowledge provided by the application). 
However, even low-order polynomial performance (e.g., 0(n3)) can be prohibitive 
in applications involving a great deal of information; ideally, we want (small) 
constant-time performance for routine question-answering. Fortunately, temporal 
reasoning problems have a great deal of structure to exploit in attempting to achieve 
this sort of performance. The structure that we exploit in this paper is of two types: 
global structure (e.g., conventions for partitioning time according to calendar 
boundaries) and local structure (e.g., relationships between events and their con- 
sequences). Whenever an event is added or deleted, or its duration or time of 
occurrence is changed, it is possible that the entire contents of the database have 
to be revised. We limit the requisite computations by keeping track of the day, 
month, and year in which events occur, and how various events are related to one 
another. When a transaction occurs that affects a particular event, we first deter- 
mine the changes required with regard to the set of events occurring on the same 
day or directly related. If the changes can be limited to that set of events, then we 
make the necessary changes and stop; otherwise, we broaden the set of possibly 
affected events by considering events in adjoining days and those related less 
directly. 

The global structure inherent in our use of calendars and clocks is hierarchical 
in nature, and thus forms an ideal basis for organizing our knowledge of events. 
We exploit this hierarchical structure in our use of data structures for storing and 
retrieving information about events. In addition, we allow the user to specify 
general relationships among events that are temporally related, These relationships 
are used by the system to derive additional information to reduce computational 
costs. The actual algorithms and data structures used to expedite various sorts of 
temporal inference are the primary subject of this paper. The details are at once 
more and less complicated than hinted at above. More complicated in that we 
have to deal with partially ordered events and constraints that only bound the 
duration and occurrence of events. Less complicated in that we simply assume that 
someone supplies the system with the knowledge that serves as guidance in 
searching among events. 

This paper describes a set of techniques that have been integrated into the 
temporal database management system of [ 171 to achieve reasonable performance 
in applications involving a large number of events that are known, or can be 
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predicted, to occur and a large number of propositions that might persist over 
intervals of time. In order to set this work in perspective, we begin by considering 
some related work. 

2. Related Work 

There is a large body of work on temporal representation and inference, most of 
which can be divided into one of three subareas: extensions to the relational 
database model, logics of time for reasoning about programs and hardware verifi- 
cation, and approaches in artificial intelligence for reasoning about planning and 
language comprehension. In this section, we consider related work in each of these 
three subareas with regard to the following requirements for a temporal inference 
system: 

(1) It must be capable of representing and reasoning about a variety of temporal 
constraints both <quantitative and qualitative. 

(2) It must be capable of inferring the consequences of events given some specifi- 
cation of cause-and-effect relationships. 

(3) It must be capable of reasoning with incomplete information including partially 
ordered events and persistence. 

This section is not intended as a broad survey of the literature. For a more 
complete survey of research in temporal reasoning, the interested reader is encour- 
aged to consult [4]. We begin by considering extensions to the relational database 
model. 

Following [42], we define a hierarchy of temporal database types in terms of 
their expressive power. Static databases are conventional databases, with no 
temporal information. Static rollback databases are static databases with a log 
indicating what transactions were performed and at what time. Historical databases 
are static databases, extended to maintain information about the time during which 
the stored information is assumed to be valid [9]. Finally, there are hybrid temporal 
databases that encode both transaction time and valid time in order to support the 
functionality of static rollback databases and historical databases; TQUEL [42] and 
the work described in [30] are databases of this type. 

The extensions to the relational model described above fail to satisfy all three of 
our requirements. First, the underlying representation of time is too weak for our 
purposes (e.g., all times are given with respect to a global clock, making it impossible 
to represent information such as “A occurs before B”). Second, there is no inference 
mechanism capable of reasoning about cause-and-effect relationships. Third, there 
is no attempt to deal with incomplete information; the user of a historical database 
must specify exactly over what intervals each relation is valid. The ability to reason 
about transaction time is useful for many purposes (e.g., restoring the database to 
some previous state), but we do not consider it further in this paper. 

In contrast with research extending the relational database model, research on 
logics of time has ignored practical issues for the most part, concentrating instead 
on the expressiveness of the logics. For all the power these languages afford-they 
all contain either propositional logic [37] or first-order quantified logic [l] as a 
subset-they do not provide machinery for simple default reasoning about persis- 
tence. Computational issues are generally overshadowed by concerns about com- 
pleteness and decidability. To provide some idea of the cost of adopting a reasonably 
expressive logic of time, the validity problem for almost any nontrivial model of 
time in an interval-based modal logic of time is at least undecidable, and many 
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such logics have no finite axiomatization [23]. It should be noted that the inference 
procedures underlying the system described in this paper are not complete with 
respect to propositional logic; we have traded completeness for performance in an 
attempt to achieve a reasonable balance. 

The work by McCarthy and Hayes on the situation calculus [33], a first-order 
logic in which time-variant propositions are modeled as functions called j7uents, 
uncovered what is referred to as the frame problem: the problem of inferring what 
things do not change as a result of an event occurring. The solution to the frame 
problem that McCarthy and Hayes suggested, using what are calledframe axioms, 
is still the best-known method of dealing with persistence in temporal logic. Frame 
axioms explicitly state for each event and for each fluent whether or not the fluent 
persists in the situation resulting from the occurrence of that event. In applications 
involving concurrent actions, frame axioms are required for all combinations of 
events that might possibly co-occur. The method used in this paper for dealing 
with persistence involves the use of default reasoning [32, 381 and derives from 
ideas introduced in McDermott’s temporal logic [35]. The introduction of default 
reasoning complicates the logical issues of reasoning about time [24, 401, but 
actually simplifies many of the computational issues [ 17, 271. 

The requirement that a temporal inference system be capable of reasoning about 
a variety of constraints implies a language for specifying constraints involving 
temporal entities (points or intervals) and some method of inferring additional 
constraints from those explicitly supplied. For almost any language that allows 
negation and disjunction, the decision problem of determining if a particular 
constraint follows from some set of constraints is at least NP-hard [ 1 11, and, hence, 
trade-offs are in order for building practical inference systems. 

In [2], Allen describes a calculus for reasoning about the relationships between 
intervals. He represents intervals and the relations among them by means of a 
graph. The nodes of the graph correspond to intervals, and the arcs are labeled 
with the relations between them. The relations between intervals can be disjunctions 
of the primitive relations, (e.g., interval i, is before or after iz (written i, [BEFORE 

AFTER] iI)). Ladkin [28] shows that Allen’s interval calculus has a first-order 
axiomatization that is complete and decidable. Unfortunately, computing the 
transitive closure of the relations defined in such a network is an NP-complete 
problem [46]. Allen’s approach to this problem is to use a decision procedure that 
is not complete, in the sense that it may not generate all the relations that can be 
derived from a particular graph. Vilain [46] restricts Allen’s representation, and 
then provides a polynomial algorithm that will derive all the relations entailed by 
a particular graph. The restricted representation eliminates certain disjunctions of 
relations, specifically those that cannot be expressed as disjunctions involving a 
single endpoint. For example, “interval i, ends during, concurrently with, or after 
interval i2” can be expressed, while “interval i, is either wholly before or wholly 
after interval i2” cannot. 

In most practical systems, only very limited use of negation and disjunction are 
allowed. It makes little sense to provide language constructs that cannot be 
efficiently supported. Representing inexact metric information does not introduce 
any insurmountable problems. It is straightforward to implement a polynomial- 
time decision procedure for determining the best bounds on the distance separating 
a particular pair of points in time, given a set of constraints bounding the distance 
between pairs of points [ 111. The method for representing inexact metric infor- 
mation used in the system described in this paper is a generalization of Kahn’s 
plus/minus error intervals for event dates [25]. 
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Finally, we consider some approaches that have been developed in artificial 
intelligence for applications in planning, language comprehension, and decision 
support. 

CHRONOS [5] is an example of a system designed to answer questions involving 
time, given information extracted from natural language input. From our perspec- 
tive, the most interesting aspect of this work is its recognition of the importance of 
reasoning about incompletely specified knowledge. Making appropriate inferences 
in the absence of complete knowledge is perhaps the central problem in reasoning 
about time in artificial intelligence, and the frame problem has served as a focus 
in recent years. 

Of the proposed solutions to the frame problem, perhaps the best known is built 
into the STRIPS representation of action [22]. STRIPS is a planning system based 
upon McCarthy’s situation calculus [33] and Simon and Newell’s theory of problem 
solving [21]. In STRIPS, each action (event) has a set of preconditions (fluents that 
must be true immediately before the action is carried out), a set of additions 
(fluents that must be true immediately after), and a set of deletions (fluents that 
must be false immediately after). STRIPS deviates from the situation calculus in not 
requiring any frame axioms. Persistence is handled using a particularly simple 
default rule of inference: If a fluent is not mentioned in the set of additions or 
deletions of a given event, then its status immediately following the event is the 
same as its status immediately preceding the event. The precise semantics of STRIPS 
is somewhat more complicated [29], but this simple default rule is at the heart of 
most computational approaches to dealing with the frame problem. 

There is a class of inference systems that have been designed to reason about the 
consequences of events and actions whose order is not completely known. We refer 
to these databases as time maps, after [35]. The systems that maintain these 
databases we call time map managers [7]. The temporal inference system that is 
the subject of this paper is a time map manager, and, henceforth, we refer to it as 
TMM. 

The earliest time map managers were based on an abstraction for representing 
plans in terms of partially ordered tasks: descriptions of actions being considered 
by a robot planner for execution. The time map in this case is simply a network of 
tasks annotated with predicted consequences of tasks [34, 39, 431. In most cases, 
the underlying representation of action was based upon the situation calculus, and, 
hence, it is assumed that the tasks in the network will ultimately be totally ordered. 
Actually computing the consequences of a partially ordered set of tasks turns out 
to be quite complicated. For any reasonably powerful representation of action, 
determining what will be true in all (some) total orders consistent with a particular 
partially ordered task network is NP-hard (NP-complete) [6]. In [ 161, we describe 
a polynomial-time algorithm for computing the consequences of partially ordered 
tasks that is sound, but not complete. 

SIPE [47] also maintains a network of partially ordered tasks, but does not require 
that all tasks eventually be totally ordered. Plans generated by SIPE may involve 
parallel actions, where interactions between actions occurring at the same time are 
mediated through a restricted form of resource modeling. SIPE'S representation of 
action is quite genera1 [48]. The effects of actions are modeled using a variant of 
the STRIPS representation supplemented with domain rules to deduce additional, 
context-dependent, effects of a particular action. 

DEVISER [44] employs a partially ordered network of events, but with some added 
machinery for reasoning about metric constraints. Events other than the agent’s 
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actions can be represented. Events may have a finite duration, which can be 
computed from the context in which they occur, and they can occur simultaneously. 
While duration, once computed, is fixed, event starting times are represented by 
windows, similar to Kahn’s plus/minus error intervals, which give ranges within 
which a particular event will occur. Windows are defined in terms of a global clock, 
and the only local relation allowed is to define two events as consecutive, meaning 
the beginning of the later event immediately follows the end of the earlier event. 
The action representation used by DEVISER is less general than STRIPS (e.g., the 
propositions deleted by an event an explicitly included in the preconditions for 
that event to occur). 

The TMM may be viewed as a restricted implementation of McDermott’s temporal 
logic, in the same way that STRIPS is a restricted implementation of the situation 
calculus. In the TMM, the classical database assertion is replaced by the notion of 
time token corresponding to a particular interval of time during which a general 
type of occurrence (a proposition or event) is said to be true. In the TMM, 

propositions and events are encoded as atomic formulas with no variables. The 
next section describes the capabilities of the TMM in greater detail. 

Given that reasoning about time is critical for many applications, it is not 
surprising that many techniques have been suggested for simplifying the requisite 
computations. The basic idea of partitioning time in order to simplify updates and 
expedite question answering has been exploited by many researchers. Kahn and 
Gorry emphasize the need to organize events using reference events, before/after 
chains, and historical periods [25]. Allen discusses the use of reference intervals as 
a way of constraining both the space required for his graph of interval relations, 
and the time required to compute its closure [2]. The intuition behind Allen’s 
reference intervals is that most of the propositions we want to represent will be 
true over intervals that can be linked together based on a hierarchy of local referents 
(e.g., the things I did today, the bills I paid this month, or the vacation I took 
last year). Koomen [26] describes a system that automatically generates refer- 
ence intervals to limit the computation required during constraint propagation. 
Koomen’s approach is similar to that taken in this paper in that both attempt to 
derive additional constraints in order to limit computation; however, Koomen 
does not deal with metric information, nor does he deal with persistence or the 
problems that arise in reasoning about cause-and-effect relationships. Malik and 
Binford suggest the use of reference frames to simplify deriving implicit constraints 
[3 I]. Their basic approach is similar to that of Kahn and Gerry, except that Malik 
and Binford assume that all temporal constraints are expressed as linear inequalities 
and all temporal inference is carried out using linear programming methods; they 
do not provide any details about how reference frames might be used to support 
inference in large databases. In an earlier paper [ 121, we consider a method similar 
to that of Malik and Binford that relies on keeping a kernel of events for which 
constraint propagation is optimized. We abandoned this approach when it became 
apparent that it could not be easily automated. 

The techniques described in this paper are the culmination of trying many 
different methods, and finally settling on a couple of techniques that are useful 
across many domains and that can be integrated into all of the different algorithms 
that underlie our system. The emphasis in this paper is on efficiently supporting a 
rich set of inferential capabilities in the presence of large amounts of temporal 
knowledge. Before discussing our techniques, we consider the basic operations of 
the TMM in somewhat greater detail. 
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3. Temporal Database Management 
This section provides a description of the TMM both from the user’s point of view, 
and from the designer’s point of view; the former to provide the reader with a 
better idea of what functionality is supported by the TMM, and the latter to provide 
the reader with the basic information needed to understand the indexing algorithms 
that are central to this paper. 

A time map is a graph. Its vertices refer to points (or instants) of time. One point 
is related to another using constraints where a constraint is represented as a directed 
edge linking two points. Each edge is labeled with an upper and lower bound on 
the distance separating the two points in time. These bounds allow us to represent 
incomplete information concerning the duration and time of occurrence of events 
(e.g., unloading the truck will take between 20 and 25 minutes). Any two points 
can be related by finding a path from one point to the other, where a path from 
pto to pt, is just a sequence ptoc,pt, . . . c,,pt, such that pto through pt, are points 
and Ci is a constraint relating pti-, to pt;. An interval is just a pair of points. 

An application program operates on events (i.e., propositions corresponding to 
actions and other phenomena that tend to precipitate change in the world) and 
fluents (i.e., propositions corresponding to states of the world that, once they 
become true, tend to persist in time). Events cause fluents to become true or false. 
The application program is expected to provide general knowledge about cause- 
and-effect relations (i.e., causal rules), and specific knowledge about events and 
fluents. The system then uses the causal rules to infer additional information about 
events and the intervals of time over which fluents persist. 

The distinction between events and fluents is not reflected in the underlying data 
structures of the TMM. Instead, there is a single data structure referred to as a time 
token (or simply token where it should cause no confusion) used to encode 
information about both events and fluents. A time token consists of an interval 
(i.e., a pair of points) together with a type, where a type corresponds to a proposi- 
tionalformula(e.g., (location obj73 10~14) or (move obj73 10~14 

lot 17 )). Asserting ( occurs type tok ) serves to create a new time token whose 
name is tok. The expressions (begin tok) and ( end tok) denote the begin and 
end points of the interval associated with the time token tok. 

New constraints are added to the time map by making assertions of the form 
(elt (distance pt, pt2) low high) ((elt q low high) indicates that the 
quantity q is an “element of” the closed interval low to high, with additional syntax 
required for specifying open or half-open intervals), which serves to add an arc 
labeled with bounds low and high between the two points pt, and ptz in the time 
map. To illustrate, asserting (occurs (routine-service lathel4) 
servicel) creates a token whose type is (routine-service lathel4) 
and whose name is servicel, and asserting (elt (distance (begin 
service 1 ) ( end service 1 ) ) 15 20 ) constrains the token to last between 
15 and 20 minutes. 

The TMM assumes a privileged global frame of reference and a scheme for 
partitioning the global time line. We return to partitioning schemes and global 
frames of reference in Section 5; for now, it is enough to get some idea of how 
these ideas appear in the user interface. Specifying constraints with respect to the 
global frame of reference is made particularly easy using dates. A date is just an 
offset from the global frame of reference specified in terms of the current partition- 
ing scheme. For instance, if the partitioning scheme is specified in terms of weeks, 
days,hours,and minutes, the date (date (weeks 2)(hours l)(minutes 
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15 ) ) is converted into an offset from the global frame of reference with divisions 
not mentioned (e.g., days) defaulting to 0. Often, it is convenient to specify a 
default date (e.g., noon today) and then specify offsets, called reldates, relative to 
the default. Dates and reldates can appear anywhere in a formula that a point can. 
As an example, if the default date is noon today, asserting ( el t ( distance 
(begin servicel)(reldate (hours 2)(minutes 30))) -10 10) 

determines that service 1 begins between 2:20 and 2:40 this afternoon. 
Specific knowledge is entered in the form of time tokens and constraints. General 

knowledge is entered in the form of causal rules. A causal rule of the form 

( pro j e c t antecedent-conditions trigger-event delay consequent-effects ) 

indicates that whenever an event of type trigger-event occurs, and the antecedent- 
conditions are true at the outset of the interval associated with trigger-event, then 
the consequent-e/‘cts are true after an interval of time determined by delay. The 
trigger event is specified as a type, the antecedent conditions and consequent effects 
are specified as types or conjunctions of types, and the delay is specified as a pair 
consisting of a lower and an upper bound on the time between the end of the 
trigger event and the manifestation of the effects. 

The TMM is primarily propositional in its operation. The types specified in time 
tokens do not, for instance, contain variables. There are, however, restricted forms 
of quantification allowed. Causal rules are implicitly quantified over all time tokens. 
A restricted form of quantification is also allowed in the specification of types 
appearing in causal rules. Universal variables are notated ?var and their scope is 
the entire formula in which they appear. As an example of an explicitly quantified 
causal rule, consider 

(project (and (location ?object ?locationl) 
(operational-status ?machine in-service) 
(instance-of ?machine robot-forklift)) 

(transfer ?machine ?object ?locationl ?location2) 
[(/ (distance ?locationl ?location2) 

(max-speed?machine)) 
(/ (distance ?locationl ?location2) 

(min-speed?machine))] 
(location ?object ?location2)) 

This rule states that, whenever a transfer is made by a robot forklift, the transferred 
object will appear in the new location after a delay determined by the distance to 
be traveled and the minimum and maximum rate of travel allowed by the forklift. 

Reasoning about time in the TMM consists of scanning the time map in order to 
determine how one event is related to another and what might be true during, 
before, or after an event. One of the important characteristics of the data structures 
used by the TMM to encode temporal information is that they can be updated 
incrementally. That is to say, as new events and facts are added, only those parts 
of the time map that are affected need be changed. This is accomplished by using 
data dependencies [20] to keep track of why various modifications were made and 
under what circumstances those modifications continue to be appropriate. When 
the user specifies changes to the time map, the TMM propagates those changes using 
the data dependency information to determine what additional changes have to be 
made. The sort of graph scanning and updating that the TMM engages in is referred 
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to as reasoning about time from the side [35]. It’s as though all of what you know 
about the past, present, and future is laid out in front of you. An example should 
help to strengthen this intuition. 

Figure 1 shows a particularly simple time map. Tokens are represented with a 
vertical bar indicating when the corresponding interval begins, and either a second 
vertical bar providing some indication of when the interval ends, or an arrow + 
indicating that the end of the interval is far enough in the future that it cannot be 
drawn in the diagram. The delimiters for tokens are connected by a horizontal bar 
(e.g., H). Each token is labeled with a formula denoting its type. The tokens are 
laid out on the page so as to indicate their relative offset from some global reference 
point. In cases where a token is not completely constrained with respect to the 
reference point, we use the notation ] - - - - ] ~ ] where the first two vertical 
bars indicate the earliest and latest that the corresponding interval might begin and 
the distance separating the second and third vertical bars provides some indication 
of the duration of the interval. In Figure 1, there are three tokens corresponding to 
events:one oftype (malfunction lathel4), a second oftype (routine- 
service lathe14),andathirdoftype (manufacture part42 job321). 
There are also a number of tokens corresponding to fluents that describe the 
production status (whether a machine is currently in use or not) and operational 
status (fitness for work) of two machines, la the 14 and la the7 3, in an auto- 
mated factory. 

Tokens corresponding to fluents (e.g., operational-status lathe 14 
in - service ) ) are referred to as persistences [35]. It is assumed that the user 
does not constrain the lower bound of the distance separating the begin and end 
of persistences; determining the duration of persistences is handled by the TMM. 
For any type P, P and ( not P ) are said to be contradictory types. The user is also 
allowed to specify contradictory types. For example, the expression ( contra - 
diets (location := : not=) ) indicates that any two tokens of type 
( location argl arg2) are contradictory if their first arguments are equal and 
their second arguments are different. If two tokens with contradictory types (e.g., 
(location obj73 10~14) and (location obj73 loc9)) are con- 
strained so that one begins before the other and the earlier could persist longer 
than the beginning of the later, then the two are said to be apparently contradictory. 
The TMM resolves apparently contradictory tokens by forcing the end of the earlier 
to precede the beginning of the later. In Figure 1, the token of type ( oper - 
ational-status lathe14 out-of-service) was constrained by the 
TMM to end before the beginning of the token of type (operational- 
status lathe14 in-service) inordertoresolveanapparentcontradiction 
indicated by the order of the two tokens and the assertion (contradicts 
(operational-status := :not=)). 

Keeping a large database free of apparent contradictions requires that it be cheap 
to determine the relative ordering of selected points. Furthermore, the database 
must be organized so that the system does not waste effort checking on pairs of 
tokens that cannot possibly overlap (e.g., the fact that a machine broke down for 
an hour last month need not enter into reasoning about whether or not it will be 
operational this afternoon). Section 5.2 describes how the TMM handles the problem 
of eliminating apparent contradictions in large time maps. 

Now we turn our attention to the problem of answering questions about the 
information stored in the time map. For the most part, query processing in the 
TMM is the same as query processing in Prolog [lo] with certain changes in notation: 
Cambridge-Polish notation is used instead of prefix notation, conjunctions are 
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(production-status lathe73 in-use) 

I I 
(production-status lathe73 free) 

I I 
(production-status lathe73 in-use) 

I b 
(operational-status lathe73 in-service) 

I b 
(manufacture part42 job32l) 

I-------- t-1 

(installed slot-cutter17 lathe14) 

I I 

FIG. I. A simple time map. 

notated (and P, P2 . . . P,, ) instead of P, , P2, . . . , P,, and variables are notated 
?var instead of Var. Certain expressions, however, that are encountered in queries 
are treated specially by the TMM. We refer to these expressions as temporal queries. 
Temporal queries in the TMM must specify a propositional schema and a fetch 
interval. The fetch interval is just a pair of points. The propositional schema is 
either a type or a conjunction of types, and may contain variables. Variables in 
temporal queries are interpreted as existentially quantified with scope being the 
entire query. The operator tt (for true throughout) takes as arguments a point 
defining the beginning of the fetch interval, a point defining its end, and a 
propositional scheme. A query of the form ( tt pt, pt2 ( and PI . . . P,, ) ) is treated 
as a request to determine if ( and P, . . . P,) is true throughout the interval 
corresponding to pt, and pt2, or could be made so with additional constraints. To 
illustrate, consider the following database query: 

(and (occurs (manufacture part42 job321) ?tok) 
(tt (begin ?tok) (end ?tok) 

(and (operational-status ?machine in-service) 
(production-status ?machine free) 
(instance-of ?machine lathe) 
(installed ?attachment ?machine) 
(instance-of ?attachment slot-cutter)))) 
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The above query can be paraphrased as, “Is it true throughout the interval 
associated with the manufacture of part 4 2 for job 3 2 1 that an operational lathe 
outfitted with a slot cutting attachment is available for use?” In the time map of 
Figure 1, the above query would succeed with ?machine bound to lathel4, 
?attachment bound to slot -cutter1 7, and the additional constraint that 
the manufacture of part42 follow the task corresponding to performing routine 
maintenance on la the 14. Given a particular token, it is not all that hard to 
determine if it spans a particular fetch interval [ 17,’ 451. The hard part of token 
retrieval is determining which tokens to consider. Section 5.1 describes a method 
of indexing tokens that avoids checking on tokens that could not possibly span a 
given fetch interval. 

This section has provided an overview of the functionality supported by the 
TMM. One capability that has not been discussed involves keeping track of the 
reasons why decisions were made in order to detect when new information serves 
to invalidate the justification for past decisions. Using the TMM, an application 
program can make explicit its justifications for making decisions, and the TMM will 
then keep track of those justifications, detecting when they are no longer satisfied, 
and notifying the application program so that it can take remedial action if called 
for. The TMM extends the notion of reason maintenance in static databases [20] to 
handle temporally-dependent data [ 171. In planning applications, the TMM'S tem- 
poral reason maintenance system simplifies noticing potential conflicts between 
plans for achieving different tasks and assists in recovering from poor plan choices. 

The indexing techniques described in the rest of this paper facilitate all of the 
basic inferential routines used in the TMM including those required for temporal 
reason maintenance. To keep the discussion to a reasonable length, we concentrate 
on just two inferential routines: resolving apparent contradictions and a simple 
form of retrieval basic to query processing. Other routines such as those employed 
in temporal reason maintenance and causal reasoning about partially ordered 
events (discussed in, respectively, [ 171 and [ 161) employ variations on the same 
basic methods. 

4. Organizing Large Temporal Databases 
The most expensive operation distinguishing temporal database manipulations 
from those performed by static database systems (e.g., Prolog) involves finding 
tokens that satisfy certain temporal constraints. This operation, which we call token 
retrieval, is the temporal analog of fetching assertions in the database that match a 
given pattern. Token retrieval requires the system to search through the database 
for time tokens whose type matches a given pattern and whose associated interval 
spans a specified reference interval. 

In this section, we consider two strategies for indexing and searching temporal 
information to expedite token retrieval. The first strategy involves the use of a data 
structure for storing tokens that allows for the efhcient retrieval of tokens whose 
relative offset from a fixed global frame of reference can be accurately determined. 
In most applications, this global frame of reference corresponds to some reference 
with respect to the standard time and date. Specifying the occurrence of events 
with respect to a standard time line is so common in practice, that it has proven 
cost effective to build and maintain this data structure. There are situations, 
however, where the global frame of reference is not sufficient for relating pairs of 
events. For instance, in reasoning about a chemical process, you may not know 
exactly when a catalyst was added to a reactor vessel, but you do know that within 
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8 to 10 minutes following the addition of the catalyst the reaction was complete. 
The second strategy involves establishing local frames of reference (e.g., the 
beginning of the event corresponding to adding the catalyst), and keeping track of 
the best bounds on the relative offset of selected points (e.g., the end of the event 
corresponding to the reaction) from those local frames of reference. During token 
retrieval, these local best bounds assist in determining the order of pairs of points 
whose relative offset to the global frame of reference cannot be, accurately 
determined. 

We begin by considering how to extend standard techniques for discriminating 
on data to handle information with a temporal component. A discrimination 
corresponds to a question (or deduction) concerning the form or content of the 
data. On the basis of the answer to such a question, the data is usually partitioned 
into disjoint sets so that if a program attempts to retrieve data whose content 
depends on the answer to this question, then the system will know which sets to 
look in and which sets to ignore. This process of discriminating on data, asking 
questions and then partitioning according to the answer, can be thought of as 
caching the results of deductions that are likely to be frequently needed. As an 
example, by discriminating employee records on the basis of the first letter of the 
employee’s last name, a great deal of time can be saved in looking up an individual 
employee’s record. To be useful, discrimination should substantially reduce search 
with a minimum overhead (e.g., if most of your employees have last names that 
begin with the same first letter, then the above scheme would be a waste of effort). 
Not all discriminations can be depended upon to remain valid as the data changes 
over time (e.g., an employee might change his or her last name). Where the data is 
subject to change, there is an additional expense involved in keeping track of valid 
deductions. 

The information content of a time token corresponds to the syntactic form of 
the token’s type and the temporal extent (or scope) of the associated interval of 
time. We assume that the type of a time token does not change, and, hence, 
deductions corresponding to syntactic discrimination on the type of time tokens 
are never invalidated. All time tokens are indexed through what is called a 
discrimination tree or dtree [8]. Each nonterminal node in a dtree corresponds to 
a discrimination: A question whose answer determines that subtree various data 
items are stored in. Each terminal node in a dtree corresponds to a set (or bucket) 
of data items determined by the discriminations on the path leading from the root 
of the dtree to the terminal node. Whenever a new token is created, or the TMM 
detects some change in the temporal extent of an existing token, the system makes 
sure that the token is stored in an appropriate bucket of the existing dtree. 

Discrimination in the TMM is based on demand. If the size of a bucket exceeds 
some fixed threshold, then the TMM will attempt to subdivide the bucket by adding 
an additional discrimination node and some number of terminal nodes as dictated 
by the chosen partitioning scheme. Generally speaking, if it is possible, partitioning 
a bucket of tokens is based upon a syntactic discrimination according to the types 
of the tokens stored in the bucket. There are situations in which further syntactic 
discrimination is undesirable (e.g., for certain queries it is useful to lump all tokens 
of the form (location argl arg2), where argl is fixed and arg2 is allowed to 
vary, in the same buckets). If further syntactic discrimination is either impossible 
or undesirable, the system attempts to discriminate on the basis of the temporal 
scope of tokens. 

Temporal discrimination in the TMM involves choosing a temporal partitioning 
scheme and subdividing the overly large bucket of tokens according to this scheme. 
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In the TMM, the application program is required to supply a set of hierarchically 
arranged temporal partitions of a timeline (i.e., the real numbers) such that all of 
the partitions can be related via a single global frame of reference (i.e., 0). Attempts 
to derive an adequate partitioning scheme solely on the basis of the current contents 
of a bucket have proven difficult [36]. The partitioning scheme chosen must 
essentially anticipate the sort of questions that will frequently be asked during 
token retrieval. In the factory domain, the partitions supplied by the FORBIN 
planner [ 191 correspond to weeks, days, eight-hour work shifts, and one-hour 
intervals. The system discriminates as demand dictates, starting with the coarsest 
partitions and refining only as required. 

The scope of time tokens corresponding to tasks and their effects are liable to 
change frequently in the course of planning. For this reason, it is useful to prevent 
discriminations on certain tokens below a specified level of precision. For example, 
in the factory domain you may be committed to performing a particularly expensive 
overhaul on a machine sometime in the coming year. You may also tentatively 
agree to performing the overhaul in June, but this is likely to be overridden as new 
information becomes available. The TMM makes it possible to say that, with regard 
to a given token, make no temporal discriminations finer than a given partition 
size. If further information induces the planner to make stronger commitments 
(e.g., the machine starts showing signs of imminent breakdown forcing you hasten 
the overhaul), then it is expected that the planner will allow finer discriminations. 
Each node in the dtree corresponding to a temporal discrimination consists of a 
list of partition/subdtree pairs and a list of tokens that cannot be further discrimi- 
nated upon. Since the partitions ar totally ordered it is easy to keep the list of 
partition/subdtree pairs sorted. Noticing that a token can be further discriminated 
upon or is inappropriately discriminated upon is done using a data dependency 
mechanism similar to that described in [ 171. 

The partitioning scheme described above corresponds to a set of successively 
finer partitions of time with respect to a single clock. This is enormously useful for 
precisely reasoning about many kinds of events (i.e., we often know the exact time 
of events with respect to a standard date and time), and serves as a coarse-grained 
filter for most others (i.e., even if we don’t known the exact minute that an event 
occurred, we can often pin down the day, week, or month). There are, however, 
events whose exact times of occurrence are not known with respect to the global 
frame of reference, but whose relative offsets can be determined with precision. 

The TMM provides a mechanism for specifying hierarchies of event relations that 
can serve to guide search in determining temporal orderings among events that are 
not precisely known with respect to the global frame of reference. The most 
common strategy for exploiting the TMM'S search machinery involves the use of the 
eventlsubevent hierarchy (also referred to as a tasklsubtask hierarchy when the 
events correspond to tasks). In many applications, it is useful to reason about 
events at multiple levels of detail. For instance, in specifying a complex machining 
task, an application program might start by creating a token, task 1, of type 
(manufacture part42 job321 ), and then roughly scheduling the token to 
occur in a time slot during which a critical resource appears to be in ample supply. 
Later, the application program will want to specify further details about how to 
carry out the machining task. In particular, the program might create a token, 
task2,oftype (setup machine45 operation132) correspondingtoatask 
performed as part of machining part 4 2 for j ob 3 2 1. The event corresponding to 
task2 may have its own subevents providing yet more detail and serving to 
establish a hierarchy of events. By specifying that tas k2 is a subevent of task 1 
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FIG. 2. Hierarchically organized events. 

(i.e., asserting ( subevent task2 task 1 )), the application program instructs 
the TMM to keep careful track of certain point-to-point distance estimates. If e, is 
specified as a subevent of e2, then the TMM can guarantee (within certain limitations) 
that there exists an edge in the time map connecting the beginning of e, and the 
beginning of e2 labeled with the best bounds on the distance in time separating the 
two points. 

The labels on these edges are maintained by the same algorithm used in [ 171 to 
ensure correct behavior with regard to the addition and removal of information. 
Figure 2 shows a simple hierarchy of depth 3, indicating the edges whose labels are 
maintained by the TMM. The token retrieval machinery takes advantage of these 
special edges to speed search in determining the relative ordering of tokens that are 
not distinguished in the dtree by temporal discriminations. These combined 
searching and caching techniques guarantee that under certain conditions (see 
Section 6) the machinery for determining the bounds on the distance between two 
points will always return the best bounds and will do so in time proportional to 
the depth of the hierarchy. For most problems, the depth of the hierarchy is seldom 
greater than 10 and the alternative exhaustive search would cost on the order of n3 
where n is the total number of tokens in the partition (often on the order of several 
hundred). Section 5.3 describes how the TMM performs the necessary caching and 
search required to implement the above scheme. 

Token retrieval routines use the dtree to provide a set of candidate tokens and 
then determine the relative ordering of the beginning of these tokens using the 
search methods described in the previous paragraph. Determining the duration of 
a fact token relative to a reference interval is also accomplished using search 
methods that exploit the hierarchical partitions and cached distance estimates. All 
the search routines return the information requisite for setting up appropriate data 
dependencies. Searches corresponding to different token retrieval requests can be 
coroutined to support efficient backtracking during backward chaining. 

5. Algorithmic Details 
The TMM employs a heuristic graph traversal routine to compute bounds on the 
distance separating pairs of points in the time map. These bounds are used to 
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determine relations between pairs of points and intervals. Estimates of the distance 
between pairs of points are computed by finding paths through the network of 
constraints. Recall that a path in the time map is a sequence of points and directed 
edges corresponding to constraints. Each edge c is labeled with an upper and 
lower bound, denoted low(c) and high(c) respectively. For each path p = 
PtoCIPtl * . . c,,pt,, we have bounds(p) = (low, high) where low = CY=, low(c;), and 
high = CY=, high(c,). In computing the best bounds, the heuristic graph traverser 
tries to find the paths with the greatest lower and least upper bounds. The heuristic 
graph traverser is guaranteed to search all paths of length less than a specified 
constant, mux-path-length, and is guaranteed to compute the best bounds if they 
can be determined from paths of length less than max-path-length. The details of 
the TMM'S graph traverser are described in [ 171, and will not be repeated here. 
Additional complications that arise as a result of ideas introduced in this paper are 
treated in Appendix A. For a discussion and analysis of existing constraint propa- 
gation techniques for applications in artificial intelligence, see [ 1 I]. 

In order to expedite token retrieval, the TMM precomputes and caches certain 
point-to-point distance estimates. Whenever a constraint is added or removed, the 
system has to determine how the change affects the current set of point-to-point 
distance estimates. The process of updating point-to-point distance estimates is 
performed by propagating constraints through the time map using the heuristic 
graph traverser. The TMM relies upon the assumption that the best bounds on the 
distance separating any two points in the time map can be computed from a path 
of length less than max-path-length. For the planning applications we have worked 
with, setting mux-path-length to 20 is sufficient to satisfy the assumption. Bound- 
ing the search depth of the heuristic path traverser is a concession to complexity; 
the general problem of computing the best bounds can be performed in CJ(n3) time 
where n is the number of tokens in the time map (on the order of 103). If we wish 
to add or delete a constraint between two points pt, and pt2, the TMM'S propagation 
routines run in O(m310g m), where m is the number of points reachable from pt, 
or ptZ by paths of length less than max-path-length. With regard to our experience 
in planning, m is generally on the order of 10’. 

It would be wasteful to cache distance estimates for all pairs of points. Selective 
caching, on the other hand, can provide real benefits. In Section 5.1, we see how 
caching estimates of the distance between each point and the global frame of 
reference forms the basis for an effective temporal discrimination scheme. In 
Section 5.3, we see how a strategy for caching distance estimates between points 
corresponding to related tokens can expedite search within portions of the time 
map that are not highly constrained with respect to the global frame of reference. 

5.1 INDEXING TIME TOKENS IN A TEMPORAL DISCRIMINATION TREE. In the 
following, let R denote the set of real numbers, and [a, b) the interval defined by 
(x 1 x E R, a 5 x < b). For our purposes, a partition 9 of an interval I (subset of 
R) is just a set ([x, y) 1 x, y E I] such that I, n Z2 = 0 for all distinct I, and Z2 in 
9, and for each x E I there exists an I’ in 9~ such that x E I’. A hierarchical 
partitioning scheme consists of a sequence of partitions 9oP, . . . 9, of R such 
that for each i < n if I E 9; then there is a set intervals in Pj+, that partitions I. In 
addition, we insist that PO is always the set consisting of just R. 9, is said to be 
more restrictive than Pj with respect to I just in case I E 9j and there is a subset 
9 of 9, such that 19 1 > 1 and 9 partitions I. A hierarchical partitioning scheme 
is strict if it is the case that for any i such that 0 5 i < n, if I E 9;, then Pi+, is 
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more restrictive than 9; with respect to I. All the partitioning schemes we will be 
looking at in this paper are strict. 

A time-line partition is just a partition of R such that 0 is identified with a 
particular frame of reference (e.g., midnight on April 30, 1777, the birthdate of 
Karl Friedrich Gauss) and each real number x corresponds to an offset in time 
from this global frame of reference as measured by a particular clock. The global 
frame of reference simplifies internal bookkeeping and provides a basis for using 
dates in specifying constraints. Figure 3 shows part of a strict hierarchical timeline 
partition in which the partitions consist of days, shifts (eight-hour periods), half- 
shifts (four-hour periods), and one-hour periods offset from a fixed zero point. In 
Figure 3, C is contained in A and B, and is partitioned by (D, E, F, G). 

Every point is identified with a tuple (low, high), called its relative offset, 
indicating the best (lower and upper) bounds over all paths through the network 
of constraints on the distance in time separating the point from the global frame 
of reference. Relative offsets are updated during constraint propagation. The 
constraint propagation routines ensure that, if additions or deletions to the set of 
constraints require that the relative offset of a point be updated (i.e., the bounds 
made either more or less restrictive), then the system can easily detect this and 
respond appropriately. Tokens are indexed in the discrimination tree using the 
relative offsets of their begin points. To simplify the discussion of temporal 
indexing, we assume that all tokens are syntactically indexed down to atoms 
according to type, and consider only those nodes in the discrimination tree 
corresponding to temporal indices. A temporal index is implemented as a data 
structure called a TBUCKET consisting of a set (possibly empty) of tokens that 
cannot be further discriminated upon, a partition interval [a, b), and a set of 
subindices (i.e., TBUCKETS) sorted by their associated partition intervals. For 
efficiency reasons, subindexing is usually postponed until the set of tokens stored 
at an index exceeds some fixed threshold. Figure 4 shows a simple hierarchical 
partitioning scheme and a table indicating the relative offsets for five tokens of the 
same type. Each token is shown in the hierarchical partition indicating the interval 
of the most restrictive partition that necessarily contains the beginning of the token. 
Figure 5 shows a portion of a discrimination tree. (Recall that 9% is the singleton 
set corresponding to the entire timeline.) Note that Ts could be further discrimi- 
nated, but is not in this case since the TBUCKET containing it would otherwise be 
empty. If the relative offset of the beginning of T2 was changed from (1.2, 2.7) to 
(1.2, l.S), then T2 would be further discriminated ending up in the same 
bucket with TX. If, on the other hand, the relative offset was changed to (1.2, 3.5) 
or ( 1.2, +m), then T2 would end up (respectively) in the same bucket with T, or 
in the top-most index corresponding to 9%. 

Now we can describe the algorithm used in the TMM for token retrieval. Recall 
that token retrieval is invoked by specifying a type P and a fetch interval pt, to pt2. 
The task is to identify all tokens of type P that might possibly persist throughout 
the fetch interval (i.e., all tokens of type P that could begin before pt, and persist 
at least as long as pt2). We assume that P contains no variables. The basic intuition 
underlying the algorithm is simple. First, using the heuristic graph traverser, 
consider all those tokens whose relative ordering with respect to pt, and pt2 cannot 
be determined using offsets from the global frame of reference. Second, using the 
temporal discrimination tree, search backward in time from pt, considering all 
tokens until you find one that has been clipped by a contradictory token. We refer 
to Figure 6 in explaining how the token retrieval algorithm searches the tokens 



THOMAS DEAN 

FIG. 3. Portion of a strict hierarchical time-line partition. 
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FIG. 4. Data for demonstrating temporal indexing. 

stored in the time map; think of the areas laid off by the partitioning scheme as 
sets of tokens to type P. The steps in the algorithm are: 

(1) Determine a partition LP and an interval I belonging to 9 such that the fetch 
interval is constrained to (necessarily) begin during I and cannot be shown to 
(necessarily) begin during any interval belonging to a partition more restrictive 
than 9. 

(2) Using the heuristic graph searching routines, consider each token whose 
associated partition interval either is contained in I or contains I. In Figure 6, 
the shaded areas correspond to the partition intervals searched during this step. 
For each token that either begins before or can be constrained to begin before 
the fetch interval, determine whether or not that token persists throughout the 
fetch interval. Relative offsets and the heuristic search routines are used to 
determine the relative ordering of the end-point of the found token and the 
end-point of the fetch interval. 
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FIG. 5. Portion of a temporal discrimination tree. 

FIG. 6. Search strategy using 
scheme. 

a hierarchical partitioning 

(3) We search through the remaining tokens as follows: 

(a) Set the variable early-termination to false. 
(b) Determine a partition interval, call it N, preceding I such that there is no 

other unexamined partition interval preceding I, which is either later than 
Jy or in a less restrictive partition. 

(c) For each token in Af, use the relative offset from the global frame of 
reference to determine if the token persists long enough. 

(d) Mark Af as examined. 
(e) If a token is found that fails to persist throughout the fetch interval because 

it has been clipped by a contradictory token, then set early-termination to 
true. 

(f) If early-termination is true and .N is an element of the most restrictive 
partition, then stop, otherwise return to Step 3(b). 
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The numbers 1 through 10 in Figure 6 indicate the order in which partition 
intervals are examined during Step 3 of the algorithm. The starred partition interval 
is meant to indicate where the variable curly-termination was set to true. 

If P contains variables, then the termination criteria is more complicated. If we 
assume that all tokens of type P are mixed together in the same buckets of the 
temporal discrimination tree, then, having found a token of type P’ unifying with 
P and clipped by a contradictory token of type TP’, you can set early- termination 
to true just in case 1P’ clips all tokens of type P. 

The above indexing scheme relies heavily upon their being a single global frame 
of reference and a rather simple and restrictive hierarchy of partitions. The fact 
that the partitions are strictly nested (i.e., for each i < n, if I E 9, then there is a 
set of intervals in gdi+, that partitions I) can result in certain inefftciencies at the 
boundaries of partition intervals. Points that are unordered with respect to the 
boundary of a coarse partition interval may be assigned a fairly unrestrictive 
partition interval even though their relative offset is known with considerable 
precision. For instance, an event constrained to begin at midnight January 1 give 
or take a minute will end up in the bucket corresponding to the decade partition, 
assuming a partition according to decades, years, months, weeks, days, and hours. 
Such events cause the system to do a bit more work, but since they are relatively 
rare, the overall effect is negligible. Tokens whose begin points are known with 
some precision (i.e., the difference between the lower and upper bound of the 
relative offset is small), but which, nevertheless, are unordered with respect to 
major time breaks might be handled by considering pairs of partition intervals 
adjacent to the time break and indexing the token in more than one interval, but 
no attempt has been made to implement such a strategy in the current system. 

5.2 RESOLVING APPARENTCONTRADICTIONS IN LARGETIME MAPS. Dean and 
McDermott [ 171 describe a technique for detecting and resolving apparent contra- 
dictions that involves setting up data dependencies (i.e., special data structures that 
help in incrementally updating databases [20]) for each pair of contradictory time 
tokens. This technique is designed to detect and resolve all and only those apparent 
contradictions produced by the current set of constraints (i.e., the TMM behaves 
correctly under the addition and deletion of constraints). The problem is that there 
are generally a great many pairs of contradictory tokens few of which will ever be 
implicated in an apparent contradiction. Since the cost of setting up the necessary 
data dependencies is significant, we would like to avoid doing so for as many pairs 
of tokens as is possible while still guaranteeing that the system detects and resolves 
all contradictions that actually occur. Not only would we like to avoid setting up 
the dependencies, if at all possible we would like to avoid even considering pairs 
of tokens that could not possibly cause apparent contradictions. The indexing 
scheme described in the previous section provides the means to efficiently handle 
the detection and resolution of apparent contradictions. 

Intuitively, whenever a token T is placed in a new bucket, data dependencies are 
set up to keep track of contradictory tokens that are unordered with respect to T, 
and the system looks backward in time for tokens that should be clipped by T and 
forward in time for tokens that should clip T. More precisely, whenever the relative 
offset for a token T of type P changes so that T is constrained to begin during a 
partition interval I different than it was constrained to begin during previously, the 
system performs the following update procedure: 

(1) Determine the set Kp of all tokens of type contradicting P whose begin points 
are constrained to a partition interval either containing or contained in Z. 
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FIG. 7. Apparent contradiction-handling strategy. 

Figure 7 depicts a partitioning scheme indicating I and showing the partition 
intervals either containing or contained in I as shaded. 

(2) For each token in KP, set up the data dependency structures required to detect 
and resolve apparent contradictions. 

(3) Using the search strategy described in the token fetching scheme, work back- 
ward from I searching for tokens of type lP, clipping where required. As soon 
as you find a token Tclipped of type 1P that has already been clipped by a token 
of type P occurring prior to T, you can stop after searching through all partition 
intervals contained in the partition interval containing T,-lipped. 

(4) Similarly, work forward in time searching for tokens of type 1P that should 
clip T. As soon as you find a token Tclips of type 1P you can stop after searching 
through all partition intervals contained in the partition interval containing 

Figure 7 shows the order in which partition intervals are visited. Starred partition 
intervals indicate where the search encountered tokens corresponding to Tclipped 
and Tclips. 

There are some additional complications that we have to deal with. If I corre- 
sponds to the whole time line (i.e., the single member of PO), then YTP corresponds 
to all tokens of type 1P. Since all tokens are initially unconstrained, unless steps 
are taken to avoid it, the system would have to set up data dependency structures 
for all pairs of contradictory tokens. To deal with this, the current TMM simply 
squelches indexing with respect to a given token until its relative offset meets some 
threshold level of precision. 

A second complication occurs when a token T that has clipped or has been 
clipped is reindexed to a less restrictive partition interval. In order for the database 
to reestablish itself correctly, some clipping constraints may have to be deleted and 
other ones added; T may no longer clip or be clipped by the tokens it was previously, 
and those tokens clipped by T may now require clipping by tokens occurring after 
T’s previous relative offset. With a bit of additional bookkeeping, however, it is 
fairly straightforward to handle reindexing. 

5.3 EXPLOITING THE STRUCTURE OF TIME MAPS TO SPEED SEARCH. Searches 
to determine the best-known estimate on the distance separating two points are 
performed frequently in the time map, and it is worth the effort to (a) avoid them 
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whenever possible and (b) optimize their operation if they are absolutely necessary. 
One way in which the TMM attempts to avoid unnecessary search is by ordering 
conjuncts in temporal queries to take advantage of special purpose routines for 
combining, suspending, and extending searches [ 171. A second way of avoiding 
search involves the use of the temporal discrimination tree during token retrieval 
to ignore tokens that could not possibly satisfy the requirements of the fetch 
interval. There is still a significant amount of search for which the cached offsets 
from the global frame of reference will not provide adequate estimates of the 
distance between pairs of points. Just because two points are unordered with respect 
to the global frame of reference, does not mean that there is no path through the 
constraint network that would not serve to order them. To speed up point-to-point 
searches, the TMM caches derived estimates of the distance between selected pairs 
of points. These pairs of points are selected on the basis of some strategy for 
organizing the database. The performance of the search routines depends upon the 
same sort of factors that influence the performance of the constraint-propagation 
routines (e.g., the number of points and constraints in the time map and degree of 
redundancy of the information encoded in the constraints). 

Each constraint introduced into the database, ( e 1 t ( distant e pt, pt2 ) low 
high ) , corresponds to a pair of directed edges in the time map pt, + pt2, labeled 
(low, high ), and pt2 + pt,, labeled (-high, -low). Each link is weighted with an 
integer indicating how useful that link is judged to be in estimating point-to-point 
distances. In searching for the best estimate of the distance separating two points, 
paths are extended from both points in best-first order, with best being determined 
by the sum of the weights on the links traversed in a given path. When a path 
starting from one point collides with a path starting from the other, the system 
checks the bounds of the composite path and updates its estimate if necessary. 
Usually the search routine is only allowed to explore paths of less than a given 
length, and is given a fixed amount of CPU time to carry out its search. If all links 
in the time map were given exactly the same weight, the search would be conducted 
in breadth-first manner. In applications involving sets of intricately interrelated 
events that cannot easily be organized (e.g., into distinct episodes), breadth-first 
search is probably the best strategy. In many applications, however, we can direct 
search with far greater precision. 

It is possible to speed up the computation of point-to-point distance estimates 
by keeping track of (caching) the best-known estimates of distances separating 
selected pairs of points in the time map. If you cache distance estimates for all 
pairs of points, then determination of the best estimate for a given pair is trivial. 
The entire computational burden rests upon the routines for updating the table 
used to store point-to-point distance estimates. An earlier version of the TMM 
actually did compute the best estimates for all pairs of points in a restricted portion 
of the time map called the kernel. Updating this kernel requires U(n310g n) integer 
additions and array references where n is the number of tokens in the kernel. In 
typical applications, however, the kernel grew to several hundred tokens, and 
updating (resulting from adding one or more constraints) required several minutes 
even with all the important procedures optimized and coded in a low-level language. 
It became apparent that much of the work expended in updating all of these point- 
to-point distances was wasted. The version of the TMM used in this paper performs 
selective caching; only certain pairs of points are chosen for maintaining an accurate 
estimate of their separation. This means that the burden of computing point-to- 
point distance estimates rests partially with the routines for updating the selected 
point-to-point distances, and partially with routines for determining a given esti- 
mate on demand. 
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The point-to-point distance estimates chosen to be cached are selected on the 
basis of a general strategy for exploiting the hierarchical structure of tokens in the 
time map. The heuristic search routines employed in determining distance esti- 
mates take advantage of the cached distance estimates in order to quickly converge 
upon a “good” estimate. The expectation is that for pairs of points for which one 
might reasonably need to know an accurate distance estimate, the system would 
perform as well as exhaustive search, and for pairs of points that are not normally 
related to one another, performance would degrade reasonably.’ It is possible to 
“tune” the system (adjust the way constraints are weighted and the search routines 
compute the best path to follow) for a given application in order to get significantly 
faster response time with no decrement in performance compared with a system 
without caching. In this subsection, we explore the issues involved in efficiently 
computing point-to-point distances. 

In the TMM, without caching and making no assumptions about the constraints 
in the time map, determining the best bounds on the distance separating two points 
will require on the order of n3 arithmetic operations where n is the number of 
points in the time map. If we assume that the length of a path used in establishing 
the best bounds never exceeds some constant (max-path-length), then we can 
limit the search by simply limiting the length of paths explored. The assumption is 
that temporal connectivity is largely determined locally, and rarely does it require 
consideration of all the points in the time map. Although this assumption is 
reasonable in most applications, we can still do a lot better. Tokens in a time map 
are constrained relative to one another in fairly regular ways: tasks are related to 
their subtasks and supertasks, persistences are constrained by some offset from the 
event that caused them, and prerequisite tasks are constrained to precede the tasks 
they serve. If we could rely upon certain point-to-point distances being known with 
precision (i.e., the values cached in some way), then the search paths for most other 
point-to-point distances would be comprised primarily of these cached values. 
Good examples of candidate pairs of points for caching point-to-point distances 
are the beginning and end of a token and, for a token corresponding to a task, the 
beginning of the token and the beginning of the token corresponding to its 
immediate super-task in the task/subtask hierarchy. We present a simple example 
illustrating some of the issues involved in caching and then proceed to demonstrate 
how selective caching pays off in certain circumstances. 

Consider the diagram in Figure 8. The vertical lines labeled pt, through pt6 are 
points. The bracketed numbers indicate low and high bounds on the estimated 
distance between the two points that they separate. T,, Tz, and T3 are tokens 
corresponding to the intervals pt, to pt6, pt2 to pt3, and pt4 to pt5, respectively. 

Given the information supplied in the diagram, one should be able to determine 
that pt3 is coincident with pt4. Determining that the two points are coincident using 
blind search will require as many as 63 operations depending upon the number of 
additional constraints in the network. If the system selectively caches certain point- 
to-point distance estimates, then it can make such determinations with significantly 
less effort. Suppose that the diagram in Figure 8 represents a small part of a task 
network in a time map. Suppose that the three tokens T,, T2, and T3 correspond 
to tasks in this network, and that T2 and T3 are subtasks of T,. Now, suppose 

’ I am relying upon the reader’s intuitions here, but a simple criterion of reasonableness might be that 
the scale of the separation between a pair of points determines the accuracy of an estimate of their 
separation. For events widely spaced in the time map, no precise estimation of their separation is 
necessary even though given enough time an exhaustive search could supply such a precise estimation. 
For example, if I worked hard enough, I could determine to within a day how long it’s been since my 
last visit to the dentist. For most purposes, however, “approximately three months” will work just tine. 
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FIG. 8. Tokens in a simple task/subtask hierarchy. 

further that the system keeps track of the best estimates on point-to-point distances 
separating the following pairs of points: 

-the beginning and end of each time token 
-the beginning of a task and the beginning of its supertask 

Figure 9 shows the network of Figure 8 indicating the cached point-to-point 
distance estimates. Notice that in this network, finding the best estimate between 
any two points will require at most a path of length 4. The search strategy can 
be stated as follows. If you are trying to extend a path from a point, choose an 
edge corresponding to a cached value that takes you up (toward supertasks) in the 
task/subtask hierarchy. If the point has no such edge, then take whatever edge 
corresponding to a cached value you can get. If in the course of extending a path 
you find a second path struggling up the task hierarchy, see if you can combine 
the two paths to get the required distance estimate. 

This strategy is not guaranteed to provide best estimates. If you need convincing, 
consider the network of Figure 8 with the constraint linking pt, and ptb labeled 
( 1, 6) instead of ( 1, 5). In this network, augmented by using the caching scheme 
outlined above, our simple search strategy would return the value (-2, 1) in 
response to a request for the best estimate of the distance between pt3 and pt4. The 
correct answer should be (0, 1). We can correct for this in most cases by combining 
a search strategy similar to the one outlined above with a bounded breadth-first 
search. 

There are three main issues that have to be addressed with respect to our caching 
scheme: 

(1) Improving Cached Values. Determining when a new constraint can assist in 
providing a better estimate on the distance separating a pair of points selected 
for caching. 

(2) Removing Invalid Estimates. Determining when an old cached value is no 
longer valid due to the removal of constraints employed in its original deriva- 
tion. 

(3) Expediting Heuristic Search. Using the cached values in a search strategy for 
speeding up the computation of point-to-point distance estimates. 

The first two of these issues are handled by the same techniques used for keeping 
track of relative offsets from the global frame of reference. The details are not all 
that interesting. During constraint propagation, if a path is found between two 
points that provides a better estimate of the distance separating those two points 
than the current best estimate, then the system updates a special constraint called 
a caching constraint to reflect this new estimate. The bounds of a caching constraint 
are expected to reflect the current best estimate of the distance separating the two 
points that the caching constraint links. By giving the caching constraint an 
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FIG. 9. A simple task network with cached values. 

appropriate justification in the data dependency network, the system ensures that 
it will notice when an old cached value is no longer valid. Maintaining the invariant 
that all caching constraints reflect the best bounds is handled using standard data 
dependency programming techniques and a special priority queue mechanism (see 
[ 171 for details). 

Search strategies for taking advantage of cached values are implemented by 
simply weighting the edges in the time map associated with caching constraints. If 
you want search to be biased in favor of moving up the task/subtask hierarchy, 
then you associate little weight (or cost) with the edge connecting the beginning of 
a subtask to the beginning of its immediate supertask, but some more significant 
cost with moving the other way. Bidirectional caching constraints (such as those 
used for’caching the duration of time tokens) have the same cost no matter which 
direction they are traversed. 

The cached values make many searches extremely fast. A time map correspond- 
ing to a pure hierarchy is one in which each task is constrained only with respect 
to its immediately superior supertask in the task/subtask hierarchy or with respect 
to one of its sibling tasks (both tasks share the same immediate supertask). Top- 
level tasks are constrained only with respect to one another. If time maps were 
pure hierarchies and all constraints were precise (i.e., Vc low(c) = high(c)), then all 
point-to-point distance estimates could be performed in time proportional to the 
depth of the hierarchy. 

In experiments involving half a dozen top-level tasks expanded into over a 
hundred subtasks through several levels of refinement, the results are fairly clear. 
The additional cost involved in handling caching during constraint propagation 
increased the time to actually construct such time maps by approximately ten 
percent over the time required without caching. The time required to determine 
point-to-point distances accurately in the time map with caching decreased signif- 
icantly over the scheme using breadth-first search with a depth cut-off carefully 
selected to take into account the sort of connectivity expected in the time map. 
The scheme with caching broke even with the breadth-first scheme after determin- 
ing approximately 20 point-to-point distance estimates. In robot problem-solving 
tasks involving a time map containing several hundred tokens, the system typically 
computes hundreds of point-to-point distance estimates. In such situations, it is 
expected caching will result in significantly faster processing times, though no 
detailed comparisons have been made as yet. 

One obstacle to getting the caching scheme described above to perform well is 
the fact that, in most applications, time maps are simply not pure hierarchies and 
most constraints are not precise. For example, networks of tokens corresponding 
to tasks typically become extremely tangled in the process of planning. This is due 
to the interleaving of tasks and the action of persistence clipping to resolve apparent 
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contradictions. The average time to determine best possible distance estimates 
using the caching scheme is still much better than undirected (breadth first) search. 
We are currently experimenting with various techniques for weighting edges in the 
time map that depend upon specific properties of particular domains and problem- 
solving applications. Preliminary results appear promising, but we still need a lot 
more experience before we are able to tell to what extent savings made in speeding 
up searches are offset by the increased effort expended during the propagation of 
constraints. The evidence in favor of the caching techniques described in this 
section is not nearly as conclusive as the evidence in support of the caching and 
discrimination techniques described in Section 5.1. 

6. Performance 

The primary claim of this paper is that, in many common situations, temporal 
databases can be organized so that the cost of token retrieval is comparable with 
assertion retrieval in static databases. Restricting attention to the problem of 
retrieving a single token of type P (no variables) spanning the interval Z: 

(1) In situations in which the set of tokens can be partitioned into temporally 
distinct periods (e.g., months, years, factory work shifts), the cost of token 
retrieval is proportional to the sum of: 

(a) the number of periods separating the period containing the beginning of Z 
and the first period, p, preceding the beginning of Z containing a token of 
type P, and 

(b) the cost of determining if any token of type P in p spans I. 

(2) In situations in which the database can be organized according to an event/ 
subevent hierarchy and the constraints between events and subevents are exact 
(i.e., the upper bound is identical with the lower bound), then the cost of 
determining if any token of type P in a given period spans Z is proportional to 
the product of the number of tokens of type P within that period and the depth 
of the event/subevent hierarchy. 

As with any scheme for speeding up retrieval, there is a cost associated with 
organizing the data to support these fast retrieval routines. Fortunately, much of 
the work required for organizing time tokens is already being handled by other 
routines in the time map, specifically, the routines used for supporting temporal 
reason maintenance. 

It is difficult to compare the system described in these pages with other systems 
for the simple reason that most existing systems are not as powerful as the TMM 
and are not designed to handle databases of the size being considered here. Earlier 
versions of the TMM employed techniques for searching the time map that made 
them at least the equal in token retrieval of systems such as those discussed in [3] 
and [45]. If an earlier version of the TMM was required to process a query that 
involved fetching tokens of a type of which there were hundreds, then it would 
potentially have to examine all of them with a significant reduction in performance. 
Vere [45] and Bell and Tate [3] would be forced into expending equivalent energies 
in similar circumstances. In the TMM with temporal indexing, such a query would 
require examining at most a few tokens. Caching offsets from a global reference 
makes determining point-to-point distances at query time trivial in many cases, 
and makes resolving apparent contradictions efficient where otherwise it would be 
prohibitively expensive. 



Maintaining Large Temporal Databases Using Temporal Hierarchies 713 

Since there is a trade-off being made, we have to ask the question, “How much 
does it cost to perform the extra caching and indexing operations necessary to 
support this ‘improved’ performance ?” The major additional cost is incurred at 
assertion and retraction time while propagating constraints and updating selected 
point-to-point distances. To handle temporal discrimination, there is at least one 
point-to-point distance to be updated for each point corresponding to the begin or 
end of a token. Of course, not every point-to-point distance is updated or even 
examined in the course of propagating a given constraint. Quite the contrary, in 
propagating a single constraint, generally only a very small portion of the time 
map is investigated. Given reasonable assumptions concerning the density of events 
over intervals of fixed duration, it is fairly easy to establish bounds on the length 
of paths explored during the propagation of constraints. For all intents and 
purposes, constraint propagation takes constant time, where the constant is mea- 
sured in terms of a few CPU seconds. In the factory domain of the FORBIN planner, 
setting max-path-length to 20 is more than sufftcient for handling most planning 
situations. In some cases, constraint propagation in the current implementation is 
faster than in previous implementations without temporal discrimination. This 
speed-up is due to the fact that, in the older version of the TMM, constraints made 
with respect to the global frame of reference tended to connect pairs of points 
distant in time with short paths, which increased (by quite a bit) the number of 
points reachable from a given point by paths of less than max-path-length. In the 
current system, since all offsets from the global frame of reference are cached, it is 
not necessary to consider paths that include the global reference as other than a 
begin or end. It is not really surprising that the global timeline eases the cost of 
search incurred in propagating constraints; clocks and calendars provide us with 
the structure required to organize large amounts of information and the TMM is 
simply making use of that structure to guide search. 

Because the TMM attempts to optimize for many different sorts of inference (e.g., 
token retrieval, inferring the consequences of causal rules, temporal reason main- 
tenance), it is difficult to design a test that accurately reflects the TMM'S performance. 
Nevertheless, a concrete example that reflects the expected applications of the TMM 

is in order. Suppose that we are interested in keeping track of the operational status 
(i.e., in-service or out-of-service) of a single machine, lathe 14, given 
information about observed and anticipated malfunctions and service calls 
(i.e., events of type (malfunction latheId,) and (routine-service 
lathe 14 ) ). Malfunctions and service calls have consequences corresponding 
to tokens of contradictory types (i.e., respectively, (operational-status 
lathe14 out-of-service)and(operational-status lathe14 in- 
service ) ). Now, suppose that the information concerning the malfunctions and 
service calls comes in a piece at a time, and that we expect the database to be 
updated after each piece of information to accurately reflect those intervals during 
which lathe 14 is in or out of service. At one moment, we might be told that 
lathe 14 broke down yesterday at noon, and, later, we might be told that it was 
serviced at 3:00 in the afternoon. For the test, we assert tokens corresponding to 
malfunctions and service calls and constrain these tokens to occur within a fixed 
interval of time (of duration lo4 minutes). The events have fixed duration with 
their consequences true immediately following, and the time of occurrence is 
specified as a random offset from the global frame of reference with a fixed amount 
of uncertainty (+ or - 10 minutes). Since the events are randomly placed, a given 
persistence may clip and be clipped by a number of tokens of contradictory type. 
In the ideal situation, each persistence clips and is clipped by at most one token of 
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a contradictory type; such situations are trivial for the TMM to handle and do not 
reflect the sort of situations encountered in real applications. Given the way that 
data is generally made available, and the way that plans are changed in the course 
of routine rescheduling and reevaluation, this ideal situation hardly ever occurs. 
Table I shows the data gathered from several runs of the TMM using the test 
described above. We are interested in the time required to build a time map 
containing y2 tokens half of which are of type (operational- 
status lathe14 in-service) and half of which are of type (opera- 
tional-status lathe14 out-of-service). Table I shows the total 
elapsed time spent and also the portion of that time spent in paging, as this becomes 
a significant factor as the number of tokens increases. The tests were performed on 
a Texas Instruments Explorer II Lisp machine configured with 8 megabytes of 
memory and garbage collection turned off. Paging and garbage collection affect 
one another, and we chose to eliminate the latter in order to focus on the former. 
The column labeled “Assertion Time” refers to the average time required to add 
one more token (of either type) minus the time spent in paging, given that the time 
map already contains n tokens. Once the time map is up to about 100 tokens, the 
average number of tokens clipped by a given token is about 10. We discount paging 
in order to show that the time required to add a single token is close to a constant 
function of the number of tokens in the database. 

There are a couple issues concerning efficiency and reliability that are handled 
in traditional database systems, but that have been ignored in the current imple- 
mentation of the TMM. In most database systems, relations are stored together in 
tables on disk. The fact that they are on disk makes them relatively impervious to 
system failures. The fact that the relations are stored in tables that (once read from 
disk) reside in a compact area of memory makes certain queries and data modili- 
cations quite efficient. In the current TMM, the tokens of a particular type and the 
discrimination tree through which they are accessed are spread all over the LISP 
system heap. It is possible to arrange things so that processing a single query 
requires the system to write into memory nearly every page of the LISP system’s 
virtual memory. Fixing the problem is not as simple as forcing the system to be a 
little more careful in allocating storage. Part of the problem is due to the fact that 
the underlying data dependency network, upon which the caching and discrimi- 
nation routines are so dependent, is also spread all over memory. Paging costs 
become significant for an g-megabyte Explorer II handling time maps containing 
over a thousand tokens. If the need arises, we expect some combination of heuristic 
methods and traditional database technology will likely provide us with the means 
to handle still larger time maps. 

There is an implementation of the TMM written in Common Lisp available to 
anyone interested in temporal reasoning. We encourage researchers and engineers 
to experiment with our system. Temporal reasoning of the sort that the TMM 
supports is complicated. It is quite possible that the trade-offs that we made for 
our applications are unsuitable for other applications, but we need feedback in 
order to explore the issues more deeply. 

7. Conclusion 

In conclusion, the TMM provides a wide range of functionality (backward and 
forward temporal inference, dependency-directed default reasoning, temporal rea- 
son maintenance) in a simple-to-use system (predicate-calculus syntax and Prolog 
compatibility) in which routine temporal reasoning is optimized using caching and 
search techniques to speed inference. Straightforward partitioning schemes supplied 
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TABLE I. TMM STATISTICS 
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Tokens Total Time Paging Time Assertion Time 

20 4.0 0.3 0.35 
40 8.3 0.3 0.35 
60 12.6 0.4 0.32 
80 20.6 0.6 0.39 

100 28.4 0.6 0.50 
120 36.5 0.8 0.41 
140 47.7 0.9 0.45 
160 65.3 7.3 0.70 
180 111.9 37.0 0.70 
200 239.2 147.6 0.45 

by an application program are used to fragment a temporal database into non- 
overlapping periods. Under situations that arise frequently in everyday reasoning, 
token retrieval, the basic operation common to most forms of temporal inference, 
can be performed in time proportional to the sum of (a) the number of periods 
separating the period containing the beginning of the fetch interval and the first 
previous period that contains a token of the desired type, and (b) the number 
of tokens of that type beginning in that previous period. The result is that 
the performance of the temporal inference engine corresponds roughly to our 
expectations given the distribution of tokens of the underlying fact types being 
manipulated. 

The organizational schemes described in this paper are integral with the basic 
functionality of the TMM; they instigate reorganization correctly in response to the 
addition of new information or the deletion of old, and they serve to expedite the 
basic operations used in temporal reason maintenance. The techniques involve 
methods for partitioning the set of time tokens temporally and for caching estimates 
of the distance separating selected points and noticing when certain distance 
estimates become licensed by the current set of constraints or cease to be so. If we 
accept that the basic operation of temporal reason maintenance is essential, then 
the additional overhead in time and space necessary to implement these organi- 
zational techniques is just a constant factor times the number of tokens stored in 
the database. 

Appendix A. Constraint Propagation 

Relative offsets make the current constraint propagation algorithm slightly more 
complicated than the one described in [ 171. This short appendix is provided to 
show how the algorithm presented in [ 171 can be extended to handle relative 
offsets. Knowledge of the notation and techniques described in [ 171 is assumed. 
The actual mechanics of the search are as before, the only thing that has changed 
is that all points now have a caching constraint used to update the point’s relative 
offset from the global frame of reference. The following describes how the system 
updates TCONDITS* relating various pairs of points in the time map. Consider the 
simple constraint network shown in Figure 10. If you find a path p3-4 from pt3 to 

' TCONDITS are annotations attached to points that tell the constraint propagation machinery to check 
if newly found paths between pairs of points can be used to derive facts of interest to the system. For 
instance, if the constraint propagation machinery found a path p from ~2, to pf2 with bounds(p) = 
(2, 3) and ? TCONDIT f~,-.~ concerned with the fact of whether or not pt, precedes pl,, then it would 
note that the fact was justified by p and call a function associated with tc,-.l to perform whatever 
response was required by the system. TCONDITs play an important role in temporal reason maintenance. 
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FIG. 10. Simple constraint network. 

pt4 and a TCONDIT fc1+4 relating pt, and pt4, then 

(i) Check for a path p1+2 from pt, to pt2. If such a path exists, construct the 
composite path formed from P]-+~, C, and p3-4 and use the computed bounds 
on the path to update tc1+4. 

(ii) Check to see if you can get a better relative offset for pt4. If so, update pt4 and 
then use the new relative offset for pt4 and the relative offset for pt, to update 
tc, -4. 

Note that the best offset from pt2, not employing C, is already known and hence 
if the relative offset of pt4 is to be updated, it will be computed from p3--r4, C, and 
the relative offset for ptZ. In the current TMM, constraints can refer to a single point 
and a date providing an indirect reference to the global frame of reference of the 
hierarchical partitioning scheme. Updating such constraints is handled by a simple 
variant of the above. 
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