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2

Dynamics of Physical
Systems

For our purposes, a process model is a device that, given certain information
about the state of a physical system, enables us to determine certain other
information about that system. The device usually includes some mathe-
matical characterization of the system’s properties and how they relate to
one another. It also includes some sort of a calculus whereby an engineer
or a machine can compute the predictions of the model given some initial
conditions.

Process models are used by engineers to design control systems. In some
cases, the process model is used only to evaluate a given controller. In other
cases, the process model becomes an integral part of the control system.
In this chapter, we consider a few of the large number of process modeling
techniques available to the engineer and develop some notation for describing
process models that will be used in subsequent chapters.

2.1 Process Models

To construct a model for a process, we have to identify those properties
of the world that determine the behavior of the process. First, there are
those properties that prompted our interest in the process to begin with. In
the case of the tank-filling process described in Chapter 1, we are primarily
interested in the height of the fluid in the tank. Second, there are those
properties that affect the properties that we are interested in. In order to
account for the level of fluid in the tank, we have to know the dimensions
of the tank, the flow characteristics of the input and output pipes, and the
position of the valves. It is easy to underestimate the difficulty of this part
of the modeling task.

Textbooks typically just give the student the set of physical properties
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30 Chapter 2. Dynamics of Physical Systems

that he or she needs to be concerned with. There is an implicit assumption
that these are all and only the properties that need to be considered. How do
we know that the temperature of the fluid does not affect the height of the
fluid in the tank? Well, of course, we don’t know this. The temperature may
affect the fluid height by changing the rate at which the fluid evaporates;
however, given that the temperature does not vary substantially, the effect
of temperature on fluid height is negligible.

Almost any property of the world can have an impact on the level of
the fluid in the tank; agricultural trends affect global weather patterns that
affect local temperature and humidity that ultimately affect fluid height.
The predictions made by a particular model are likely to be accurate only if
certain assumptions hold. Whether or not to account for a given property
of the world in a particular model depends on a number of factors: the
magnitude of the effect (i.e., does it result in substantial changes in the
properties of interest), the probability of the effect (i.e., do the changes occur
with high frequency), and the complexity of the model (i.e., what additional
computations are required to account for the property in the model).

This last is particularly important, and, yet, it is often overlooked in
evaluating a model. There is often some utility in getting an answer to a
question quickly. If this were not the case, you would always want the model
that makes the most accurate predictions possible. Given that time has to
be taken into account, there is a tradeoff to be made regarding the accuracy
of the model and the time that it takes to compute its predictions.

The following sections describe some basic methods for modeling physical
processes in control theory. Section 2.2 considers the use of the differential
and integral calculi for modeling processes and analyzing the behavior of
control systems, focusing on ideas from classical control theory. Section 2.3
considers the general problem of modeling dynamical systems and introduces
ideas from linear system theory, drawing upon results from modern control
theory.

2.2 Classical Design and Analysis

Much of control theory depends on the use of mathematical models based
on the techniques of the integral and differential calculi. These techniques
enable the control theorist to model a wide variety of mechanical, electrical,
fluid, and thermodynamic systems. By modeling both the controlling process
and the process being controlled as a set of differential equations, the control
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theorist is able to analyze behavior of the combined system and predict the
performance characteristics of the controlling process (e.g., how fast the
system responds to a disturbance or change in input). In this section, we
summarize some of the issues involved in modeling physical systems using
the techniques of control theory.

Anyone who has taken a course in differential equations or advanced
calculus has seen numerous examples of mathematical models of physical
systems. Most introductory texts on the differential calculus include ideal-
ized models of population growth, the decay of radioactive materials, and
the fluctuation in prices as a function of supply and demand. If you took
a physics course, you were early on exposed to Newton’s laws of motion.
Newton’s second law of motion states that the product of a body’s mass and
the acceleration of its center of mass is proportional to the force acting on
the body. Let « be a function that depends on ¢ and denotes the position of
the center of mass of the object as measured from some fixed point along a
vertical line. Let M be the mass of the object, and F be the force acting on
the object in the direction of travel. The following differential equation

d’x

is called the equation of motion of the body.! If we know something about the
forces acting on the body, then we can use this equation to make predictions
about the motion of the body.

If = is the directed distance upward of the object as measured from the
surface of the earth, and vg is the object’s initial velocity, then, assuming
that the only force acting on the object is gravity, Equation 2.1 becomes

A’z

dt?
where ¢ is the acceleration due to gravity near the surface of the earth. We
can solve this simple second-order differential equation by integrating twice
and using the initial conditions to determine the constants of integration.
The following formula

= —My (2.2)

1
z(t) = —§gt2 + vot (2.3)
describes the position of the object at ¢ > 0 given the initial conditions
dz(0)
LE(O) = 0, dt = Vo,

ITo simplify the discussion, we implicitly adopt the standard system of units for mea-
suring mass, distance, and time so that the constant of proportionality is one.
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and assuming that the object is propelled upward at time ¢ = 0. From
Equation 2.3, we can predict the maximum height (vZ/2g) reached by the
object and the time it takes the object to fall back to the surface of the
earth (2v9/g). Equation 2.3, together with tools of the differential calculus,
provides us with a simple model of an object falling through a gravitational
field.

We know that Equation 2.3 is only approximate in that it neglects several
important influences on objects falling through a relatively dense atmosphere
under the influence of gravity. For instance, Equation 2.3 treats gravity as
a constant acceleration whereas we know that Newton’s inverse square law
provides a more accurate estimate of the force due to gravity acting on an
object. If the earth is assumed to be a sphere of radius R, and r denotes the
distance from the center of mass of the object to the center of the sphere,
then

d’x M gR?

a2 2
can provide a more accurate estimate of the position of the object than that
provided by Equation 2.1, especially in the case of an object that travels a
significant fraction of the distance R.

We can also account for the damping force exerted on the object by the
atmosphere as the object moves along its trajectory. If the damping force is
proportional to the object’s velocity, and C' is the damping constant, then

2 2

pie o Mol dz (2.4)

dt? r2 dt
will, at least potentially, provide a better estimate than equations that ne-
glect friction. Potentially, because, having identified that some property of
the environment influences a particular process, you still have to determine
the form and the magnitude of that influence. There are situations in which
the damping force is more nearly proportional to the square or the cube of
the velocity. In addition, the damping “constant” may not be constant at
all, dependent as it is on the shape of the object and the density of the air
through which the object is moving. If you are not careful, you can actually
reduce the predictive accuracy of a model by trying to account for additional
properties.

As another example of physical modeling, Figure 2.1 shows a block of
mass M suspended from the ceiling by a spring and connected by a rigid
rod at its base to a damping device called a dashpot. The spring counteracts
the force of gravity and the dashpot tends to inhibit vertical motion in
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Figure 2.1: A spring-mass-dashpot system

either direction. Suppose that the force exerted by the spring is equal to the
product of the distance that the spring is stretched or compressed and K,
the spring constant. Let d be the distance past the spring’s resting length
such that the force of the spring completely offsets the force of gravity, and
the block will remain at rest (i.e., Mg = Kd). The equation of motion for
the block, neglecting the dashpot, is
d’x
MW:MQ—K(IB—Fd):KJJ. (2.5)
To account for the dashpot, we assume that the damping action of the
dashpot is proportional to the velocity of the block and introduce another
term into Equation 2.5. The result is
Y e LG (2.6)
J— —_— xr = .
dt? dt
where C' is the damping constant.

There are three different solutions to Equation 2.6 depending on whether
the quantity C? is less than, greater than, or equal to the quantity 4M K.
These solutions correspond to the underdamped, overdamped, or critically
damped cases. If C? < 4K M, then the specific solution to Equation 2.6 that
satisfies the initial conditions,

dz(0)

z(0) = o, pr 0,
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Figure 2.2: Response of the spring-mass-dashpot system in the (i) underdamped
and (ii) overdamped cases.

is given by
z(t) = zoe® (cos wt+ = sinwt> ,
w
where o )
=— = —(AMK — C*)Y/2,
“=ar YT )

In this (the underdamped) case, the mass oscillates about the equilibrium
point, its amplitude decreasing exponentially with time as shown in Fig-
ure 2.2.i. If C% > 4K M, then the specific solution to Equation 2.6 satisfying
the same initial conditions is given by

z(t) = ﬁai)a (ﬁe—at _ ae—ﬁt) ,
where
a= —ﬁ [-C+(C? —aMK)'?], B = —ﬁ [-C = (C? —aM k)"

Figure 2.2.ii illustrates the behavior of the resulting overdamped system.
The important thing to note here is that, assuming M is fixed, we can vary
K and C to achieve different behaviors.

Control theorists are often interested in how a physical system responds
to a particular input signal. The step input, corresponding to a fixed-size in-
stantaneous change in the reference or a disturbance, provides a convenient
basis for comparing performance. In the case of the spring-mass-dashpot,
a step input might correspond to the block being displaced from its equi-
librium point or given some initial velocity. Equation 2.6 might serve as
a simple model for an automobile shock absorber. The input signal would
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Figure 2.3: An external force acting on a spring-mass system

correspond to a force acting on the mass (e.g., the automobile hitting a
bump in the road). The engineer designing such a system is interested in
the characteristics of the output signal corresponding to the changes in the
position of the mass. In particular, the engineer wants to know whether or
not the control system he or she designs is a stable system. A system is said
to be stable if its response to a bounded input is itself bounded. In the case
of our spring-mass-dashpot system, if we displace the mass a small amount
from its equilibrium point, it will eventually return to that point. Similarly,
if we give the mass some small initial velocity, it will also eventually return
to its equilibrium point.

Unstable systems can manifest undesirable and sometimes violent be-
havior (e.g., thermal runaway in a nuclear power plant). Suppose that we
eliminate the dashpot from our spring-mass-dashpot system and introduce
an additional, external force acting on the mass as pictured in Figure 2.3.
Suppose that the external force is periodic of the form,

r(t) = Rsinwt,
where R is a positive constant. The equation of motion is

d2
ME;B + Kz = Rsinwt.
If w = (K/M)'/2, then the amplitude of the oscillations will increase due to
the phenomenon of resonance [12]. The model predicts that the oscillations
will increase indefinitely, but, of course, there will come a point past which
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Figure 2.4: Transient response to a step input indicating Ty (delay time) the time
required for the controlled variable to reach 50% of the target, Ts (settling time) the
time required for the controlled variable to achieve and maintain a value +5% of the
target, T, (peak time) the time at which the controlled variable achieves the largest
value above the target, and M (peak overshoot) the largest value of the controlled
variable above the target.

the mathematical model is no longer appropriate and other physical proper-
ties will come into play (e.g., the spring breaks or the device generating r(t)
reaches saturation).

The behavior of a system in transition from one stable state to another
as a result of a step input is referred to as the system’s transient response to
a step input. Transient response characteristics include the system’s settling
time (i.e., the amount of time it takes the system to achieve a state in which
the value of the controlled variable is within some small percentage of the
target value), the system’s steady-state error (i.e., the percent error of the
system in the limit), and the system’s overshoot (i.e., the maximum past the
target that the system achieves in responding to step input). Figure 2.4 illus-
trates some of the important characteristics of a system’s transient response
to step input [7, 15].

Peak overshoot is a particularly important transient response character-
istic in a number of applications. In some cases, the sort of underdamped
behavior shown in Figure 2.2.i is unacceptable. In attempting to restore
equilibrium, the system overshoots the target or equilibrium point. In the
case of a robot arm positioning a part, overshoot might correspond to the
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part striking a surface. In the case of the liquid-level system of Chapter 1,
overshoot might mean that the level of fluid in the tank goes above the top
of the tank, spilling fluid on the floor.

A good deal of control theory is concerned with analyzing the perfor-
mance of control systems with regard to criteria such as stability, settling
time, steady-state error, and overshoot. One way to analyze a control system
is to build a mathematical model as a system of differential equations, solve
the equations, and then examine the behavior of the system in the time
domain. This is essentially what was done in our analysis of the spring-
mass-dashpot system above. This method of analysis can be complicated
by the fact that the equations for any reasonably complex control system
are likely to be difficult to solve, and, in order to find parameters for the
control system that provide good performance, it may be necessary to look
at a large number of special cases. While there exist effective methods for
analyzing control systems in the time domain, one of the great successes of
what is called classical control theory has been the development of mathe-
matical techniques that enable an engineer to recast a control problem as a
problem in the frequency domain. Most of these techniques rely on the use
of the Laplace transform.

The Laplace transform enables the control theorist to avoid working with
differential equations by replacing these generally difficult-to-solve equations
with simpler algebraic equations. Since the Laplace transform exists for
many linear differential equations encountered in control systems design,
methods based upon the use of the Laplace transform are widely employed
in the analysis of control systems. The Laplace transform of a function of
time, f(t), is defined as

F) = | " Ft)estdt = L(f(2)). (2.7)

The Laplace transform of the derivative of a function can be obtained
from Equation 2.7 using integration by parts

£ (L) = e - 50,
However, it is usually not necessary to derive the Laplace transform of a
function every time that the engineer is faced with a new problem. Ta-
bles of functions and their Laplace transforms have been compiled for most
functions commonly encountered in engineering applications.
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The Laplace transform of a sum of two functions is just the sum of the
Laplace transform of the first function with that of the second. Using this
fact and the tables of Laplace transforms, the control engineer can rather
easily obtain the Laplace transform for many differential equations used in
modeling physical systems. The advantage is that the resulting algebraic
equation usually can be easily solved for the variables of interest. The trans-
fer function of a control system is defined to be the ratio of the Laplace
transform of the input variable to the Laplace transform of the output vari-
able. By analyzing a control system in terms of the relation of the Laplace
transform of the inputs to the Laplace transform of the outputs, it is possible
to gain a good understanding of the system’s performance properties.?

To make the analysis of control systems even easier, there are tables that
provide the transfer functions for many of the differential equation relations
encounted in control systems. An engineer can design a control system using
various control components connected to one another by the way in which
they pass signals. From these separate components, the engineer can derive
the transfer function for the complete control system algebraically. The fa-
miliar block diagrams displayed in the control theory literature provide a
convenient graphical representation of the underlying process model. The
boxes in such diagrams are usually labeled with the transfer function for the
corresponding system component and the arcs indicate the signals passing
between components. Figure 2.5.1 depicts the block diagram for a control
system in which the output of the plant is fed back through some sort of
a filter or amplifier and combined with the input to provide an error signal
used by a compensator in controlling the plant. The control system pictured
in Figure 2.5.i illustrates a simple instance of error-driven feedback, in which
the system reference signal is continuously compared with the system’s out-
put in order to adjust various system parameters.’

Block diagrams can be simplified by algebraically combining the transfer
functions of connected components according to a few simple rules [7]. For
instance, the two blocks labeled G1(s) and Ga(s) in Figure 2.5.1 can be

?Frequency-domain methods involving transfer functions are so named because they
allow the engineer to analyze the behavior of a system in terms of its response to inputs of
varying frequencies and amplitudes. By evaluating the transfer function, T'(s), at s = jw
for any w € R, we obtain a complex number, T(jw) = a(w) + j3(w), whose magnitude,

a?(w) 4+ B%(w), represents the response of the system in steady state to a sinusoidal
input of frequency, w, in terms of the ratio of the output to the input amplitude.

3In some texts, error-driven feedback is synonymous with unity feedback, corresponding
to the case in which H(s), in Figure 2.5.i, is the identity function.
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Figure 2.5: Block diagram of a control system utilizing feedback

combined to form,

C(s)
E(s)
noting that C'(s) = E(s)G1(s)G2(s). The simplified block diagram is shown
in Figure 2.5.ii. The simplest block diagram is just a single box labeled with
the transfer function for the complete control system. For instance, we can
reduce the block diagram for the system shown in Figure 2.5.ii to a single
component with input R(s), output C'(s), and transfer function,

cs) G
R(s) 1+ G(s)H(s)’

noting that E(s) = R(s) — H(s)C(s) and C(s) = E(s)G(s). This simplest
block diagram is shown in Figure 2.5.iii. The function, 7T'(s), known as the
closed-loop transfer function, is the basis of many existing control systems.
Much of the control theory found in textbooks deals with what are called
linear systems. A system is said to be linear in terms of inputs and outputs if

G(s) =

= G1(s)G2(s),

T(s) =
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and only if it satisfies the properties of superposition and homogeneity [7]. A
system satisfies the property of homogeneity if for any constant K and input
x for which the output of the system is y, if the system is input Kz, the
system outputs Ky. A system satisfies the superposition property if for any
two inputs x1 and o with corresponding outputs ¢; and y», if the system
is input z1 + x2, the system outputs y1 + ys. At first blush, the restriction
to linear systems would seem to relegate much of control theory to a purely
academic pursuit given that most natural systems are nonlinear at least
in some range of their variables. Fortunately, we can develop reasonably
accurate linear approximations by identifying almost-linear regions in the
operating range of nonlinear systems. If the natural operating conditions of
a system vary over a wide range, it may be necessary to develop several linear
approximations and switch between them when necessary. This method of
switching between controllers is the basis for a technique used in adaptive
control called gain scheduling.

Other approximations are often made to simplify analysis and implemen-
tation. For instance, it is often possible to eliminate some of the higher-order
terms in a model involving differential equations. By eliminating the higher-
order terms, the subsequent analysis may ignore effects due to high-frequency
inputs. Hopefully, these effects will not pose a problem in practice, but no
model should be relied upon without careful experimentation comparing the
performance of the modeled system with that of the real one.

While we have emphasized modeling continuous processes, control theory
provides tools for modeling discrete processes as well. The discrete analog of
a differential equation is called a difference equation and is used extensively
not only to model discrete systems, but also to approximate continuous sys-
tems using digital hardware. Analog computers still play an important role
in engineering, but, with the introduction of inexpensive digital comput-
ing hardware, a great deal of attention has been given to discrete modeling
techniques.

Digital computers are limited in that they can only sample system vari-
ables at discrete points in time. Usually, the delay between samples is fixed
of duration 7. By introducing a new complex variable, z = €7, we can
define a discrete version of the Laplace transform called the z-transform for
a discrete function f(k) as

Z(f(k) =F(2) =Y f(k)z"".
k=0

There exist techniques, analogous to those based on the Laplace trans-
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form, for using the z-transform to analyze the response characteristics of
control systems [3]. Analysis using the z-transform is complicated some-
what by the fact that information is irretrievably lost in a sampled system.
It is generally necessary to identify the various frequency components of the
input signal in the Fourier domain, and adjust the sampling rate accordingly
to avoid effects due to aliasing (i.e., mistakenly associating high frequency
components of the signal with lower frequency components). It has been
shown that aliasing can be avoided entirely by ensuring that the sampling
frequency (1/7 samples per unit time) is at least twice the frequency of the
highest frequency component of the input signal.* Of course, it may not
be possible for the digital hardware to sample that quickly or perform the
necessary computations required to generate an appropriate response. The
problem of implementing complex control strategies that keep pace with a
rapidly changing environment will be addressed frequently in this mono-
graph.

There exist processes for which we know the form of an appropriate
model (e.g., we know that the process can be modeled using a kth-order lin-
ear differential equation with constant coefficients), but we do not know the
parameters of the model. For instance, the system we are trying to model
might be a black box that we know to be a single-input single-output linear
system, but the model parameters do not correspond to any known physi-
cal parameters such as the spring constant or the damping constant in the
model for the spring-mass-dashpot system. In this case, it may be possible
to find values for the parameters of the model by sampling the input and
output of the system, and “fitting” the parameters of the model to the data.
This is a special case of what is called system identification, and constitutes
an important part of the branch of control theory known as adaptive con-
trol [1, 13]. System identification can be done offline during the design of
the control system as prologue to the sort of analysis described above. In
adaptive control, system identification is done online by the control system,
and the results of system identification are used to adjust the parameters of
a controller. This approach to control is particularly useful if the physical
system that you are attempting to model changes over time (e.g., a plant
with mechanical parts that are subject to wear).

“This result is generally attributed to Nyquist [11]. The frequency corresponding to
twice the highest frequency component of the signal is called the Nyquist rate. A proof
of this result by Shannon can be found in [14]. One consequence of Shannon’s sampling
theorem is that that the original signal can be recovered from the sampled data using
so-called low-pass filters that pass low frequencies and attenuate higher frequencies.
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One particularly convenient feature of the mathematical models used in
control theory is that, at least as far as the analysis is concerned, what one
learns about design in one area is immediately applicable in another area for
which there exists appropriate analogical apparatus mapping the variables
between the two systems [7]. For instance, the engineer familiar with the
analysis and design of electrical control systems can often apply what he or
she knows to the analysis and design of mechanical or fluid control systems.
The basic models and their corresponding equations appear again and again,
and hence much of what is learned can be compiled into tables, tools, and
cookbook-style methods for dealing with commonly occurring specific cases
[4].

In this section, we considered some of the basic techniques involved in
modeling physical systems. We briefly touched upon some of the methods
and terminology of control theory, specifically what is referred to as classical
control theory. As was mentioned, classical control is most closely associated
with analysis in the frequency domain. In the next section, we introduce a
particular class of physical systems important from the standpoint of con-
trol, and consider modeling techniques drawn from modern control theory.
Modern control theory is most closely associated with analysis in the time
domain.

2.3 Modeling Dynamical Systems

The techniques described in the previous section are primarily useful for
physical systems that can be modeled with a single input and a single output
variable. In this section, we consider systems modeled with any finite number
of input and output variables. We restrict our attention to a limited class of
physical systems called dynamical systems. A dynamical system is defined
by the following mathematical objects and axioms governing them.®

e A set of time points T C R
e A set of states X

e A set of inputs U

"The definitions provided here roughly follow those of Kalman [10] though we have
sacrificed rigor in some places to avoid lengthy technical commentary. Our objective here
is to set the stage for a discussion of practical methods, and not, as in the case of Kalman'’s
work, the precise description of mathematical abstractions.
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A set of outputs Y

A set of input functions

Y={o:T—>U}

A state transition function

fTXxTxXxU—=X

whose value is the state z(t) = f(¢;7,2,0) € X resulting at time ¢t € T
starting from an initial state x(7) at time 7 € T influenced by the
action of the input o.

e An output function
g:TxX—=Y

We impose some additional restrictions. In particular, for any t; < to < t3
and o € X we have

ftasti, x,0) = f(ts;ta, f(tast1,2,0),0),

and for any two input functions o and ¢’ that agree on the interval (¢, 7) we
have

ft;7w,0) = f(tm,@,07).

The first of these restrictions provides a reasonable property that allows us to
compose inputs. The second is often referred to as the principle of causality
[2].6 Given an input function o € 3 and an interval of time (¢1, 2], an input
segment Oy, 4,1 is just o restricted to (f1,%2]. We require that, if 0,0’ € ¥

and t; < to < t3, then there exists 0” € ¥ such that Uéltl 1] = Ofts,tz) and
0'2;2 ts] = Ofta,ts]- This last property is called concatenation of inputs [10],

and provides us with a useful closure property for the set of input functions.

We also assume that the response of a dynamical system is independent
of the particular time at which it is exercised. We say that a dynamical
system is time invariant if the following properties hold.

6There is a tendency in mathematical control theory to refer to certain assumptions
or restrictions as principles. This is particularly the case where the mathematics would
be difficult or impossible without imposing some restrictions. In some cases, such as the
principle of causality described here, the restrictions seem innocuous enough, but in others
they appear to be motivated by nothing more than mathematical convenience or necessity.
Witness the fact that superposition, which underlies linearity, is often introduced as the
“principle of superposition” [10].
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e T is closed under addition.

e X is closed under the shift operator, 2° : 0 + o', defined by
o' (t) =o(t+s)
for all s,t € T.

e For any s,t,7 € T, we have

ft;mx,0)=f(t+ 87+ s,x,2°0)

e The output function g(t,.) is independent of t.

We will be concerned with continuous time dynamical systems (i.e., T' is
the real numbers) and discrete time dynamical systems (i.e., T is the inte-
gers). For mathematical purposes, we may introduce additional restrictions
such as smoothness and linearity, but it should be pointed out that many
physical systems cannot be modeled exactly under such restrictions.

We represent a continuous time-invariant dynamical system as

w(t) = flz(t),u(t))
y(t) = g(x(t), u(t))

where the first equation is called the state equation and the second the output
equation. The state and output equations typically consist of differential
equations such that for any initial state z(¢y) and input u both equations
have unique solutions. The discrete counterpart of the continuous system is
represented as

wzk+1) = fla(k),uk)
y(k) = g(z(k),u(k))

where the state equation in this case is a difference equation.

So far, we have treated states, inputs, and outputs as simple unstructured
sets. Generally, the states, inputs, and outputs have considerable structure;
it is often reasonable to represent each in terms of a multidimensional vector
space (e.g., R™). Each dimension of the space corresponds to a component
variable of the corresponding vector space. For instance, in designing a
dynamical system to model the fluid flow in and out of a holding tank, we
might employ three state variables—the height of the fluid in the tank, the
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angle of the input valve, and the angle of the output valve. The resulting
state space would be a subset of R®. In designing a system to model a
robot, we might use the position in x, y, and 2, and orientation in 0, ,, 0, .,
and 0, . for a six-dimensional state space, RS. In general, the state, input,
or output variables may be boolean, real, integer, or discrete valued, and
can correspond to any representable quantity or its derivatives, as long as
the resulting space satisfies the requirements for being a finite-dimensional
vector space [6]. By characterizing the states, inputs, and outputs in terms
of linear vector spaces, we can bring to bear the considerable power of linear
algebra and linear systems theory.

Much of linear control is concerned with linear time-invariant systems of
the form

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

where x is the n-dimensional state vector, u is the p-dimensional input vec-
tor, y is the g-dimensional output vector, and A, B, and C are, respectively,
n xn,n X p,and q¢ X n real constant matrices.

As a simple example illustrating how to construct a linear dynamical
system, consider a single-degree-of-freedom robot of mass, M, acted upon
by a force, 7. Let z be the position of the robot in some arbitrary frame
of reference. We assume that the plane of motion is horizontal and that
there are no frictional forces acting on the robot. The relationship between
position, z, and the force, 7, is completely determined by Newton’s second
law of motion.

Mz =r

The dynamic behavior of the robot can be described in terms of the position
and velocity of the robot, and, hence, we define the state vector to be,

Equating the system state and the system output, we can write down the
state and output equations,

0

x(t) = [8 é]x(t)—i— I/M]u(t)

y(t) = x(),
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Figure 2.6: Inverted pendulum mounted on a cart

where, in this case, the input, u(t), is just a scalar-valued function of time.
Generally, the system output contains incomplete information from which
it is necessary to reconstruct the system state. In subsequent chapters, we
consider some of the issues involved in attempting to infer the system state
from incomplete information.

The restriction of linearity is a critical one that causes some researchers
to dismiss much of mathematical control theory as a purely academic pursuit
with no practical consequences. Most physical systems are nonlinear, and,
hence, we can only approximate these systems using linear models. In many
cases, such approximations are valid over only a limited range of the systems
operating conditions. While these problems make it difficult to apply results
from linear systems theory, the methods of linear systems theory are so
powerful that the effort is often well spent. Nonlinear systems represent an
important area of study in control theory [8], but a more detailed discussion
is beyond the scope of this presentation.

To illustrate how to approximate a nonlinear system by a linear one, we
consider a classic example in control that involves modeling an inverted pen-
dulum mounted on a cart that can move back and forth along a horizontal
track. This problem is often cited as an analogue of the problem of control-
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ling a missile balanced atop its booster rockets [7, 9]. The presentation here
follows that of Gopal [9]. We assume that the controller can exert a force
on the cart to propel it to the right or left along the horizontal track. Let
z be the horizontal position of the cart’s center of gravity and z + Lsin6
the horizontal position of the center of gravity of the pendulum, where L is
the distance from the pivot to the center of gravity of the pendulum. Simi-
larly, L cos @ is the vertical position of the center of gravity of the pendulum.
Figure 2.6.i shows the basic configuration of cart and pendulum.

The state of the system is completely described by the position and
velocity of the cart and the angular position and angular velocity of the
pendulum. Thus we have the state vector:

2(t

(t
(
(

x(t) =

T W

)
)
t)
t)

>

In order to set up the dynamical equations, we have to establish some
additional parameters. Let m be the mass of the pendulum, M the mass of
the carriage, and J the moment of inertia of the pendulum with respect to
its center of gravity.

The forces acting on the pendulum are the force of gravity, mg, acting on
its center of gravity, a horizontal reaction force, H, and a vertical reaction
force, V. Figure 2.6.ii depicts the forces acting on the pendulum and the
cart. Taking moments about the center of gravity of the pendulum, we have

JO(t) =V Lsinf(t) — HL cos6(t).

Summing all of the forces acting on the pendulum in the horizontal and
vertical directions, we have

2

V-mg = LcosO(t))

2

H = (2(t) + Lsin6(t)).

a2
Summing all of the forces acting on the cart, we have
u(t) — H = MZ(t),

where u(t) is the (control) input.
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S@nce the task is to keep the pendulum upright, we will assume that 6
and 6 will remain close to 0. On the basis of this assumption, we make the
standard approximations, sinf = 6 and cos 6 =~ 1, obtaining

) mLA(t) + (m+ M)i(t) = u(t)

(J —mL?)0(t) + mLi(t) — mgLA(t) = 0
We introduce values for the remaining parameters.
M=1kg, m=015kg, L=1m
Using any mechanics or physics textbook, we get
g = 9.81 m/sec?
= gmL2 = 0.2 kg-m?
Using these equations and parameter values, we obtain
0.1560(t) + 1.155(t) = wu(t)
0.3560(t) + 0.152(t) —0.15 x 9.816(t) = 0

From these two equations, we solve for 6 and 7 and make appropriate sub-
stitutions, obtaining

() = —0.58096 +0.9211 u(t)
O(t) = 4.45320 + —0.3947 u(t)

to arrive at the following state and output equations for the dynamical
model:

01 0 0 0
2t = 8 8 —0.3809 (1) () + 0.9511 ®
0 0 44532 0 —0.3947
= Ax(t) + Bu(t)
y(t) = [0 0 1 o]x(t)
= Cx(t)

where we assume realistically that the only component of the output that is
directly observable is the angle, @, corresponding to the tilt of the missile in
the case of the booster rocket.
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In Chapter 4, we highlight results from linear systems theory that allow
us to establish important properties (e.g., stability and controllability) of
dynamical systems, using simple tests on the matrices that define the state
and output equations. The inverted pendulum is particularly interesting as
it represents a dynamical system that is not stable, but is controllable.

Before leaving this chapter, we introduce some additional concepts and
terms. We will develop similar concepts in the next chapter, in some cases
using the same terms and in other cases introducing new terminology. Where
the terminology differs, we will point out the conceptual similarities. An
event is simply a pair consisting of a time point and a state (e.g., (¢, x)
where t € T and = € X). The event (or phase space) space is the space of all
possible events, T x X.7 A state-space trajectory is simply a mapping from
the real interval to the state space, h : [0,1] — X, defined by a particular
transition function, f, input, u, and initial conditions, ©(0) = xg. In the
following chapter, we turn our attention to the use of logic in modeling
physical systems.

2.4 Further Reading

Classical and modern control provide a wealth of modeling techniques. A
basic familiarity with linear algebra and elementary differential equations
are necessary for any real appreciation or application of these techniques. A
good college-level physics course will also turn out to be useful in following
the examples found in the introductory textbooks. Cannon [5] provides
a wonderful introduction to modeling complex physical systems from an
engineering standpoint.

For a general introduction to modeling from the perspective of auto-
matic control, see the texts by Dorf [7] or Bollinger [3]. Dorf considers both
modern and classical control in his text, but emphasizes the latter. For
an emphasis on modern control theory, time-domain analysis, and, in par-
ticular, linear system theory, see Chen [6] or Gopal [9]. Our treatment of
dynamical systems follows that of Kalman; Kalman’s chapter in [10] pro-
vides a very general formulation of dynamical systems and an introduction
to the necessary mathematical abstractions.

Control theory is a discipline steeped in mathematics. Some of the math-

"We follow Kalman [10] in our use of the term phase space. You may also see the term
used to refer to the space of possible positions and velocities. A state variable obtained
from a system variable and its derivative is referred to as a phase variable [9].
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ematics is of a rather arcane sort, but much of it can be directly applied to
solving real-world problems. While there is a growing body of work on non-
linear systems, a significant portion of the literature is devoted to a system-
atic exploitation of the properties of linear dynamic systems. In surveying
that literature, it is interesting to note the wide range of physical phenomena
for which such models are appropriate.
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