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Abstract. Linear Temporal Logic (LTL) is used widely in verification,
planning, and more. Unfortunately, users often struggle to learn it. To
improve their learning, they need drill, instruction, and adaptation to
their strengths and weaknesses. Furthermore, this should fit into what-
ever learning process they are already part of (such as a course).
In response, we have built a misconception-based automated tutoring
system. It assumes learners have a basic understanding of logic, and
focuses on their understanding of LTL operators. Crucially, it takes ad-
vantage of multiple years of research (by our team, with collaborators)
into misconceptions about LTL amongst both novices and experts.
The tutor generates questions using these known learner misconceptions;
this enables the tutor to determine which concepts learners are strong
and weak on. When learners get a question wrong, they are offered imme-
diate feedback in terms of the concrete error they made. If they consis-
tently demonstrate similar errors, the tool offers them feedback in terms
of more general misconceptions, and tailors subsequent question sets to
exercise those misconceptions.
The tool is hosted for free on-line, is available open source for self-hosting,
and offers instructor-friendly features.
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1 Introduction

Linear Temporal Logic is a cornerstone of verification [62], and is also used
for synthesis [3,4,9,12,16,44,48,58,66], robotics [6,7,11,24,32,34,35,40,55,63,65],
embedded systems [10,59], business processes [1,14,17,18,43], and more [46,60].

Since an incorrect specification can cause bugs to go undetected or derail a
system’s functionality, it is critical that users (from students to professionals) can
write and understand LTL specifications correctly. This has spurred a growing
body of research focused on improving the process of authoring and interpret-
ing LTL specifications. These efforts include tools designed to represent specifi-
cations in terms of alternate formalisms (e.g., Büchi automata [8,20]), scaffold
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common specification patterns [23,57], explain formulae via visualization [36,64],
and generate specifications from natural language [15,25].

Another way to tackle the problem is to better understand what aspects of
LTL are difficult. For several years [28,31], with collaborators, we have focused on
this question. Our findings have resulted in a catalog of common misconceptions,
and these have been distilled into multiple-choice question/answer sets.

However, simply deploying a question/answer sheet as, say, an electronic sur-
vey is not enough. To learn well, learners need lots of examples and periodic drill
(even refreshers). When they make mistakes, they need feedback to understand
what they got wrong. This feedback should occur at two levels. On individual
questions, learners may have made a mistake. Though they need concrete feed-
back (e.g., showing traces), the error could also be due to a lack of attention
or even a slip of the finger. If, however, they make the same kind of error con-
sistently, they may have a misconception; addressing that requires correcting
conceptual knowledge. In turn, they need additional questions that target their
errors to confirm that they have internalized the feedback.

We have operationalized all of the above into an on-line, adaptive tutor, the
LTL Tutor. It is hosted for free online:

https://ltl-tutor.xyz
To be privacy-protecting, the tutor does not gather any identifying information.
Educators can create a “course” and get aggregated data of how students in it are
performing. For those who have additional data privacy concerns, the software is
also available open source and designed for self-hosting. The tutor also supports
both the classical LTL syntax (used in this paper) as well as variants used by
recent tools [13,45] that use keywords (e.g., always, after).

Some tutoring systems are designed to teach a topic from scratch. As ed-
ucators, we recognize this can be very disruptive because it assumes a specific
context, preparation, amount of available time, and so on. Instead, the LTL Tutor
is designed to be a companion that complements whatever pedagogy is already
in use, rather than a substitute. We assume students have a basic grounding in
formal logic, and may have heard a lecture or two about LTL in the instructor’s
preferred style. What the LTL Tutor does is save the instructor from having to
provide drill, feedback, and corrections; and it leverages our extensive catalog
of LTL difficulty without the instructor needing to learn it in depth themselves.
Effectively, the LTL Tutor tries to learn, and then correct, the latent conceptual
model of LTL that the student has in their mind—however it is obtained.

Finally, we note the increased interest in LTL in industrial settings. It can be
especially difficult for industrial practitioners to get assistance the way a student
in a course can from instructors and teaching assistants. Thus, the LTL Tutor
should be of particular value to practitioners.

This paper describes the design and implementation of the LTL Tutor. After
providing a high-level overview (section 3), it especially focuses on two aspects:

– A misconception driven process for generating novel question sets tailored
to individual learners (section 4).

https://ltl-tutor.xyz
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– Mechanisms designed to provide learners with insight both into the questions
they get wrong and the underlying misconceptions that may be driving these
errors (section 5).

2 Related Work

Our work is inspired by the seminal work on concept inventories [33] from physics
education. A concept inventory is a collection of multiple-choice questions where
each wrong answer (often called a distractor) is not merely wrong, but corre-
sponds to a specific misconception. Thus, if students choose a certain distractor,
the instructor can be confident about what the student’s confusion is. Our prior
work [28,29,30,31] takes steps toward such an instrument for LTL (and introduces
a catalog of misconceptions), which this work leverages to make generative.

To make it generative, we need a way to not only create new problems but also
create misconception-based distractors. While mutation testing [2] is appealing
here, the mutants created may be trivial, redundant [53], or even functionally
identical to the original [42]. We thus draw inspiration from Prasad et al. [50]’s
work on “conceptual” mutation to address these problems. Their work (not for
LTL!), however, is only partially automated and requires significant expert in-
tervention. A key technical contribution of this work (section 4) is to perform
conceptual mutation in a completely automated way.

When learners make conceptual errors, we have to provide high-level feedback
(section 5.2). We draw on the literature of conceptual change [49], specifically
using refutation texts, which has been found effective in many settings [54]. (The
SMoL Tutor for programming language semantics [41] also uses these, and is
also driven by misconceptions.)

Our tutor is inspired by vanLehn’s two-loop model for tutoring systems [61],
in which an inner loop provides immediate feedback and an outer loop selects
the next task. The LTL Tutor builds on this framework, extending the outer
loop to also target misconceptions (fig. 5).

We are also inspired by works on cognitive tutoring [5,47,56], which capture
how an expert would solve a problem and try to get learners to mimic that
approach. This approach is too resource-intensive for our lightweight setting, as
it requires extensive effort to model and encode expert problem-solving methods.

Finally, we describe existing tutors for formal logic. These systems rely on
hand-crafted questions or generate questions without a guiding principle (akin
to conventional mutation testing). In contrast, the LTL Tutor stands out by
generating novel questions based on an inventory of conceptual errors.

Iltis is a web-based tutor designed to teach learners about the logical founda-
tions of computer science [26,27]. The system has two primary focuses: allowing
instructors to easily construct, compose, and pipeline questions and question
sets, and the ability to provide students with instant meaningful feedback and
explanations for errors. Unlike the LTL Tutor, this means that Iltis modules
are designed to be closely tied to specific courses of study (e.g., a modal logic
module [19]).
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Lodder et al. have developed logic tutors [37,38,39]. Rather than requiring
experts to specify the steps of a solution, the tutors automatically generate
authoritative step-by-step proofs for instructor-specified problems. Students are
given feedback when their proof steps diverge from the generated authoritative
proof. However, this work is (a) proof-, not model-theoretic and (b) not for LTL.

3 The LTL Tutor

A user of the LTL Tutor sees a series of multiple-choice questions. There are two
kinds of problems:

English-to-LTL questions ask learners to identify which LTL formula best cap-
tures a given English description. Figure 1 shows an example of a question
and the feedback for a wrong answer.

Trace Satisfaction questions ask learners to decide whether a temporal trace
satisfies a given LTL formula. These questions come in two forms: yes/no
questions (fig. 3) in the style of the quizzes we used to build the miscon-
ception catalog [29,30], or a multiple-choice variant that asks learners to
choose the one satisfying trace from among several possibilities (fig. 2). The
LTL Tutor also provides an LTL Stepper (fig. 4), where learners can step
through a formula and trace simultaneously to develop a better operational
understanding of the language.

The LTL Tutor had about 254 unique users by April 2025, who answered
a total of 2261 questions. Of these, 530 (23.44%) answers were incorrect. The
wrong answers most commonly corresponded to the following misconceptions:

1. Implicit G (28.68%): Expecting a G operator to apply, even when it was
not explicitly present. For example, expecting G(x =⇒ y) to behave like
G(x =⇒ (Gy)).

2. Other Implicit (23.58%): Expecting formulae to be stronger than their actual
meaning. For example, expecting Fx to capture the behavior of (¬x)Ux.

3. Bad State Quantification (19.25%): Confusing how “fan out” operators (F ,
G, U) apply to different states in a trace. For example, expecting (Gx)Uy
to behave like xUy.

Detailed explanations of these misconceptions are available in [31, Figure 4].
Because of the nature of generated formulas (section 4), when learners make

mistakes, we can associate these with known misconceptions. Therefore, over
time, the LTL Tutor builds a model of the learner’s overall understanding of
LTL. Each learner mistake is given a score, with recent mistakes weighted more
heavily using a decay function inversely proportional to the time elapsed since the
mistake. Starting from a uniform prior, each misconception’s relative likelihood
is then calculated from the sum of the associated mistake scores. The effect of
this is that the predicted likelihood of a learner having a misconception is higher
if they have made recent mistakes associated with that misconception.
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Fig. 1: An English-to-LTL question, with feedback about a learner’s mistake.
Here (A) the learner selects an incorrect answer, associated with the Implicit
G misconception, and is shown (B) a concrete example of why their answer is
incorrect, and the relationship between their answer and the correct solution.

Each time the tutor generates a question set, it uses these predictions to
inform the kinds of questions it generates. If learners consistently demonstrate a
misconception, then the tutor provides concept-level feedback, which we discuss
in section 5.2. The overall flow is shown in fig. 5.

4 Generating Problems

From the above, we can see that the heart of the tutor lies in generating good
sets of related formulas. Both kinds of questions are generated from a seed for-
mula. This formula is randomly generated by the SPOT randltl tool [20], with
the likelihood of each operator’s occurence determined by the learner’s predicted
likelihood of having a related misconception. For example, if the learner has a
high likelihood of the Implicit G misconception, the formula generation process
will bias the seed formula towards the G operator. All seed formulae are gen-
erated to have at most 4 unique propositions, enough to allow for reasonably
complex formulas, but low enough to limit extraneous cognitive load.

For English-to-LTL, the LTL Tutor generates a simple English description
of the seed formula, which is used as the question prompt. We describe this
translation process in section 7. The seed formula represents the correct answer
to the question. It is mutated to create distractors, as we describe below.

For trace satisfaction, the seed formula serves as the question prompt. Traces
accepted by the seed formula and its mutants (also created as below) are then
used as candidate answers and distractors, respectively. These traces are gener-
ated by by translating the LTL formulas into Büchi automata using the SPOT
tool for ω-automata manipulation [20,21] and then extracting accepting runs.
If an accepting run includes a state with multiple possible transitions, we ran-
domly choose one of the branches to resolve the ambiguity. No specific preference
is given to one trace over another beyond this random selection.
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Fig. 2: A Trace Satisfaction (Multiple Choice) (A) question, with (B) feedback
about a learner’s mistake.

Fig. 3: A Trace Satisfaction (Y/N) (A) question, with (B) feedback about a
learner’s mistake. Figure 4 shows how the stepper can help shed further light on
the mistake.

Fig. 4: LTL Stepper: The syntax tree (top) shows how each sub-formula of
G(s ⇐⇒ (Xa)) is satisfied (green border) or not satisfied (orange double
border) at a given trace step. The trace (bottom) highlights the trace step un-
der study and shows the assignment of truth values to literals at each step.
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Fig. 5: The overall flow of the LTL Tutor.

Generating Good Mutants The key to generating useful problems comes down to
creating good mutants. Doing so well is a central contribution of the LTL Tutor.

An English-to-LTL question, for example, might be founded in the following
seed formula and English sentence pair:

G(e =⇒ (Fh))
Whenever the engine is on, the headlight will be
on then or at some point in the future.

As we have noted, it is natural to mutate this seed formula to create mutants.
Because LTL equality is decidable [62], we can easily rule out syntactic variants
that are not semantically different. Thus, we could adapt typical syntactic mu-
tation techniques from programming to LTL formulae: for instance, we might
randomly change logical operators (eq. (1)), change operands (eq. (2)), or swap
operand order (eq. (3)):

G(e =⇒ (Fh))
mutate−−−−→ G(e ∧ (Fh)) (1)

G(e =⇒ (Fh))
mutate−−−−→ ((Ge) =⇒ (Fh)) (2)

G(e =⇒ (Fh))
mutate−−−−→ G((Fh) =⇒ e) (3)

While these syntactic mutants of the original formula could be used as distrac-
tors in a multiple choice question, they are very unlikely to capture the actual
difficulties that learners have. For example, since the and operator is nowhere in
the English sentence to be translated, it is highly unlikely that a learner would
pick G(e∧ (Fh)) (the mutant in eq. (1)) as an answer. Furthermore, if a learner
were to select this option, it is unclear why they did so. This limits the kinds of
feedback that can be provided to the learner.
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Table 1: Conceptual mutation rules used by the LTL Tutor, alongside their
associated misconceptions. Arbitrary LTL formulae are represented by α, β, and
δ. Arbitrary binary operators are represented by ▷◁.

Misconception Mutation Rules
Implicit G Gα

mutate−−−−→ α

Implicit F Fα
mutate−−−−→ α

Bad State Gα
mutate−−−−→ Fα

Quantification Fα
mutate−−−−→ Gα

αUβ
mutate−−−−→ (Fα)Uβ

αUβ
mutate−−−−→ αU(Fβ)

αUβ
mutate−−−−→ (Gα)Uβ

αUβ
mutate−−−−→ αU(Gβ)

αUβ
mutate−−−−→ (βUα)

Precedence α ▷◁ (β ▷◁ δ)
mutate−−−−→ (α ▷◁ β) ▷◁ δ

Exclusive U αU(¬α ∧ β)
mutate−−−−→ αUβ

Weak U αUβ
mutate−−−−→ (αUβ) ∧ Fβ

Bad State δU(α ∧ (Fβ))
mutate−−−−→ (δUα) ∧ (Fβ)

Index δU(α ∧ (Gβ))
mutate−−−−→ (δUα) ∧ (Gβ)

δU(α ∧ (Fβ))
mutate−−−−→ (δUα) ∧ (Fβ)

δU(α ∨ (Gβ))
mutate−−−−→ (δUα) ∨ (Gβ)

δU(α =⇒ (Fβ))
mutate−−−−→ (δUα) =⇒ (Fβ)

δU(α =⇒ (Gβ))
mutate−−−−→ (δUα) =⇒ (Gβ)

X(α ∧ β)
mutate−−−−→ (Xα) ∧ β

X(X(X . . .Xα))
mutate−−−−→ Xα

Other Implicit (¬αUα)
mutate−−−−→ Fα

(αU(Gα))
mutate−−−−→ α ∧ (F (Gα))

(Fα) ∧ (G(β =⇒ (X(Gβ))))
mutate−−−−→ α ∧ (X(Gβ))

Xα
mutate−−−−→ Fα

α ▷◁ β
mutate−−−−→ α

α ▷◁ β
mutate−−−−→ β

¬α mutate−−−−→ α
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Instead, the LTL Tutor uses our well-substantiated catalogs of LTL miscon-
ceptions [28,31] to guide the mutation process. This process of conceptual muta-
tion is achieved by associating each misconception with mutation rules (table 1).
Applying any of these mutation rules to a given LTL formula (or sub-formula)
generates a mutant that embodies the corresponding misconception. The seed
formula above, for example, could be mutated to explicitly embody multiple
misconceptions, with the misconception given as a label:

G(e =⇒ (Fh))
mutate−−−−→ e =⇒ (Fh) (Implicit G)

G(e =⇒ (Fh))
mutate−−−−→ G(e =⇒ h) (Implicit F )

G(e =⇒ (Fh))
mutate−−−−→ F (e =⇒ h) (Bad State Quantification)

Crucially, each distractor is now associated with a known misconception.3 Not
only do these distractors reflect the actual difficulties that learners are known to
have, when chosen, they also provide insight into the underlying misconceptions.
Thus, for instance, if a learner selects the first conceptual mutant above (as
shown in fig. 1), it is likely that they have the Implicit G misconception. We
next discuss how we operationalize this insight.

5 Helping Learners Learn

As mentioned in section 1, we draw a meaningful distinction between learner
mistakes and misconceptions. While mistakes can be addressed via feedback in
terms of the problem at hand (section 5.1), misconception feedback must be
provided in terms of the misunderstood concept (section 5.2).

5.1 Addressing Learner Mistakes

The first thing the LTL tutor does is give feedback at the question level. When a
learner selects a distractor to an English-to-LTL question (e.g., fig. 1), they are
shown a concrete example of why their answer is incorrect and the relationship
between their answer and the correct solution. Feedback for trace satisfaction
questions involves the formula used to generate the (incorrect) trace alongside
the correct formula (fig. 2, fig. 3). If the learner wants further insight, they can
walk through the evaluation of the trace they selected over the correct formula
trace using an interactive trace stepper. Figure 4 shows how the stepper can help
shed light on the learner’s mistake in fig. 3.

5.2 Addressing Learner Misconceptions

A single mistake, however, is not enough to identify a pervasive misconception.
A learner could have misread the question, mis-clicked, or just had a minor
3 When multiple mutants are syntactically equal, we present only one to the learner,

but associate all relevant misconceptions with that distractor.
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Fig. 6: Feedback for the Implicit G misconception.

misunderstanding. However, if a learner consistently makes the same mistake, it
is likely that they have a misconception.

As described in section 3, the LTL Tutor models the likelihood of a learner
having a misconception based on their previous mistakes. This model informs
seed formula generation, and thus the likelihood of a learner encountering a
question that exercises a particular misconception.

Once the learner has got at least 5 questions incorrect, the tutor provides tex-
tual feedback about their most probable misconception.4 Crucially, this feedback
does not refer to a specific question encountered by the learner, but rather the
general misconception itself. Using the refutation text format (section 2), this
feedback confronts the learner with their misconception and provides a rebuttal
to it. For example, the feedback for the Implicit G misconception (fig. 6) presents
a hypothesis of the learner’s idea of how the G operator behaves, explains the
correct semantics of the operator, and provides an example to illustrate the
difference.

6 Instructor Support

Many of our existing users are instructors who employ the LTL Tutor in the
context of a course. They would benefit from having feedback on how their
students are doing, not only to track progress but also to detect class-wide
persistent misconceptions (which may suggest weaknesses in their materials).

Therefore, the LTL Tutor provides instructors the option of creating a notion
of a “course”. This generates a code that students use when submitting work. In-
structors can then use the course instance to track student progress by identifier
or class progress via aggregate statistics.

Because we host the LTL Tutor, this can create discomfort or problems for
some instructors regarding student privacy. For that reason, the tutor is available
4 This threshold is arbitrary but chosen with some thought. We wanted it to be high

enough that users gain familiarity with the tutor, to avoid misidentifying early mis-
takes as misconceptions. At the same time, it is low enough to ensure that users
don’t go too long without receiving conceptual feedback.
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Table 2: Example patterns used to translate LTL to English.
LTL Pattern English Translation
G(α =⇒ (Fβ)) Whenever α (holds), eventually β will (hold)
G(Fα) There will always be a point in the future where α (holds)
F (G¬α) Eventually, it will never be the case that α (holds)
XX...Xα In n states, α (will hold)
G(α =⇒ (X(βUδ))) Whenever α (happens), β (will hold) until δ (holds)

as an open-source system [52] with instructions for running local copies [51].
While we appreciate instructors providing us with summary statistics (which
help us keep track of both global student understanding of LTL5 and the tutor’s
performance), we do not require this.

7 LTL to English

The creation of English-to-LTL questions requires the translation of a seed for-
mula into English. To do this, the LTL Tutor first attempts to match the LTL
formula to a set of common patterns (inspired by Dwyer et al.’s work on patterns
in property specifications [22,23]), some of which are described in table 2.

Formulae that do not match any of these patterns are recursively translated
into English via mechanical description of their logical operators. For instance,
a formula like G(p ∧ Xq) might be broken into “Globally, p and Xq,” where
Xq is further translated as “in the next state, q.” This ensures even complex
or unconventional formulae receive a systematic, if literal, English description.
However, these translations may be stilted or ambiguous, as the translation
method ignores systematic dependencies between subformulae. For instance, the
formula F (n → Gz), translates to “Eventually, globally, z holds is necessary
for n holds”. We readily acknowledge that this recursively-generated phrasing is
both confusing and unnatural; future work should look to improve this output.

While translations could be improved with language models, we are wary of
potential “hallucinations” that could lead to incorrect translations. The demands
of the educational context require that English translations never be incorrect.

8 Limitations

Given the tutor’s support for English-to-LTL, it is natural to wonder why it does
not also support LTL-to-English. This is particularly relevant since the work we
build upon [29,30] identified misconceptions in both directions. However, LTL-
to-English requires the ability to check English output. Naturally, it may be
possible to employ language models for this. However, we have not done this
because of our desire for reliability in evaluating output, which seems hard to
5 Because LTL operators are tied to natural language, it is conceivable that different

linguistic backgrounds would have different performance and misconceptions.
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achieve. Furthermore, in prior work, people demonstrated strong performance
in this direction [31], reducing its priority. In addition, language models can
significantly drive up computational costs (complicating our hosting) or require
use of external paid services (which is difficult at scale).

A natural weakness of the current tutor is that it centers around our existing
catalog of misconceptions. Though this has been built up over many years, there
may yet be other misconceptions in the wild. One of our goals is to adapt the
tutor to be more open to these: e.g., using some of the purely syntactic mutants
that we rejected earlier (section 4) to see whether they yield unexpected answers.
The reason we have not done this already is that turning these mistakes into
misconceptions ideally requires learners to provide textual explanations of their
choices, and making the interface for this useful to us while not irritating to
them is a challenge.
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