
Forge: A Tool and Language for Teaching Formal Methods

TIM NELSON, Brown University, USA
BEN GREENMAN, University of Utah, USA
SIDDHARTHA PRASAD, Brown University, USA
TRISTAN DYER, Stashpad, USA
ETHAN BOVE, Brown University, USA
QIANFAN CHEN, Brown University, USA
CHARLES CUTTING, Brown University, USA
THOMAS DEL VECCHIO, Brown University, USA
SIDNEY LEVINE, Brown University, USA
JULIANNE RUDNER, Brown University, USA
BEN RYJIKOV, Brown University, USA
ALEXANDER VARGA, Brown University, USA
ANDREWWAGNER, Northeastern University, USA
LUKE WEST, Brown University, USA
SHRIRAM KRISHNAMURTHI, Brown University, USA

This paper presents the design of Forge, a tool for teaching formal methods gradually. Forge is based on the
widely-used Alloy language and analysis tool, but contains numerous improvements based on more than a
decade of experience teaching Alloy to students. Although our focus has been on the classroom, many of the
ideas in Forge likely also apply to training in industry.

Forge offers a progression of languages that improve the learning experience by only gradually increasing in
expressive power. Forge supports custom visualization of its outputs, enabling the use of widely-understood
domain-specific representations. Finally, Forge provides a variety of testing features to ease the transition from
programming to formal modeling. We present the motivation for and design of these aspects of Forge, and
then provide a substantial evaluation based on multiple years of classroom use.

CCS Concepts: • Software and its engineering→ Semantics; Constraints; Functional languages.

Additional Key Words and Phrases: lightweight formal-methods, formal-methods education, language levels

Authors’ addresses: Tim Nelson, Brown University, Providence, USA, timothy_nelson@brown.edu; Ben Greenman, Univer-
sity of Utah, Salt Lake City, USA, blg@cs.utah.edu; Siddhartha Prasad, Brown University, Providence, USA, siddhartha_
prasad@brown.edu; Tristan Dyer, Stashpad, Raleigh, USA, a.tristan.dyer@gmail.com; Ethan Bove, Brown University, Provi-
dence, USA, ethan_bove@brown.edu; Qianfan Chen, Brown University, Providence, USA, qianfan_chen@alumni.brown.edu;
Charles Cutting, Brown University, Providence, USA, charles_cutting@alumni.brown.edu; Thomas Del Vecchio, Brown
University, Providence, USA, thomas_del_vecchio@alumni.brown.edu; Sidney LeVine, Brown University, Providence, USA,
sidney_levine@brown.edu; Julianne Rudner, Brown University, Providence, USA, julianne_rudner@alumni.brown.edu;
Ben Ryjikov, Brown University, Providence, USA, benjamin_ryjikov@alumni.brown.edu; Alexander Varga, Brown Uni-
versity, Providence, USA, alexander_varga@alumni.brown.edu; Andrew Wagner, Northeastern University, Boston, USA,
ahwagner@ccs.neu.edu; Luke West, Brown University, Providence, USA, luke_west@alumni.brown.edu; Shriram Krishna-
murthi, Brown University, Providence, USA, shriram@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART116
https://doi.org/10.1145/3649833

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0002-9377-9943
HTTPS://ORCID.ORG/0000-0001-7078-9287
HTTPS://ORCID.ORG/0000-0001-7936-8147
HTTPS://ORCID.ORG/0000-0001-9730-9319
HTTPS://ORCID.ORG/0009-0008-9484-8745
HTTPS://ORCID.ORG/0009-0002-6742-4089
HTTPS://ORCID.ORG/0009-0002-2528-7645
HTTPS://ORCID.ORG/0009-0009-1472-0045
HTTPS://ORCID.ORG/0009-0004-9931-5594
HTTPS://ORCID.ORG/0009-0009-5452-7098
HTTPS://ORCID.ORG/0009-0004-1329-3858
HTTPS://ORCID.ORG/0009-0002-8611-6444
HTTPS://ORCID.ORG/0000-0002-9434-0780
HTTPS://ORCID.ORG/0009-0009-9005-7513
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://orcid.org/0000-0002-9377-9943
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-7936-8147
https://orcid.org/0000-0001-9730-9319
https://orcid.org/0009-0008-9484-8745
https://orcid.org/0009-0002-6742-4089
https://orcid.org/0009-0002-2528-7645
https://orcid.org/0009-0009-1472-0045
https://orcid.org/0009-0004-9931-5594
https://orcid.org/0009-0009-5452-7098
https://orcid.org/0009-0004-1329-3858
https://orcid.org/0009-0002-8611-6444
https://orcid.org/0000-0002-9434-0780
https://orcid.org/0009-0009-9005-7513
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0001-5184-1975
https://doi.org/10.1145/3649833

116:2 Nelson, et al.

ACM Reference Format:
Tim Nelson, Ben Greenman, Siddhartha Prasad, Tristan Dyer, Ethan Bove, Qianfan Chen, Charles Cutting,
Thomas Del Vecchio, Sidney LeVine, Julianne Rudner, Ben Ryjikov, Alexander Varga, Andrew Wagner, Luke
West, and Shriram Krishnamurthi. 2024. Forge: A Tool and Language for Teaching Formal Methods. Proc. ACM
Program. Lang. 8, OOPSLA1, Article 116 (April 2024), 29 pages. https://doi.org/10.1145/3649833

1 INTRODUCTION
The growing applicability of formal methods (fm) demands that we create curricula and tools that
serve broad audiences, not only those who were already predisposed to learning the topic. Yet, “fm”
comprises many techniques and tools: proof assistants, dependently-typed languages, property-
based testing, model checking, SMT solvers, and more (e.g., Brady [2013]; Claessen and Hughes
[2000]; de Moura and Bjørner [2008]; Holzmann [2003]; Leino [2010]; Nipkow et al. [2002])—not
all of which are good fits for students without a formal bent. In this paper we adopt a specific
class of fm that we believe is well-suited to broad computer-science education, and then describe
student-friendly tools that implement it.

Our inspiration is Alloy [Jackson 2012]. Alloy embodies the lightweight fm philosophy exposited
by Jackson and Wing [1996], and relative to many other fm tools, it offers numerous advantages
for introducing fm:

• It provides a rich, relational, language. Its relational nature makes it suitable for expressing
object relationships [Jackson 2002; Spivey 1992], which reflect a wide variety of systems
encountered in daily life. Thus, Alloy allows students to explore their intrinsic interests via
formal modeling—both within and outside of computing.

• It has a syntax reminiscent of programming languages like Java, meaning that students can
import some amount of object-oriented experience when starting with Alloy—learning the
tool’s more powerful features as they progress.

• It offers push-button automation. Therefore, it feels familiar to students coming from a
background of ides. Just as students might click “run” in an ide to execute their program,
they can click “run” in Alloy to generate satisfying instances of their model.

• It supports multiple modes of use. In the presence of properties, it behaves as a bounded model
checker [Biere et al. 1999]. However, in the absence of properties, students can still “run” their
model to explore concrete instances, which may trigger a deeper understanding (including
of undesired behaviors). This relates to the surprise-explain-reward model [Wilson et al.
2003] of cognition used in other tools for aiding correctness (e.g., [Jernigan et al. 2017]). This
modality stands in contrast to many other verification tools, such as many model checkers,
which are inert in the absence of properties.

• It gives an automatic visualization of instances. When students view an instance, Alloy’s
visualizer presents it as a labeled directed graph, which is often a vast improvement over raw
textual formats. If students prefer a tabular view, Alloy offers that as well.

Consequently, Alloy is popular and widely-used in both education and practice [alloytools.org
2023a,b,c; Jackson 2019]. However, based on several years of teaching with Alloy, we have found
critical weaknesses in it for the purposes of our pedagogy:

• Alloy’s sophisticated language and clever syntax contain pitfalls for students.
• Alloy’s visualizer can produce unhelpful, confusing, or outright misleading output.
• Alloy’s support for testing is limited, which hinders some educational opportunities for
students who have programming experience.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://doi.org/10.1145/3649833

Forge: A Tool and Language for Teaching Formal Methods 116:3

In response, we have built a system named Forge,1 designed to be a pedagogic variant of Alloy.
Like Alloy, Forge is a language and a tool, and it draws heavily on Alloy’s syntax, semantics, and
infrastructure. Forge has three critical innovations:

Language Levels: Forge supports a progression of sub-languages that build on each other
and elide unnecessary complexity (section 3). These sub-languages are not merely optional
fragments of one overall language, but provide their own epistemic closure [Findler et al.
2002] by, e.g., ensuring that error messages are given in terms of the current sub-language.

Custom Visualization: Forge broadens Alloy’s default visualizations, building atop a Web-
based visualizer [Dyer 2020] to include custom visualizations (section 4). We have built several
visualizations to further epistemic closure for homework problems, and students have built
their own visualizations for domains of their choosing (examples in section 7).

Testing: Forge adds linguistic support for testing throughout model development (section 5).
In addition, Forge is built atop the Racket platform [Felleisen et al. 2018], enabling additional (as
yet pedagogically untested) benefits such as domain-specific modeling languages (section 9).
While our focus in this paper is on teaching fm at the tertiary education level, we conjecture

that all these elements would benefit industrial users as well, especially trainees. Indeed, one of our
main examples for custom visualization is from a more expert setting (section 4.3).

Outline. After a short background on our fm pedagogy (section 2), this paper presents the design
of language levels (section 3), custom visualization (section 4), and testing tools (section 5) in Forge.
This tour of Forge concludeswith a brief discussion of its architecture and implementation (section 6).
The second half of the paper contains a substantial evaluation of Forge, both quantitative and
qualitative, based on multiple years of using Forge in the classroom (section 7). The paper concludes
with related work (section 8) and high-level reflections (section 9).

Forge is Open Source. The project is available from:
https://forge-fm.org/

This paper also comes with an artifact that includes the models and visualizations we reference
herein, along with copies of Forge and its documentation [Nelson et al. 2024].

2 BACKGROUND: TEACHING FM GRADUALLY
There are many potential ways to teach fm. We espouse a gradual approach, which starts by
meeting students where they are conceptually. Most notably, this includes the many students who
are deeply uninterested in formalism, but are becoming experts in other fields such as distributed
systems or security. Our goal is not to convert these students into fm fans, but rather to equip
them with basic training before they go on to build tomorrow’s digital infrastructure. We want all
students to learn how to apply formal approaches to their own areas of interest and expertise.

Gradual fm comprises four core ideas:
• Teach with tools. Software tools lower the barrier to entry (since the tool can actively guide the
student, unlike paper and pencil) and provide a familiar “programming”-esque environment
in which to work. If the tool also provides rapid feedback, so much the better.

• Embrace lightweight fm.Drawing inspiration from Jackson andWing [1996], we use languages
with limited expressive power to enable quick, low-cost formal analysis. As a result, we focus
on modeling partial systems, precisely stating properties, and revealing bugs, rather than on
proving that no bugs exist.

1The name is of course intended as a tribute to Alloy. It should not be confused with the Alloy-based but unrelated, defunct
Forge tool [Dennis et al. 2006].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://forge-fm.org/

116:4 Nelson, et al.

• Be systems-oriented.While some students get excited modeling a programming language or
other abstract topics, we find it is far more common for students to embrace concrete goals
such as modeling a distributed hash table or a search algorithm. Gradual fm focuses more on
the latter, systems-oriented topics.

• Leverage programming intuitions.We assume that students will have experience with pro-
gramming and unit testing but perhaps no other common background—not even a course
in discrete math. This setting is especially suited to modeling with objects and functions.
Likewise, testing strategies that students have seen should be used to teach (e.g., using unit
testing to understand satisfiability), not just be disparaged for their incompleteness.

For all the reasons mentioned in section 1—including its accessible syntax, push-button automation,
visualization, etc.—Alloy is a good starting point for implementing a gradual fm pedagogy.

Experience context: The experiences reported in this paper were run in the context of such a
gradual course on fm that we have taught for a decade. The course, Logic for Systems (l4s), began
developing a pedagogy in 2013 and migrated from Alloy to an early version of Forge in 2019. Later
years extended Forge with language levels (2021), temporal operators (2021), and tools for custom
visualization (2022).

l4s is offered in the computer-science department at Brown, a selective private research university.
The only prerequisite for enrollment is an introductory programming course. Our students came
in with a variety of coursework experience. Some had taken only a one-semester accelerated
introductory course using Pyret because they had prior programming experience. Some had
completed a year-long introductory sequence using Java and one of Pyret, Racket, or ReasonML.
The majority were upper-level students with additional experience, and a few were graduate
students. Many students had some industrial internship experience as well. However, virtually
none of them had prior formal-methods coursework. We suspect they also got no exposure to fm
in industry. There were 92 students enrolled in 2022 and 64 students in 2023.

3 A PROGRESSION OF LANGUAGES
Alloy includes a powerful language, but, when it comes to teaching, one full-featured language is
less ideal than a step-by-step progression of languages. We start with a critique of Alloy (section 3.1);
this motivates the languages in Forge (section 3.2). We defer evaluation to section 7.

3.1 A Critique of Alloy’s Language
Over the years, we have observed several issues that Alloy presents to learners. We stress that, in
general, we find Alloy’s language very effective for software modeling; we want programmers to
learn how to use it. Rather, our observations are about identifying ways to improve the language
with pedagogy in mind.

3.1.1 Critique: Functions vs. Relations. While on the surface Alloy has a Java-esque syntax, its
semantics is based on relations. Alloy makes clever use of relational operators to support an
apparently object-oriented style of modeling. For example, Alloy’s join operator is written as .
(dot) and thus looks like a field access, as in p.father . Early on this pun gets students comfortable
working with Alloy. However, at some point, students realize that the semantics is not what they
expected based on syntactic recall (which seems to happen no matter what we teach in class):
“backwards accesses” such as father.p are perfectly sensible joins.

Another issue arises from the fact that all Alloy expressions evaluate to sets. In a model of family
trees, we might write that there exists some person whose father is their only friend:

some p: Person | p.friends = p.father

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:5

Since both p.friends and p.father are expressions, and expressions evaluate to sets, the equality
makes sense semantically. But to a student whose prior context is a language like Java, where the
type Person is different from Set<Person>, this leads to confusion: shouldn’t the formula produce
a type error, since p.father is always a person, not a set of persons?

3.1.2 Critique: Syntactic Sugar. Alloy’s language also contains syntactic choices that are convenient
to expert modelers but problematic for students. We list two subtle examples below.

Non-compositionality: The following shorthand constraint, taken from Jackson [2012, ch. 6],
says that the keys relation is a partial function between the set Key and the set Room :

keys in Room lone -> Key

If a student tries to experiment with the subexpression Room lone -> Key to understand the
impact of lone , they will find no impact; the subexpression is equivalent to Room -> Key . This is
because the meaning of lone applies to the in operator—even though lone appears syntactically
within the cross-product (->) expression.

Quantification: Alongside the standard first-order all (∀) and some (∃) quantifiers, Alloy
provides no and one as well, which are just shorthand for more complex formulas. However, some
properties of basic quantifiers do not apply to these advanced ones. For instance, some distributes
over disjunction but one does not. Alloy also allows multiple variables to be grouped under the
same quantifier, but advanced quantifiers can behave unexpectedly:

no x, y: A | . . . is not equivalent to no x: A | no y: A | . . .

“there is no pair (𝑥,𝑦) such that...” ≠ “there is no 𝑥 such that there is no 𝑦 such that...”

3.2 Language Levels
Problems like these present us with a quandary: for experts, or at least for compatibility, we need
the full power of the language. But for learners, we want to begin with a simple language and
gradually introduce useful features. Textbooks often follow exactly such a progression, but tools
do not always mirror it. Therefore, students can either be tripped up by richer semantics than
they expected, or can stumble on keywords (e.g., from documentation, StackOverflow, or even
generative AI tools) that do not do what they wanted. These issues with the professional-grade
language lead to student frustration, adding to the high cognitive load imposed by learning about
specification, and often result in erroneous conclusions, which are dangerous in verification.

A solution proposed by multiple teams over the years is to use language levels [du Boulay et al.
1999; Findler et al. 2002; Holt andWortman 1974]. That is, instead of just a single language, present a
progression of sub-languages that grows with student instruction and accomplishment. This process
has been implemented for the book How to Design Programs [Felleisen et al. 2001] in the DrRacket
ide. Other textbooks and languages, e.g., Grace [Homer et al. 2014], have also exploited this idea.

Readers familiar with Alloy may be reminded of its three modes of use [Jackson 2012]: navigation,
predicate calculus, and relational calculus. These correspond roughly to language levels in that they
use a fragment of the full syntax, but nothing prevents students from straying outside a language
boundary. For example, suppose a student is working with a family-tree model, and accidentally
reverses the arguments to the dot (.) operator when referring to someone’s mother:

mother.Ani = Barbara

An early language level, in which dot represents field access, should report an error—even though
this “error” is a perfectly valid and well-typed expression in the full Alloy language. Moreover, if a
student makes a type error, such as asking for the population (a property of cities) of a person:

Ani.population

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:6 Nelson, et al.

An early language level should not give the standard Alloy message: “the join operation here always
yields an empty set” [Edwards et al. 2004]. This is a reasonable error only if the student knows
what a join is! Instead, the first Forge language says “sig does not have such a field.” The key is
that all feedback—such as error messages—must use only concepts that have been introduced so
far [Findler et al. 2002], otherwise the epistemic closure of the language is lost.
Forge provides students with three separate language levels. Each closely resembles the Alloy

language, but with targeted restrictions and improvements:

(1) Froglet is a restriction of the relational Alloy language to partial functions, rather than
relations. Sets andmost relational operators are absent; the . operator behaves like field access.
Top-level expressions evaluate to singletons. Error messages are in terms of objects, fields,
etc. Froglet also provides a reachable helper predicate that can express basic reachability
constraints without the transitive-closure operator. Lacking recourse to relational operators,
students must use explicit quantification—reinforcing their facility with basic concepts.

(2) Relational Forge adds sets and relational operators such as union and transpose. At this
point in the curriculum our students are familiar with basic concepts and are prepared
to focus more deeply on the underlying relational nature of the language. This level also
introduces shorthand quantifiers such as one and no. Moreover, students can now cleanly
model weighted graphs and other concepts that are much easier to represent with arbitrary-
arity relations than boolean-valued functions. Relations are therefore easy to motivate.

(3) Temporal Forge introduces time and temporal logic operators, in the style of Alloy 6 [alloy-
tools.org 2023; Macedo et al. 2016]. This is a tricky step because students are progressing
from finite-length traces to infinite ones. Subtle issues invariably arise, such as the question
of how to model a deadlock state within an infinite trace. However, the staging of languages
means that students have already become familiar with relations, and can therefore focus on
understanding temporal logic without additional cognitive burden.

Students are told for each assignment which level to use (or, on larger projects, which levels they
may choose from). As is standard in Racket languages, the language is chosen in the first line of
each source file [Felleisen et al. 2018]. Thus, these rules can even be enforced in a grading system.
In our experience, it does not take very long at all for students to understand language levels.
Table 1 shows a comparison of features between Forge language levels and Alloy 6. Alloy

has features, such as global constraints, that no Forge language supports but that expert users
(including the authors) find valuable. Figures 1 to 3 show one example model for each Forge
level: fig. 1 demonstrates quantification in Froglet, fig. 2 uses transitive closure in Relational Forge,
and fig. 3 specifies an increasing counter in Temporal Forge. For space, we show the most pertinent
parts of each example; the full files are available in the artifact.

4 CUSTOM VISUALIZATION
Forge integrates the Sterling visualizer [Dyer 2020]. At first glance, this simply replaces Alloy’s
default visualization style with a modern Web-based interface. However, Forge also leverages
Sterling’s support for custom visualizations to both provide domain-specific visualizations for
homework problems and to enable students to create their own visualizations. Custom visualizations
are written in JavaScript and can either manipulate the Sterling page directly, use the D3 data-
visualization library [Observable 2023], or leverage a number of built-in quick-prototyping features.
Refer to our artifact or the Forge documentation for code examples.
Custom visualizations are much more than pretty pictures. They serve a valuable pedagogic

purpose by avoiding confusion and lowering the cognitive load to understanding. Visualizations
are especially important if fm tools are to reach students outside of fm—easily-comprehensible

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:7

Table 1. Language-level comparison. The three language levels form a gradual progression toward the

expressive power of Alloy 6, while adding teaching-focused features such as explicit testing constructs

(section 5).

Language Feature Froglet Rel. Forge Temporal Forge Alloy 6
Partial-function fields, some , all quantifiers ✓ ✓ ✓ ✓
Dedicated testing constructs (section 5) ✓ ✓ ✓ ✗

Unrestricted relation fields ✗ ✓ ✓ ✓
Unrestricted relational operators ✗ ✓ ✓ ✓
one , lone , no quantifiers ✗ ✓ ✓ ✓
Scriptability (Section 6) ✗ ✓ ✓ ✗

LTL operators, infinite-trace semantics ✗ ✗ ✓ ✓
Non-compositional shorthand ✗ ✗ ✗ ✓
Global constraints, sig-specific constraints ✗ ✗ ✗ ✓

abstract sig Player {}

one sig X, O extends Player {}

sig Board { board: pfunc (Int -> Int) -> Player }

pred wellformed {

all b: Board | all row , col: Int | {

(row < 0 or row > 2 or col < 0 or col > 2) implies

no b.board[row][col] } }

Fig. 1. Froglet example: boards in tic-tac-toe. There are exactly two players: X and O. Each board contains

a partial function (pfunc) that maps row-column pairs to player names. The wellformed predicate

constrains play to valid row and column indices.

sig Node { edges: set Node -> Int }

pred wellformed { all disj n1, n2: Node | lone n1.edges[n2] }

pred connected { all disj n1, n2: Node | n2 in n1.^(edges.Int) }

Fig. 2. Relational Forge example: weighted directed graphs. Use of the join operator in the connected
predicate allows easy removal of weights from the edge relation for use with transitive closure.

sig Counter {var value: one Int}

pred someTrace { Counter.value = 0 and

always { Counter.value ' = add[Counter.value , 1] } }

Fig. 3. Temporal Forge example: an increasing counter. The syntax is quite similar to Alloy 6; following linear

temporal logic (LTL), expressions are evaluated with respect to an implicit time index; priming (') references
the next state. Thus, someTrace says that the counter initially holds 0 and advances by 1 in every step.

counterexamples can be a powerful teaching tool in security or networking classes. Industrial
modeling, where instances may be huge and tied to specific domains, can also benefit from carefully-
chosen visualizations. Indeed, one of the examples below (section 4.3) is derived from a challenge
posed by an expert Alloy user [Zave 2020], who said of the default Alloy visualization: “I never
use it, believing (rightly or wrongly) from past experience that my models are too complex.” She

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:8 Nelson, et al.

Fig. 4. Visualizing the example protocol. Left: Alloy with projection. Right: custom visualization via a sequence

diagram. The middle agent in the diagram represents the medium of communication which, following Dolev

and Yao [1983], is synonymous with the attacker.

further related [personal communication, used with permission] that she draws pictures by hand
to debug models. Custom visualization can automate such drawings and make them interactive.

To motivate custom visualizations in a pedagogic setting, we use three examples: cryptographic
protocol executions (section 4.1), river-crossing puzzles (section 4.2), and network reachability (sec-
tion 4.3). Each highlights issues with Alloy’s default visualization and shows how our custom
version mitigates the problems. Crucially, none of the issues are solved by Alloy’s (useful and
flexible) theming feature, which allows users to adjust presentation settings and project out some
detail (e.g., showing only one system state at a time). We present results on student use in section 7.2.

4.1 Example: Crypto Protocols
Figure 4 visualizes a protocol execution instance between an initiator and a responder, with an
attacker in between. The protocol has two steps: first, the initiator sends the responder’s name,
encrypted with the responder’s public key; second, the responder replies with the initiator’s name,
encrypted with the initiator’s public key.
The left subfigure shows Alloy’s default visualization with the “magic layout” feature applied

and projected to one state. Even though projection allows a viewer to step through the protocol, it
is unclear what, if anything, a viewer can learn from this without much tedious study. (The default
table-based output is no better; there are 19 rows in one learned_times relation alone.) One might
imagine filtering this flood of information via theming, e.g., by hiding encrypted terms that aren’t
used in a given state. Unfortunately, because a term might be “used” in subtle ways (generated,
used to decrypt, used to encrypt, learned from encryption, etc.) this is not currently possible to do
consistently in Alloy’s visualizer.
In contrast, the right half of fig. 4 shows a custom visualization of the same instance in Forge,

expanding on prior work with protocols in Sterling [Siegel et al. 2021]. It captures the standard
imagery of protocol message-passing in the “Alice and Bob” style [Caleiro et al. 2006; McCarthy
and Krishnamurthi 2008], with each of the four transitions represented as horizontal arrows.
This domain-specific format allows a user to see the full execution of the protocol at once, while
simultaneously eliding low-level detail that is at best unnecessary for the user to see.

4.2 Example: River Crossing
Figure 5 shows the default and a custom visualization for pairs of states in a river-crossing problem.
Observe how easy it is to see the difference between the two states in the custom visualization,
and how hard it is in the default; a reader can very easily miss all the differences—or even that
there are any differences. Furthermore, the layout of atoms in the default visualization is based

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:9

Fig. 5. River crossing states. Left: default. Right: custom.

Fig. 6. Different definitions of reachability in a single instance. Left: default visualization (showing all

definitions). Right: custom visualization for two different definitions; a clickable menu allows the viewer to

adjust which definition should be shown. Line colors vary to show different packet headers being processed

differently (not currently possible via Alloy’s theming options).

on a generic graph layout and therefore does not reflect the actual location of objects. In the first
state, the farmer is separated from the fox although they are on the near side of the river, and the
chicken and fox are together despite being on opposite sides. The custom display shows the actual
river, which is implicit in the model, and puts atoms on the correct sides of it.

4.3 Example: Network Reachability
Figure 6 visualizes a single instance for a model that contrasts four different definitions of network
reachability. Because Alloy’s default visualizer produces directed graphs, one might think that it
should do well; however, it does not.2 This example highlights two issues:

• The reachability relations contain tuples of the form (hdr, src, dst): a header that determines
how the packet is forwarded, a source, and a destination. Alloy assigns the first element hdr
to be the edge’s source, the third element dst to be the edge’s sink, and the middle element
src (the actual source node) to be the edge label.

• Since the model represents physical links as discrete atoms, they are objects in the default
visualization. Each link has a sender and receiver field, which are displayed as edges. But we
would do much better to collapse each link object into a single direct edge.

These issues could perhaps be fixed by expanding Alloy’s theming feature to let the user control
edge-label assignment and collapse nodes into edges (rather than breaking the connection when
links are hidden). However, when a student discovers a lack of theming power in their visualization,
2During a live lab session at a formal-methods summer school where this exact instance appeared, one of the students was
heard to say, “Oh, no, I don’t like this. Kill it with fire.” of the generic visualization (which appeared before the custom
visualization loaded). We believe this illustrates well the emotional experience of even a formal-methods-interested student
when first faced with such visual output.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:10 Nelson, et al.

they are unlikely to spend the effort of researching and modifying Alloy’s code to support their
vision. Instead, our experience shows that they will struggle to debug their model with the default
visualizer. Another fix might be to change the basic structure of the model, perhaps by reordering
packet tuples. Indeed, we ourselves do this sometimes, but the refactoring effort is significant. More
importantly, elements of a model are usually there for a reason and sweeping changes often have
unforeseen consequences (especially when the modeler is not yet experienced with debugging).
Custom visualizations enable modifications while avoiding the need to refactor the model.

5 TESTING: FROM ROUGH IDEAS TO RELIABLE MODELS
For students without experience in formal modeling, unit testing may be the only experience they
have approaching fm; after all, a unit test is a point-wise specification. Thus, rather than disparaging
unit tests for their incompleteness, we would do well to see them for what they are: a first step on
the road to fm. Explicit support for different kinds of testing in a student’s model can help anchor
their progression from expected input-output pairs to properties to pre- and post-conditions and
beyond. We begin with some critique of testing in Alloy (section 5.1) and then describe the design
of testing in Forge (section 5.2). Section 7.3 reports preliminary evaluation.

5.1 Alloy Critique: Testing
Testing in Alloy uses annotations on run and check commands. For example, a command telling
Alloy to produce instances in which someone is married can be converted into a test by adding
expect 1 for “should be satisfiable” or expect 0 for “should be unsatisfiable”:

run {some p: Person | some p.spouse} expect 1

This lightweight idiom is useful, but has some notable flaws:
• expect serves two different purposes in Alloy. Not only does it label satisfiability expecta-
tions, it also doubles (as of version 6.1.0) as a way to configure symmetry breaking per run:
expect 1 disables it and expect 0 enables it. Converting a run into a test can therefore
alter its output, since symmetry breaking often eliminates many isomorphic instances.

• Alloy lacks a way to separate test cases into suites within a single file. Alloy can execute a
single run or all runs, but often students are working on a specific area of their model and
want to run some tests without waiting for all tests to finish (which may take minutes).

• Writing unit tests with concrete instances can help students understand assignments and re-
inforce the semantics of satisfiability. Unfortunately, Alloy lacks explicit syntax and optimiza-
tions for this. The main challenge is that, to define a non-trivial instance in Alloy, one usually
needs to name individual atoms. This means either adding global constants via one sig dec-
larations, or naming the atoms locally with disjoint quantification (some disj x1, x2 . . .).
E.g., to define an instance of a family-tree model, we could write:

one sig Ani , Barbara , Cedric extends Person {}

Ani.mother = Barbara and Ani.father = Cedric and . . .

or, alternatively:
some disj a, b, c: Person | a.mother = b and a.father = c and . . .

Since all tests in a module must instantiate all one sig definitions, the global approach can
result in confusing overlap between tests in the same file. If every test is in its own file, the
global approach can work well, but at the added organizational cost of multiple files. The
quantification method is more compact, but can suffer from poor performance. There has
been work on adding better unit-test support to Alloy, such as AUnit [Sullivan et al. 2018],
but these are not currently merged into the official tool.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:11

1 pred fullFirstRow {(Board.board [0]).X = (0+1+2)}

2 pred someMoveTaken {some Board.board}

3 ----- New Constructs: -----

4 inst wellformed_instance {

5 Board = `Board0
6 Player = `X + `O
7 X = `X O = `O
8 `Board0.board = (1, 1) -> `X + (1, 2) -> `O
9 }

10 example moveMiddleFirst is {wellformed} for wellformed_instance

11 test expect { {someMoveTaken} for wellformed_instance is sat }

12 test suite for winning {

13 assert fullFirstRow is sufficient for winning for 1 Board

14 assert someMoveTaken is necessary for winning for 1 Board}

Fig. 7. Testing constructs in Forge based on the tic-tac-toe model in fig. 1. The example checks that a

specific board is considered wellformed. The test confirms that moves can be taken on this board. The

assert ions check that a specific pattern of moves implies a winner exists, and that no player can win until

some moves are taken. The winning predicate, not shown due to space, encodes the 3-in-a-row criteria.

Finally, testing can be good for more than just validating an existing model. In the programming
domain, tools like CodeWrite [Denny et al. 2019] and Examplar [Wrenn 2022] have shown that
executable examples are a useful way to detect early misconceptions and provide students with
immediate feedback—before they have written any code. They do this by running student tests
against a hidden, known-correct (wheat3) implementation. Ideally, we would be able to borrow this
idea from programming education to help students in a formal modeling context, but Alloy is not
built to run tests against a hidden model.

5.2 Design of Testing in Forge
Forge languages support a number of testing constructs (fig. 7):

Examples (line 4) are concrete instances that should satisfy a given formula. Educationally,
these correspond to unit tests and tend to be used early on in the modeling process (“Here
is what I think should happen. Does it look right?”). For reasons related to how examples
are implemented (section 6), the example construct is currently only available in Froglet and
Relational Forge, not in Temporal Forge.

Assertions (lines 11–12) are normative statements about implication between predicates. They
are extremely constrained by design, and can only express whether one predicate is necessary
or sufficient for another. Educationally, these (roughly) correspond to property-based tests.
(“Is an undirected tree always a directed tree?”)

Test Blocks (line 9) are a less limited form of assertions that state a given run will be either
satisfiable or not. They are useful in cases where assertions do not suffice, such as when a
student wants to check that a property is non-vacuous. (“Can my transition system even
run?”) Test blocks most closely resemble the style of testing in Alloy.

Suites (line 10) group tests within the same file. Each suite comes with a label (typically the
name of a predicate); Forge warns the user if this label does not appear in the enclosed tests.

3As opposed to incorrect (chaff) implementations. We adopt this terminology, although we use only wheats.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:12 Nelson, et al.

Pardinus

Core Language

Surface Language

Visualizer

navigation

Helper
Predicates #lang

domain/system
model

solver

Custom
Visualization

(a) Forge Architecture

#lang forge/core

(set-option! 'problem_type 'temporal)

(sig Counter)

(relation value (Counter Int) #:is-var "var")

(pred someTrace (and

(= (join Counter value) (int 0)))

(always (= (join Counter (prime value))

(add (join Counter value) (int 1)))))

(run someTrace_run #:preds [someTrace])

(display someTrace_run)

(b) Core Forge version of a temporal program (fig. 3)

Fig. 8. Forge consists of several layers. Its languages compile to a common core.

Testing early. Forge provides the ability to run all of these testing constructs against hidden
known-correct models that course staff can distribute with assignment handouts. If a student’s test
flags the known-correct solution as erroneous, it is likely that their understanding of the problem
is invalid. In either case, students receive an instance illustrating the mismatch.

6 ARCHITECTURE AND IMPLEMENTATION
Forge is built atop Racket [Felleisen et al. 2015], with a slightly-modified Pardinus backend [Macedo
et al. 2022] and modified Sterling for visualizing instances [Dyer and Baugh 2021]. Racket provides
a toolkit for building languages. Forge takes particular advantage of its tools for ide support and
custom error messages. Pardinus is a cutting-edge solver. Forge was an early adopter, and Alloy
later integrated Pardinus in Alloy 6. Sterling displays instances found by Pardinus in an interactive
Web page. Forge adds helpers to ease the creation of custom visualizations.

Figure 8a shows the architecture in more detail. Each language level contains its own surface
syntax, error messages, and expander that maps its syntax to a core Forge language. For instance,
fig. 8b shows the core-language version of the Temporal Forge program from fig. 3. The core
language is implemented as a Racket library; students do not need to engage with this core syntax
unless they wish to.
Semantically, the core and surface versions are identical. However, the core language provides

a convenient target for Racket macros and other Forge sub-languages. Because of this, Forge is
scriptable: students canwrite Racket programs to do anything from counting instances to performing
counterexample guided synthesis. We have also used this facility to create domain-specific modeling
languages (section 9). However, we have not yet built and deployed enough of these languages to
fully understand their pedagogic implications.

Performance. Because Forge is built on the same solver engine as Alloy 6, its performance is
comparable to Alloy’s in most respects. However, there are differences:

• When run, Forge models execute as Racket programs—meaning that there is a 1–2 second
delay while the Racket process loads. We plan to fix this issue for 2024 by changing the
architecture to use a persistent worker process, much like Alloy does with Java.

• Forge provides support for explicit partial instances (similar to Montaghami and Rayside
[2012]), which can greatly improve the solving speed on some problems. However, partial
instances cannot yet be specified at the per-state granularity in Temporal Forge (hence why
example is unavailable there, since example is implemented via partial instances). This
limitation is because partial instances are embodied in the upper and lower bounds passed to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:13

the solver, which apply to all states in a solution trace. Thus, while partial instances can still
be used for optimization in Temporal Forge, fine-grained control is not yet possible.

7 EVALUATION
We evaluate Forge along the three core dimensions presented in this paper: language levels (sec-
tion 7.1), custom visualization (section 7.2), and testing (section 7.3). The formal evaluation is based
on two semesters—Spring 2022 (92 students) and Spring 2023 (64 students)—of teaching with Forge
in l4s. We remark that we have deployed versions of Forge in five semesters—which have enabled
us to refine the above ideas—and several smaller events (e.g., summer schools), but do not have
rigorous data from those experiences. The remarks in section 2 about our students’ backgrounds
apply to our survey participants.

Since our survey instruments collected a variety of data, we used several methods to conduct the
analysis. For quantitative data, we built tables and graphs like those shown below. For qualitative
data, three authors worked together to categorize responses using standard practices. One author
proposed initial labels for the data, the others reviewed the codes, and the team revised the labels if
needed to reach agreement. Our artifact contains all the survey instruments used in the evaluation.

7.1 Evaluation: Language Levels
Having created language levels and deployed them in the classroom, the obvious question is: are
they effective? Just in terms of course structure, splitting the language was beneficial. In particular,
Froglet let the l4s course (which has no discrete math prerequisite) replace a first assignment that
simply drilled relational operators with a realistic modeling exercise. But here we look deeper.

To determine the concrete impacts on students, we investigate the following research questions:
RQ1. To what extent are students able to model topics of interest in the early, less expressive

language levels?
RQ2. What preconceptions do students have before moving to a new language level?
RQ3. What difficulties do students face after transitioning from one language level to another?

7.1.1 RQ1: Expressive Power. There are three types of modeling assignment in l4s: homeworks, labs,
and projects. While homeworks and labs are tailor-made to fit the current language level, projects
are free-form. Students form groups of two or three and model any domain of their choosing.
They receive guidance and feedback on proposed topics, but the specifics are entirely their own.
Naturally, their choices may conflict with the design for the current language levels.
There are two projects, a midterm and a final. The midterm takes place a few days after the

switch from Froglet to Relational Forge; Temporal Forge is not yet available. The final takes place
after the switch to Temporal Forge. Students were encouraged to use Froglet on the midterm,
but could switch to Relational Forge after meeting with a staff member. Students could use any
language on the final. During the weeks-long final project, students met twice with course staff to
report their progress and possibly receive suggestions; at these meetings, course staff may have
recommended a certain language.

Chosen topics are naturally colored by the modeling experience students have had so far, but we
believe that the breadth of topics and students’ ability to execute their vision in a given language
still gives us a valuable perspective on the expressive power of the early language levels.

Results. Table 2 details the languages students used on their projects. Midterm projects were
mostly done in Froglet (59 of 77 across both years) and included diverse topics such as: board games,
fast-food orders, chemical reactions, sports, algorithms, and data structures. For groups who chose
Relational Forge, the sticking point with Froglet was the lack of support for sets. For example, a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:14 Nelson, et al.

Table 2. Language levels that students chose for their projects. SMT projects used an SMT solver such as

Z3 [de Moura and Bjørner 2008] instead of Forge.

2022 Midterm Final
total 45 33
Froglet 36 0
Relational 8 18
Temporal N/A 13
SMT 1 2

2023 Midterm Final
total 32 26
Froglet 23 2
Relational 9 8
Temporal N/A 13
SMT 0 3

group modeling Dijkstra’s shortest-path algorithm found it convenient to store the (weighted) edge
relation as a field of type set Node -> Node -> Int rather than emulating the relation as a
partial boolean-valued function.
Most final projects used either Relational Forge (26 of 59 across both years) or Temporal Forge

(also 26 of 59 across both years). Final project submissions were always more technically demanding
than the midterms. Projects included OS memory management, grammar trees, and air traffic
control; fig. 11, which appears in section 7.2, gives a longer list of final project topics.
A handful of groups (1 midterm and 5 finals across both years) used an SMT solver for their

projects. Usually these projects needed features that neither Forge nor Alloy provide (e.g., soft
constraints). In one case (Minesweeper in 2023), the group switched for performance reasons caused
by the fact that Forge (like Alloy) uses only bit-vector arithmetic, which can be slower than what
SMT provides via theory solvers.

Interpretation. Froglet seems to suffice for most students’ first self-directed foray into modeling.
Most midterm projects did not need relations, and all but 17 (22 %) of the others could encode rela-
tions as boolean-valued functions in Froglet. Froglet did not suffice for weighted graph algorithms.
We believe this is an acceptable limitation because students had experience with Relational Forge
at this point in the semester and could switch to it; still, it may be worthwhile to consider adding
library functions for weighted graphs (analogous to the Froglet reachable helper). Anecdotally,
the variety and scope of midterm projects compare favorably to the years before Forge was in use.
Froglet may have enabled more-ambitious projects earlier by simplifying the language.
The final projects used a combination of Relational Forge (44% overall) and Temporal Forge

(also 44 % overall), with the few remaining using Froglet or SMT. We attribute the even split to two
competing factors: the familiarity of Relational Forge and the expressiveness of Temporal Forge.
Students were inclined toward Relational Forge because they had more experience with it at the
time when project proposals were due. Temporal Forge was a compelling option because of its
convenience for modeling systems that change over time—a common theme of the course.

7.1.2 RQ2: Preconceptions. Moving from one language level to the next requires students to adapt
to major semantic changes. With Relational Forge, sets become the sole datatype in the language.
With Temporal Forge, instances become infinite-trace lassos. These shifts can present a roadblock
to learners if done poorly.
To ease the transitions between language levels, we used surveys and in-class discussions to

identify preconceptions and address them before the class changed languages. For the surveys,
students worked in pairs to assess possible behaviors for a semantic construct. E.g., the question in
fig. 9 asks students currently using Froglet to rate possible outcomes for a join (.) in Relational
Forge. Ratings used two dimensions (adapted from Tunnell Wilson et al. [2018]): is the outcome
something you expect or not (e.g., an error might be surprising), and is the outcome something

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:15

Prompt: run { some c: Course | c in c.prereqs }

Q. Rate each of the following outcomes: Expected Expected Unexpected Unexpected
and Like but Dislike but Like and Dislike

SAT # # # #
UNSAT # # # #
Error: no such field c.prereqs # # # #
Error: course cannot be its own prereq # # # #

Fig. 9. Example pre-Relational-Forge survey question and responses from 2023.

you like or not (e.g., an error might be helpful despite at first being surprising). The advantage of
separating these dimensions is in forcing respondents to separate their knowledge of the language
(expected) from their opinions about it (liked). We also asked students to write in an outcome if
they preferred one that was not listed.
Figure 9 presents one question from the Relational Forge survey and the responses from 2023.

Forge returns satisfiable (SAT) for this prompt. The responses show that most students expect
this outcome, but roughly a third of them dislike it and instead prefer an error. Students who do not
expect a SAT outcome can use this example to learn why Relational Forge behaves the way it does.

Results: Froglet to Relational Forge. For the Froglet-to-Relational-Forge transition, we obtained 77
responses from 2022 and 61 from 2023. The questions focused on three features that are present in
Relational Forge but inexpressible in Froglet: can a singleton be contained in another singleton
(e.g., person in c.instructor); can a singleton be equal to a set (e.g., person = c.TAs); and
what behavior should reversing the dot operator produce (e.g., CS2 in prereqs.CS1)? Across
both years, for each of the above questions, students preferred some error behavior the most (e.g.,
expected and liked “Error: Cannot compare a person and a set.”). Free-form comments indicated a
strong call for type errors (“set[X] is a different type than X itself.”) from 43 (56 %) in 2022 and 20
(33 %) in 2023. Flipped join attracted many negative comments, from 21 (27 %) in 2022 and 6 (10 %)
in 2023, some of which were quite strong (“What a travesty that would be.”) and led to lively and
productive discussions about why the relational semantics is useful for lightweight fm.

Interpretation. The survey responses highlight ways that modeling with relations is more of a
leap than modeling with functions for students used to programming with objects, with many
unexpected and disliked behaviors relative to that prior experience. Survey comments informed
followup lecture content to clarify points of confusion. More generally, the survey revealed a
preference for noisy failures over silent ones (error rather than unsat), which motivates future
work on all Forge languages (section 9).

Results: Relational Forge to Temporal Forge. For the Relational-to-Temporal transition, we obtained
71 responses from 2022 and 59 responses from 2023. The survey focused on the meaning of four

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:16 Nelson, et al.

temporal operators: eventually, always, until, and next_state (in LTL: F, G, U, X). Students
had no prior exposure to these operators and the survey did not introduce them; its purpose
was to identify potential upcoming misconceptions stemming from the English-language names
for the operators. Each survey question presented a formula, a trace describing a system, and
several possible outcomes of matching the trace against the formula. We adapted this format
from Greenman et al. [2023]. Traces were given in graphical form, not via Forge syntax.
We found similar responses and misconceptions to what the prior authors uncovered; e.g.,

students can be confused about the meaning of a formula without a temporal operator attached,
often prepending an implicit always . We also observed confusion about whether next_state

applies to one state or to several. Saarinen [2021] observed this issue but Greenman et al. [2023]
did not; perhaps the issue is common among beginners but easy to correct.

One surprising outcome is an apparent mixup about functions versus formulas. For example, on
the formula next_state{next_state{eventually{Red}}} , a student commented: “I feel like
it doesn’t really make sense to call next_state on eventually because eventually should
already evaluate to true or false, and there is no actual formula for next_state .” (emphasis ours).
In fact there is no “call”, and the eventually subformula does not evaluate to a boolean before the
next_state operator is evaluated. This mixup is surprising because students had spent almost
two months working in Froglet and Relational Forge, where quantifiers are evaluated similarly to
temporal operators. It would therefore seem that claims of conceptual transfer from first-order
quantification to temporal quantification are ill-founded in some cases; students may default to
their programming intuitions even in a formal logic context.

7.1.3 RQ3: Difficulties Using New Language Levels. After each language change, we asked students
to complete in-class surveys about stumbling blocks they encountered with each new language
compared to the previous language level. Our goal was to identify specific issues qualitatively.

Results: Relational Forge. We obtained 54 Relational Forge responses. While a few students
preferred working in Froglet (“The change to everything being treated as a set really threw me
off.”), most were happy with Relational Forge. One student wrote that Relational Forge is “a lot
more useful and intuitive”; a few others appreciated its set-based semantics (“the fact that the
underlying machinery in Forge is sets makes it all the better since I come from a more mathematical
background.”). Yet, there were also many reports of trouble with relational operators (“it took me
a while to really understand some of the operators like the dot operator and transitive closure
operator and that everything was a set”; “especially -> and ^ were tough [...] getting problems
with arity is hard to picture.”).

One survey question asked which language students would use now if they could redo their
midterm project. Whereas only nine midterm groups used Relational Forge (table 2), 29 respondents
chose Relational Forge. These numbers suggest that students were very comfortable with Relational
Forge after the transition. Another six chose a mix of languages and eight students did not have a
strong opinion.

Results: Temporal Forge. We received 32 Temporal Forge responses. Student opinions of Temporal
Forge were strongly positive overall: 17 responses preferred working in the temporal language
(“Writing transition statements in normal Forge was a confusing mess. On the other hand, these
transitions were much easier to write (and then later read!) in Temporal Forge.”; “Having to specify
a ‘State’ sig for (almost) every model was tedious, and I appreciate how Temporal Forge handles
state for you.”). If they could revisit their midterm project, 13 responding students (nearly 41%)
would have used Temporal Forge. This is encouraging with regard to the value of Temporal Forge,
and the temporal fragment of Alloy 6, in teaching contexts.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:17

Students did raise some concerns about the conceptual load of infinite traces (“I think understand-
ing the counterexamples is harder, because it could involve infinite states and loops, and we’d need
to go through all the states to find the actual contradicting state.”; “The most confusing concept for
me in Temporal Forge was understanding lasso traces; I was particularly confused with how this
prevented us from modeling deadlocks.”) and how the expression evaluator worked in the presence
of implicit traces (“Harder to use the evaluator because you have to use next state.”). One student
reported confusion with the priming operator, which delays the interpretation of a sub-expression
until the next state: “It is counter intuitive to me that accessing a field of a Sig in the future does not
actually return that Sig’s field. E.g. Person '.Name != Person.Name '”. This comment highlights a
way that relations and temporal operators can combine awkwardly—especially when programming
intuitions are applied.

Interpretation. Concepts like transitive closure remain challenging even halfway through the
semester, pointing to the potential value of built-in helpers like reachable even in less restricted
languages. Responses did not give a clear answer to whether the exact restrictions of Froglet are
ideal, but it seems clear that some restrictions on the language in the beginning are helpful. In
terms of pedagogy, it could be worthwhile to reveal the set-based nature of Forge earlier, while the
linguistic restrictions of Froglet are still in effect.
Students found Temporal Forge appealing, but unsurprisingly reported that transitioning to

an infinite-trace semantics was difficult. The semantics of priming, especially, were reported as
causing confusion. Syntactic checks to spot misuse of priming and other operators (similar to
current checks for join) would be helpful in both Temporal Forge and Alloy.

7.2 Evaluation: Custom Visualization
We have three research questions about the impact of custom visualization on students:
RQ1. What benefits and frustrations impact students as consumers of custom visualizations written

by others?
RQ2. What benefits and frustrations impact students as producers of their own visualizations?
RQ3. What custom visualizations do students actually create, and what sorts of tools would ease

their creation in the future?
The first question gives us insight into the value of custom visualizations, separate from the
overhead of creating one. This is vital for assignments and presentations in a formal-methods
course, and enables the use of fm tools like Forge in other contexts such as security or distributed
systems. The remaining two questions help us understand how the process of authoring custom
visualizations could be improved.

7.2.1 Experimental Setup. We had two experimental phases. In both 2022 and 2023, students
received example visualizations for four modeling activities: the 𝑛-queens problem, a pair of river-
crossing puzzles, the dining-philosophers problem, and tic-tac-toe games. The course staff provided
instruction on building visualizations with demos in class, a tutorial document, and office hours.

In 2022, students were required to produce a custom visualization on their final project (or request
an exemption; only 3 of the 27 groups did so). After the semester ended, we sent out a brief survey
to collect feedback with which to improve the visualizer. In 2023, we added a library to Sterling
called D3FX that helps with the visualization of tables and other common patterns. The final and
midterm projects suggested—but did not require—that students make their own visualizations,
which allowed us to evaluate patterns of use without coercion. Students completed a required
reflection after finishing their work. They also completed surveys after using each of our four
example visualizations.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:18 Nelson, et al.

7.2.2 Formative Results. Students submitted 24 custom visualizations in 2022, covering a variety
of domains including card games, group theory, graph algorithms, and election systems. We found
several common elements among the visualizations:

• Domain-specific layouts, like the sequence diagrams in section 4.1, were common. Binary
trees, sports-field and board-game layouts, and even group theory have well-understood
visual idioms that students tended to use (or were frustrated by difficulties creating).

• Positional factors, like those in river-crossing puzzles (section 4.2) were common. Students
modeling binary trees needed the left and right children of a node to be positioned properly,
those modeling sports fields had a layout in mind, and so on.

• Some students added interactive elements, such as custom buttons to explore a trace.
• Finally, tables appeared in a variety of contexts. Students made custom tables to see a game’s
full progression over time, to organize a weekly schedule, or to arrange a panel of buttons.

After the semester ended, we sent out an exit survey and received six responses. When asked
for (non-exclusive) reasons for frustration or lack of success, students selected “limited time”
(5 responses), “lack of JavaScript experience” (3 responses), and “issues with D3 or other data
visualization framework” (1 response). We received three free-form responses, which asked for
improved documentation and reported bugs in visualizations. Lack of JavaScript experience was
also a major factor at office hours, pointing to the need to simplify the task of creating visualizations.

7.2.3 RQ1: Benefits and Frustrations as a Consumer. For experiences with using the custom vi-
sualizations students were given, we conducted in-class surveys immediately after assignment
deadlines. We present representative quotes and takeaways below.

Benefits:
• Untangling the default:
Some students found the default visualization challenging and time-consuming to read
(“The [default graph] was very messy and hard to read, so a custom one was pretty much
required.”). It is worth noting that Sterling’s default is an improvement over Alloy’s (see
Dyer [2020]). The custom visualizations were especially valuable on assignments (“This
visualization made it much easier to actually understand the instance.”) even if the design
was crude (“Although it was not very pretty to look at it did the job.”). Takeaway: Students
find custom visualizations to be helpful enough to merit their inclusion in assignments.

• Domain-specific idioms:Many students appreciated domain-specific idioms. For example,
being able to visualize an entire trace at once was useful (“The frame by frame linear
visualization of different states was very helpful and something that is missing from Forge’s
default visualizer.”). They reported that this helped to keep track of different objects (“easier
to track movements of individual [goats and wolves].”), but wished for a clearer presentation
of state-to-state changes (“I would appreciate arrows or some kind of emphasis on what
changed in the transition between states.”). Takeaway: Students find domain-specific display
formats and other non-standard visual idioms useful, when they are appropriate. When
presenting multiple states at once, it is useful to highlight changes between each.

• Debugging or manual validation: Some students used the custom visualizer for debug-
ging on homeworks (“Our implementation initially failed, by observing the visualization
we know it would get to a deadlock.”). Others reported that they were able to use the default
table view to debug, only reaching for the custom visualizer at the end of the assignment
(“I didn’t use it for debugging really but for verification of my results.”). Takeaway: Custom
visualizations are often (but not always) useful for debugging. Even when they are not, they
can still aid manual validation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:19

Frustrations:
• Unnecessary customization: Some students reported that they continued to use the
default, especially on simple assignments (“I think with these [river-crossing] models the
visualization isn’t completely necessary. I didn’t personally use it.”) Takeaway: Not everyone
will find custom visualizations useful.

• Misleading names:Many of the frustrations students encountered were due to specific
issues with the visualizers that we provided. Object labels were sometimes ambiguous
(“hard to check if it was a certain animal’s crossing pattern that was causing the issue,
or if we were magically making a new animal.”). This led to some students finding the
river-crossing visualizer “basically useless.” Students were also confused when the same
label (“R”) was used for two different things (“I was a bit confused with the use of R in the
visualization. [...] it represented that they were holding their right chopstick, but for the
chopstick sigs, it meant that a chopstick was requested.”). Finally, a lack of naming was
sometimes also an issue (“it did not labelWHICH goat/wolf was moving.”). Takeaway: ensure
consistent labeling of objects across state visualizations, and avoid ambiguity in labeling.

• Implicit ordering: Implicit ordering in object names caused some students confusion (“I
initially thought that the ordering of the smiths represented their order in the table, but
it does not. I think putting the Smiths in order would make the visualization even more
helpful.”). Takeaway: ensure that any ordering on objects, including the ordering on names
(e.g., Person0 , Person1), is clearly reflected in the visualization. Moreover, important spatial
information, such as the circular ordering on seats at a round table, should be explicit.

• Display bugs: Some students experienced issues with the visualization environment itself.
Text was sometimes cut off or scrolling made difficult (“the time text display is cut off by
default, leading me to think that something was broken with my time variable.”; “Sometimes
the visualization will be too big to fit on the page.”). The visualization UI itself could also
be frustrating (“I wasn’t aware that after we click next, we need to re-click Run every time
to see the script applied.”) Takeaway: while the UI was functional, further quality-of-life
development is needed.

• Lack of robustness to deviation: Finally, and most importantly, a visualization must be
robust against buggy models. Course staff built visualizations with reference to a known-
correct model, but students applied these visualizations to their own models. Naturally,
students visualized imperfect models, revealing lack of robustness in our visualizer (“before
my model was working, the arrows were pointing in the wrong direction.”; “I think it would
be useful to omit the arrows until a model is correct.”; “I don’t trust it as a way to verify
that my code is correct.”). E.g., our reference model disallowed a boat from crossing the
river without any occupants, and so our visualizer produced confusing results if a student’s
model did not do the same. Takeaway: visualizations should be robust against incomplete
models and other issues that may arise, and must not be misleading in such cases.

7.2.4 RQ2: Benefits and Frustrations as a Producer. The retrospective surveys also uncovered useful
information about producing visualizations for the midterm and final projects.

Benefit:
• Building own visualizations: Students who built custom visualizations echoed the
positive sentiments in section 7.2.3 (“It was just better for being able to picture how our
model was doing. It was very difficult to tell if it was behaving properly in tabular form.”;
“The visualization uses images of cards, which is so much more intuitive”; “I made the
visualization mainly to help with debugging the Forge model and for my own personal
purposes.”). The group who produced the ambitious Rust model in fig. 10 found visualization

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:20 Nelson, et al.

Fig. 10. Visualizing instances from student-authored final project on modeling ownership in Rust. Default

(left) versus custom (right, Raw D3). Images used with permission from Thomas Castleman and Ria Rajesh.

instrumental to their success: “Without custom visualization, I don’t think we could have
done this.” Takeaway: Students found it worthwhile to produce their own visualizations.

Frustrations:
• Time investment: By far the most common issue reported (21 of 85 responses) was the
time involved in making a custom visualization (“It seemed really complicated and we
preferred to spend more time trying to understand our model better and making sure it
worked through tests than just visuals.”; “ultimately we ran out of time/chose to spend it on
other things like testing and debugging.”). One respondent whomade a custom visualization
said they would revert to the Forge default in the future. Takeaway: Reduce the time needed
to make a visualization.

• JavaScript: Even with our 2023 improvements and D3FX helper library (section 7.2.1),
students had trouble programming their visualizers in JavaScript. Some had trouble un-
covering the types of environment variables (“it made references to unbound variables
that seemingly shouldn’t exist but were injected by Forge, and it was difficult to know
what the types of these variables would be.”). Others asked for further documentation (“we
ran out of time and thought there wasn’t enough resources for us to learn / figure out
how to create one.”). One student reported that visualizers were “Impossible to debug.” At
least one group started their visualizer using the helper library and then switched to other
options later in the project (“when using D3FX, we ran into some issues with alignment
[...]. Switching to plain D3 gave us control.”). Takeaway: JavaScript (which students were
not required to know) is a barrier for students and teaching it should not be a priority in a
formal-methods course. Forge should adjust how simple visualizations are written so that even
a helper library is unnecessary.

7.2.5 RQ3: Kinds of Visualizations. Figure 11 presents a showcase of 2023 final project topics and
associated visualizations. There were 26 projects in total and 18 created some amount of custom
visualization. Three groups used the Z3 [de Moura and Bjørner 2008] SMT solver, and so did not
interact with Sterling; another 5 used the default table or graph view exclusively. Of the 18 groups
that did create a custom visualization, 6 used the helper library (D3FX) we provided. Another 6
used D3 directly (Raw D3). On inspection, 5 of the Raw D3 visualizations were adapted from similar
staff-provided examples that used D3. The other Raw D3 group created an ambitious visualization of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:21

Title Visualization

2048 D3FX
Air Traffic Control D3FX
Among Us Default Table
Chopsticks Game Default Table
Chopsticks Game (1) D3FX
Chromatic Sudoku Raw D3
Connect4 Raw D3
Gomoku div-based
Grammar Modeling Raw D3 & Default Graph
𝑘-Means Clustering Z3 Library
Minesweeper div-based
Minesweeper (1) Z3 Library
Minesweeper (2) D3FX
OS Memory Mgmt. Default Graph
Online Payment Sys. Default Table
Polyomino Packing Z3 Library
RPG Randomizer Default Graph
Runway Traffic div-based
Rust Lifetimes Raw D3
Skyscrapers Raw D3
Spikeball D3FX
Sudoku Raw D3
TA Queue div-based
Texas Hold’em div-based
Triple Triad div-based
Uno D3FX

(a) Spikeball (D3FX)

(b) Uno (D3FX) and Triple Triad (div-based)

(c) Texas Hold’em (div-based)

Fig. 11. Showcase of 2023 final projects. Left: Project titles and visualization modes. Right: Examples of D3FX

and div-based-based visualizations. Images used with permission from Noah Atanda, Madison Lease, and

Priyanka Solanky (Uno); Michael Donoso, Haley Flores, and Yishan Liu (Spikeball); Nick Bottone, Sebastien

Jean-Pierre, and Robert Murray (Triple Triad); and Matthew Boranian and Austin Lang (Texas Hold’em).

borrowing in Rust that needed fine-grained control for overlapping colored regions (fig. 10), which
D3FX did not provide. The final 6 groups (labeled as div-based) created their custom visualizations
by manipulating the Sterling page directly. These were adapted from a staff-provided example.
For the midterm, there were more groups (because the project teams were smaller) and fewer

groups made custom visualizations. There were 32 groups and 11 made visualizations: 3 of these
used D3FX, 4 used Raw D3, and 4 a div-based visualizer. Required reflection surveys for both
projects generally confirmed the list of features from 2022, except for one group that wanted to
create animations, which our helper library did not support.

7.3 Formative Evaluation: Testing
In the Spring of 2023, we gathered formative data to answer three questions:

RQ1. How did students use the ability to write tests that query a correct (wheat) solution?
RQ2. What difficulties or frustrations did students experience around querying correct solutions?
RQ3. To what extent did students use each of the Forge testing constructs?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:22 Nelson, et al.

We do not claim to measure learning efficacy or even to fully answer the above questions. Rather, our
aim in this section is to give an initial report on issues found to drive further development. Indeed,
we found several issues with how students used testing constructs, in particular the assertions.

Experimental Setup. We provided students with hidden, known-correct (wheat) solutions for 2
homework assignments: river (three river-crossing logic puzzles) and memory (two algorithms for
automated memory management). Students were able to switch between running tests on their
own model and running them versus the wheat solution. Our use of wheats is guided by prior work
on Examplar [Wrenn 2022] with one notable departure: we supplied only one wheat because, from
our perspective, models are not overconstrained by implementation details in the same way that
programs are [Wrenn et al. 2018]. We also examined patterns of testing in students’ midterm (mid)
and final project (fin) submissions, since on projects students neither had access to wheats nor any
specific guidance on testing beyond the expectation that they test.
Forge provides an opt-in mechanism for logging models, test files, and solver results. Fewer

than 20 students opted in for river and memory; for these, we collected information on how they
queried the wheat. This let us observe work-in-progress attempts at testing. However, due to the
opt-in nature of logging (which we implemented out of respect for students’ privacy), we have no
guarantee that they kept logging enabled consistently. Moreover, this view is shallow: we have no
insight into how students reacted to the feedback from the system, only the details of their next
query (if any).

7.3.1 RQ1: Use of Wheats. Roughly 90% of students’ submissions for river and memory referenced
the wheat. Logs contained 760 runs for river and 1168 runs for memory where student tests
disagreed with the wheat. On river, most wheat-failing tests were examples, not assertions (144
assertions, 19%). In contrast, students wrote many assertions for memory (894 assertions, 77%).

Interpretation. The data show that students did use the wheat to check their understanding of
the problem. Our data suggest that wheat use is common. However, students who opted out of
logging have used wheats differently. We believe that the increase in assert use between river
and memory is due to the course’s evolution from tests to properties, which are naturally expressed
as assertions rather than examples.

7.3.2 RQ2: Wheat Frustrations. For both river and memory, we encouraged students to submit
critiques when they believed the wheat was flawed. This both supported students’ thinking critically
about modeling choices and gave us visibility into unexpected complications. We received 10
responses for river and 5 responses for memory. As a representative example, the river-crossing
puzzles in river involved using a flashlight or boat, sometimes under a time limit. Students wrote
and tested a predicate for well-formed states. Reports revealed:

• Some students were surprised that the wheat allowed a negative timer value. This was
deliberate, since Forge integers overflow. The report prompted a review of the topic.

• Questions were raised about whether a solution state predicate needed to use the location of
the flashlight at all, given that the win condition was entirely in terms of people crossing.
This was a good critique of our wheat, which was arguably over-constrained.

Interpretation. While wheats sometimes reinforce core concepts, they can also put artificial
restrictions on students. Because a major goal of these assignments is giving students practice with
breaking down and specifying properties, providing an exact breakdown in the handout would
be self-defeating. Yet, casting the wheat as a unique correct solution is often not appropriate—as
Wrenn [2022] notes for programming. It is also vital that a wheat not over-constrain. One way to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:23

projects using constructs avg(median) uses of constructs
mid fin river memory mid fin river memory

total # submissions 32 26 62 59
w/ test suite 19 20 N/A N/A N/A N/A N/A N/A
w/ test expect 19 20 1 84 5 (6) 14 (8) 0 (0) 4 (4)
w/ example 30 7 62 55 21 (18) 21 (15) 19 (13) 8 (6)
w/ necessary 2 2 6 14 2 (1) 1 (1) 8 (7) 5 (5)
w/ sufficient 0 0 4 15 1 (1) 0 (0) 8 (7) 5 (5)

Fig. 12. 2023 Forge testing by assignment. Because students were given a stencil for river and memory that

contained suite blocks for each predicate, those assignments cannot be used to measure test-suite adoption.

address these issues is through trial-and-error debugging. Developing systematic methods is an
important topic for future work.

7.3.3 RQ3: How Did Students Write Tests? Figure 12 reports how many groups used each testing
construct and how many tests they wrote with each construct on river, memory, the midterm (mid),
and the final (fin). On the river and memory assignments, students were required to write some
tests using assertions. They went beyond the requirements to write more examples, but generally
did the minimum with all other constructs. river and memory required students to write their
tests in a separate file; fig. 12 includes only these tests to avoid double-counting or misjudging
student intent. Although students were told to do some testing on the projects, we did not mandate
use of example , test expect , test suite , etc. Most groups used test expect extensively.
The example construct was common on the midterm but not the final.

Interpretation. Students used examples heavily on river and memory; river prompted them to
do so. Students tended to favor test expect far more on their midterm and final projects; in the
latter case, it may be because example was unsupported in Temporal Forge—yet more than half
of groups used test expect on the midterm, before Temporal Forge was introduced. There is
clear value to the flexible form, especially when models are complex and examples are onerous to
write. With a better interface (section 9), we expect more examples. In contrast, students did not
use necessary and sufficient assertions on their projects; those forms were clearly unwieldy.

8 RELATEDWORK
Forge is based on Alloy 6 and the Pardinus [Macedo et al. 2022] engine. The temporal features in
Alloy 6 were first developed in the Electrum tool [Macedo et al. 2016]. Forge differentiates itself
from these though its support for language levels (section 3), custom visualizations (section 4),
and broader testing constructs (section 5). Sterling [Dyer 2020] is the foundation for Forge’s
visualizations, but with extensions prompted by our formative experiment in 2022 (section 7.2).

Language levels are not new, especially for teaching [du Boulay et al. 1999; Felleisen et al. 2001;
Findler et al. 2002; Gilsing et al. 2022; Holt and Wortman 1974; Homer et al. 2014]. Likewise, others
have integrated Racket and solvers—e.g., Rosette [Torlak and Bodik 2014], a tool for building
solver-aided languages. Andersen et al. [2020] extend Racket with live, domain-specific ides. These
efforts are either unrelated to fm, neglect issues like visualization, or do not focus on pedagogy.

Many others have worked on visualization in Alloy. A representative sample of this work includes
magic layout [Rayside et al. 2007], the visualizer for DynAlloy [Bendersky et al. 2013; Regis et al.
2017], and the Web-based visualizer in Alloy4Fun [Macedo et al. 2021]. Couto et al. [2018] propose
a broader range of potential layout options for Alloy, including grids and linear orderings. None

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:24 Nelson, et al.

of these works enable a truly custom visualization like those seen in section 4. Only Alloy4Fun is
based on data from a live course.
The full Forge system most closely resembles the excellent yet little known and, we would

argue, under-recognized GUPU pedagogic Prolog system [Neumerkel and Kral 2002; Neumerkel
et al. 1997]. GUPU presents students with a fragment of Prolog and modified syntax that were
built with teaching in mind, along with testing capabilities and “viewers” that translate answer
substitutions to graphical form. GUPU even allows students to query a hidden solution and gives
tailored feedback based on their tests. The main difference lies in the language: GUPU focuses on
one sublanguage for declarative programming, whereas Forge gives a progression of languages for
lightweight modeling atop a platform that enables domain-specific modeling languages. Another
interesting difference is that in GUPU, viewers are themselves written in Prolog, whereas in Forge,
they are written in JavaScript (section 9). It is unclear which approach is better, although some of
our students noted JavaScript as a barrier (section 7.2.4).
AT(P) [Beierle et al. 2004a] provides a rich set of testing constructs for Prolog, as well as

automated assessment and feedback on preliminary tests. AT(P) includes analogues to example ,
necessary , etc. but also forms that Forge does not currently support, such as solution counting.
AT(P) does not provide a progression of languages or custom visualization, although the underlying
framework [Beierle et al. 2003, 2004b], can support other languages (e.g., Scheme).
AUnit [Sullivan et al. 2018] extends Alloy with structured testing and related features such as

fault localization [Wang et al. 2020] and automated repair [Wang et al. 2018]. AUnit separates
tests from other commands and supports examples, resolving some of our critiques in section 5.
However, AUnit does not enable running tests versus hidden known-good models, which means it
is not an immediate fit for our needs. Alloy4Fun [Macedo et al. 2021] supports “challenges” where
students attempt to match a hidden predicate. In contrast, wheats (section 5.2) are meant to help
detect conceptual issues on larger assignments.

9 DISCUSSION
We close with a few general observations and a list of planned future directions for Forge.

Key Takeaways. From a linguistic point of view, we believe there are two key principles to take
away from this work:

(1) In general, decompose your complex language into a sequence of increasingly sophisticated
layers. We believe this principle can apply to many languages used in formal methods, which
have a variety of complex operators, clever shorthands, and so on. These features are valuable
to experts but can be confusing to beginners.

(2) In the context of relational modeling languages such as Alloy, consider startingwith functional
specifications and delaying relational (and temporal) operators until students have basic
skills and are ready for problems that motivate these operators.

From a presentation perspective, we believe the evidence shown for custom visualizations—in
terms of highlighting salient information (figs. 4 and 6), reducing clutter (figs. 4 and 6), and avoiding
outright confusion that might almost be considered misinformation (fig. 5)—is very compelling.
Moreover, because Sterling is not just Forge-centric (it speaks the same protocol as Alloy and was
originally created for Alloy), visualizations created in Sterling are, in principle, usable for instances
produced by other tools.
Finally, we believe there is a useful progression from testing to formal methods. This has been

discussed more narrowly in prior work, e.g., for property-based testing [Wrenn et al. 2021]. We
believe we have offered some useful guidelines about how to proceed here, and also linked the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

Forge: A Tool and Language for Teaching Formal Methods 116:25

topic to other work in computing education. However, some care is needed. In regard to testing,
this paper is a preliminary effort; a careful treatment is a topic for future work and course offerings.

Students and Telemetry. Forge includes an optional telemetry system that collects snapshots of
every file submitted to the language for feedback. To opt in, students must replace a default string
at the top of their assignment with an anonymous ID. In principle, these IDs let us build a timeline
of file snapshots and discover, e.g., how students reacted to a particular error message. However,
we have seen increasing reluctance toward logging among both students and course staff. This
may be a local issue or part of a larger trend; we merely note it. Students were certainly not shy
about leaving (sometimes extensive, often useful) feedback in anonymous surveys.

Towards a Testing Recipe. Students struggle with testing their models early in the development
process. Even if the tool provides testing features, a methodology is needed. In the programming
context, works like How to Design Programs [Felleisen et al. 2001] equip students with a design
recipe so they can proceed systematically toward correct solutions with minimal feedback from
course staff. We envision a testing recipe for student models that begins with examples of how
each predicate should behave, and eventually evolves into asserts that partially specify a correct
solution. In 2023, we taught a variation of this recipe to students, but they did not use it—perhaps
because the methodology was tied to running against hidden correct solutions (section 5) that were
also involved in the grading process. We suspect that a recipe will help students structure their
modeling but further work on separating the essential ideas is needed.

Instance Examples and Comprehension. Currently, the only way to write examples in Forge is
through the coding interface. Students must painstakingly describe object graphs textually (fig. 7)
A projectional editing interface (e.g.,[Andersen et al. 2020; Chugh et al. 2016; Hempel et al. 2018])
or a graphical interface akin to the one Crucible [Emerson and Sullivan 2023] provides would
eliminate typo-level errors and give students more time to focus on quality tests. Relatedly, since
the instances students receive when a test fails (section 5.2) might be large, it would be useful to
categorize the failure, perhaps by leveraging the auto-grading suite for the assignment, and provide
hinting in natural language alongside the instance.

Domain-Specific Modeling Languages. As mentioned in section 6, one can create domain-specific
modeling languages that compile into Forge’s core language. By way of example, Forge supports
a custom language for writing cryptographic protocols, inspired by the input language of the
CPSA [Doghmi et al. 2007] protocol-analysis tool, and was used to generate the example shown
in section 4.1. While many domains do already have powerful formal tools (e.g., [Blanchet 2016;
Doghmi et al. 2007] for protocols), Forge can provide simplified forms of their languages to give
students a quick taste of what fm can do. We believe there is great value to creating these kinds
of domain-specific modeling languages, where students are introduced to fm through the use
of domains that they understand well or care about (whether cryptography or river puzzles or
baseball). Combining domain-specific modeling languages with domain-specific visualizations
would create an epistemically-closed universe where students can focus on the domain alone, and
the general-purpose nature of Forge hides until needed (and never appears, in some settings).

Other Future Work. Development on Forge is ongoing. Our evaluation points to numerous
areas for improvement, some of which entail a bit of engineering, and others that are research
topics in their own right. For example, students objected to mixing singletons and sets in Relational
Forge (section 7.1); what would the consequences be of enforcing further restriction on comparison?
Students found Temporal Forge convenient for stateful models; given that relations and temporal
operators seem independent, why not offer a Temporal Froglet language level? Priming expressions

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

116:26 Nelson, et al.

confused students; what sorts of static checks are possible? Can the lessons from section 7.2 and
systems like GUPU [Neumerkel et al. 1997] lead to a Sterling where students do not need learn
JavaScript to write custom visualizations? What is the pedagogic relationship (if any) between
language levels and the theories provided by SMT-based tools? Finally, and more generally, we
believe that learning modeling, how to precisely express invariants, etc. are valuable for building
engineering skills outside of formal methods. However, we have no rigorous evidence for this. A
longitudinal study of students in advanced computer-science courses could be informative.
Our ultimate goal is not to fragment the Alloy community. Rather, we hope that insights from

our pedagogic context are useful in helping improve both tools. We also plan to incorporate
pedagogically-useful additions to Alloy as they appear; for instance, records [Brunel et al. 2023]
could be worthwhile in our setting.

DATA-AVAILABILITY STATEMENT
The Forge tool is Open Source and hosted on a public repository (section 1). This paper has an
artifact that includes Forge, its documentation, the survey instruments, and all necessary code to
support the modelling and visualization examples in the paper [Nelson et al. 2024].

ACKNOWLEDGMENTS
We are grateful to the Alloy and Electrum teams for creating excellent tooling we could build on.
Our thinking on gradual fm was profoundly influenced by Daniel Jackson, whom we also thank for
numerous thought-provoking conversations. Pamela Zave contributed many useful discussions,
including of visualization challenges. Shriram Krishnamurthi thanks Markus Triska for pointing
him to GUPU.

We owe a debt to the many students over the past decade who have taken our courses in Alloy
and Forge, especially to recent students for their helpful feedback and survey contributions. All
project images were used with permission; for this we thank especially Thomas Castleman and Ria
Rajesh (Rust); Noah Atanda, Madison Lease, and Priyanka Solanky (Uno); Michael Donoso, Haley
Flores, and Yishan Liu (Spikeball); Nick Bottone, Sebastien Jean-Pierre, and Robert Murray (Triple
Triad); and Matthew Boranian and Austin Lang (Texas Hold’em). We deeply appreciate other work
that students such as Lucy Reyes, Abigail Siegel, Mark Lavrentyev, Emmie He, and others did with
Forge while they were at Brown. We particularly thank Anna Ohrt, who worked on enhancements
to Forge’s visualizer that will be deployed in the Spring of 2024, but did not yet feature in the tool
evaluated here.
We are grateful for support from the US NSF through grants SHF-2227863, SaTC-2208731, and

CCF-2030859. Ben Greenman thanks the CRA for support through the CIFellows project.

REFERENCES
alloytools.org. 2023. Alloy Analyzer Downloads. https://alloytools.org/download.html. Accessed August 27, 2023.
alloytools.org. 2023a. Case study applications of Alloy. http://alloytools.org/citations/case-studies.html. Accessed August 1,

2023.
alloytools.org. 2023b. Courses using Alloy. http://alloytools.org/citations/courses.html. Accessed August 1, 2023.
alloytools.org. 2023c. Translation into Alloy. http://alloytools.org/citations/language-translations.html. Accessed August 1,

2023.
Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding Interactive Visual Syntax to Textual Code. PACMPL

4, OOPSLA (2020), 222:1–222:28. https://doi.org/10.1145/3428290
Christoph Beierle, Marjaa Kulaa, and Manfred Widera. 2003. Automatic Analysis of Programming Assignments. In DeLFI.

GI, 144–153. https://dl.gi.de/handle/20.500.12116/15081
Christoph Beierle, Marija Kulaš, and Manfred Widera. 2004a. Partial Specifications of Program Properties. In TeachLP.

17 pages. https://ep.liu.se/ecp/012/ecp04012.pdf. Accessed 2024-01-24.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2227863&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2208731&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030859
https://cifellows2020.org
https://alloytools.org/download.html
http://alloytools.org/citations/case-studies.html
http://alloytools.org/citations/courses.html
http://alloytools.org/citations/language-translations.html
https://doi.org/10.1145/3428290
https://dl.gi.de/handle/20.500.12116/15081
https://ep.liu.se/ecp/012/ecp04012.pdf

Forge: A Tool and Language for Teaching Formal Methods 116:27

Christoph Beierle, Marija Kulaš, and Manfred Widera. 2004b. A Pragmatic Approach to Pre-Testing Prolog Programs. In
INAP and WLP. Springer-Verlag, 294–308. https://doi.org/10.1007/11415763_20

Pablo Bendersky, Juan Pablo Galeotti, and Diego Garbervetsky. 2013. The DynAlloy Visualizer. In Latin American Workshop
on Formal Methods, Vol. 139. 59–64. https://doi.org/10.4204/EPTCS.139.6

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs. In
TACAS. Springer, 193–207. https://doi.org/10.1007/3-540-49059-0_14

Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif. Foundations
and Trends in Privacy and Security 1, 1–2 (2016), 1–135. https://doi.org/10.1561/3300000004

Edwin C. Brady. 2013. Idris, A General-Purpose Dependently Typed Programming Language: Design and Implementation.
Journal of Functional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/S095679681300018X

Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. 2023. Adding Records to Alloy. In ABZ. Springer, 212–219.
https://doi.org/10.1007/978-3-031-33163-3_16

Carlos Caleiro, Luca Viganò, and David Basin. 2006. On the Semantics of Alice&Bob Specifications of Security Protocols.
Theoretical Computer Science 367, 1–2 (2006), 88–122. https://doi.org/10.1016/J.TCS.2006.08.041

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together at
Last. In PLDI. ACM, 341–354. https://doi.org/10.1145/2908080.2908103

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In ICFP.
ACM, 268–279. https://doi.org/10.1145/357766.351266

Rui Couto, José Creissac Campos, Nuno Macedo, and Alcino Cunha. 2018. Improving the Visualization of Alloy Instances.
In F-IDE@FLoC, Vol. 284. 37–52. https://doi.org/10.4204/EPTCS.284.4

Leonardo de Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In TACAS. Springer, 337–340. https://doi.org/10.
1007/978-3-540-78800-3_24

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular Verification of Code with SAT. In ISSTA. ACM,
109–120. https://doi.org/10.1145/1146238.1146251

Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and Raymond Pettit. 2019. A Closer
Look at Metacognitive Scaffolding: Solving Test Cases Before Programming. In Koli Calling. ACM, 11:1–11:10. https:
//doi.org/10.1145/3364510.3366170

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. 2007. Searching for Shapes in Cryptographic Protocols. In
TACAS. Springer, 523–537. https://doi.org/10.1007/978-3-540-71209-1_41

Danny Dolev and Andrew Chi-Chih Yao. 1983. On the Security of Public Key Protocols. IEEE Transactions on Information
Theory 29, 2 (1983), 198–207. https://doi.org/10.1109/TIT.1983.1056650

Benedict du Boulay, Tim O’Shea, and John Monk. 1999. The Black Box Inside the Glass Box. International Journal of
Human-Computer Studies 51, 2 (1999), 265–277. https://doi.org/10.1006/IJHC.1981.0309

Andrew Tristan Dyer. 2020. Lightweight Formal Methods in Scientific Computing. Ph. D. Dissertation. North Carolina State
University. https://repository.lib.ncsu.edu/items/95554653-06ab-4a76-adbd-846f2c9b995f. Accessed 2024-01-24.

Tristan Dyer and John Baugh. 2021. Sterling: A Web-Based Visualizer for Relational Modeling Languages. In ABZ. Springer,
99–104. https://doi.org/10.1007/978-3-030-77543-8_7

Jonathan Edwards, Daniel Jackson, and Emina Torlak. 2004. A Type System for Object Models. In FSE. ACM, 189–199.
https://doi.org/10.1145/1029894.1029921

Adam G. Emerson and Allison Sullivan. 2023. Crucible: Graphical Test Cases for Alloy Models. In ISSRE. IEEE, 218–227.
https://doi.org/10.1109/ISSRE59848.2023.00065

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2001. How to Design Programs. MIT
Press. http://www.htdp.org/

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam
Tobin-Hochstadt. 2018. A Programmable Programming Language. Communications of the ACM 61, 3 (2018), 62–71.
https://doi.org/10.1145/3127323

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay A. McCarthy, and Sam
Tobin-Hochstadt. 2015. The Racket Manifesto. In SNAPL. Schloss Dagstuhl, 113–128. https://doi.org/10.4230/LIPIcs.
SNAPL.2015.113

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias
Felleisen. 2002. DrScheme: A Programming Environment for Scheme. Journal of Functional Programming 12, 2 (2002),
159–182. https://doi.org/10.1017/S0956796801004208

Marleen Gilsing, Jesús Pelay, and Felienne Hermans. 2022. Design, Implementation and Evaluation of the Hedy Programming
Language. Journal of Computer Languages 73, 101158 (2022), 17 pages. https://doi.org/10.1016/J.COLA.2022.101158

Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. 2023. Little Tricky Logic: Misconceptions in the
Understanding of LTL. Programming 7, 2 (2023), 7:1–7:37. https://doi.org/10.22152/programming-journal.org/2023/7/7

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://doi.org/10.1007/11415763_20
https://doi.org/10.4204/EPTCS.139.6
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1561/3300000004
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-031-33163-3_16
https://doi.org/10.1016/J.TCS.2006.08.041
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/357766.351266
https://doi.org/10.4204/EPTCS.284.4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1006/IJHC.1981.0309
https://repository.lib.ncsu.edu/items/95554653-06ab-4a76-adbd-846f2c9b995f
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1145/1029894.1029921
https://doi.org/10.1109/ISSRE59848.2023.00065
http://www.htdp.org/
https://doi.org/10.1145/3127323
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1016/J.COLA.2022.101158
https://doi.org/10.22152/programming-journal.org/2023/7/7

116:28 Nelson, et al.

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight User Interface for Structured Editing.
In ICSE. ACM, 654–664. https://doi.org/10.1145/3180155.3180165

Richard C. Holt and David B. Wortman. 1974. A Sequence of Structured Subsets of PL/I. In SIGCSE. ACM, 129–132.
https://doi.org/10.1145/800183.810456

Gerard J. Holzmann. 2003. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley. https://doi.org/10.5555/
2029108

Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and Andrew P. Black. 2014. Graceful Dialects. In ECOOP.
Springer, 131–156. https://doi.org/10.1007/978-3-662-44202-9_6

Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM Transactions on Software Engineering and
Methodology 11, 2 (2002), 256–290. https://doi.org/10.1145/505145.505149

Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis (2 ed.). MIT Press. https://doi.org/10.5555/2141100
Daniel Jackson. 2019. Alloy: A Language and Tool for Exploring Software Designs. Communications of the ACM 62, 9 (2019),

66–76. https://doi.org/10.1145/3338843
Daniel Jackson and Jeanette Wing. 1996. Lightweight Formal Methods. IEEE Computer (1996). https://people.csail.mit.edu/

dnj/publications/ieee96-roundtable.html. Accessed 2024-01-24.
William Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,

Faezeh Bahmani, Amy Ko, Christopher J. Mendez, and Alannah Oleson. 2017. General principles for a Generalized Idea
Garden. Journal of Visual Languages and Computing 39 (2017), 51–65. https://doi.org/10.1016/j.jvlc.2017.04.005

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR. Springer, 348–370.
https://doi.org/10.1007/978-3-642-17511-4_20

Nuno Macedo, Julien Brunel, David Chemouil, and Alcino Cunha. 2022. Pardinus: A Temporal Relational Model Finder.
Journal of Automated Reasoning 66, 4 (2022), 861–904. https://doi.org/10.1007/s10817-022-09642-2

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. 2016. Lightweight Specification and
Analysis of Dynamic Systems with Rich Configurations. In FSE. ACM, 373–383. https://doi.org/10.1145/2950290.2950318

Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana C. R. Paiva, Miguel Sozinho Ramalho, and
Daniel Castro Silva. 2021. Experiences on Teaching Alloy with an Automated Assessment Platform. Science of Computer
Programming 211, 102690 (2021), 21 pages. https://doi.org/10.1016/j.scico.2021.102690

Jay McCarthy and Shriram Krishnamurthi. 2008. Cryptographic Protocol Explication and End-Point Projection. In ESORICS.
Springer, 533–547. https://doi.org/10.1007/978-3-540-88313-5_34

Vajih Montaghami and Derek Rayside. 2012. Extending Alloy with Partial Instances. In ABZ. Springer, 122–135. https:
//doi.org/10.1007/978-3-642-30885-7_9

Tim Nelson, Ben Greenman, Siddhartha Prasad, Tristan Dyer, Ethan Bove, Qianfan Chen, Charles Cutting, Thomas
Del Vecchio, Sidney LeVine, Julianne Rudner, Benjamin Ryjikov, Alexander Varga, Andrew Wagner, Luke West, and
Shriram Krishnamurthi. 2024. Artifact for Forge: A Tool and Language for Teaching Formal Methods. https://doi.org/10.
5281/zenodo.10463960

Ulrich Neumerkel and Stefan Kral. 2002. Declarative Program Development in Prolog with GUPU. In WLPE. 77–86.
https://arxiv.org/abs/cs/0207044

Ulrich Neumerkel, Christoph Rettig, and Christian Schallart. 1997. Visualizing Solutions with Viewers. In LPE. 43–50.
https://www.complang.tuwien.ac.at/ulrich/papers/PDF/wlpe97.pdf. Accessed 2024-01-24.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Springer-Verlag. https://doi.org/10.1007/3-540-45949-9

Observable. 2023. D3: Data-Driven Documents. https://d3js.org. Accessed August 25, 2023.
Derek Rayside, Felix Sheng-Ho Chang, Greg Dennis, Robert Seater, and Daniel Jackson. 2007. Automatic Visualization of

Relational Logic Models. Electronic Communications of the EASST 7 (2007), 15 pages. https://doi.org/10.14279/tuj.eceasst.
7.94

Germán Regis, César Cornejo, Simón Gutiérrez Brida, Mariano Politano, Fernando Raverta, Pablo Ponzio, Nazareno Aguirre,
Juan Pablo Galeotti, and Marcelo Frias. 2017. DynAlloy Analyzer: A Tool for the Specification and Analysis of Alloy
Models with Dynamic Behaviour. In FSE. ACM, 969–973. https://doi.org/10.1145/3106237.3122826

Sam Saarinen. 2021. Query Strategies for Directed Graphical Models and their Application to Adaptive Testing. Ph. D.
Dissertation. Brown University. https://repository.library.brown.edu/studio/item/bdr:kgyft3b4/

Abigail Siegel, Mia Santomauro, Tristan Dyer, Tim Nelson, and Shriram Krishnamurthi. 2021. Prototyping Formal Methods
Tools: A Protocol Analysis Case Study. In Protocols, Strands, and Logic. Springer, 394–413. https://doi.org/10.1007/978-3-
030-91631-2_22

J. Michael Spivey. 1992. Z Notation — A Reference Manual (2nd ed.). Prentice Hall.
Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. 2018. AUnit: A Test Automation Tool for Alloy. In ICST. IEEE,

398–403. https://doi.org/10.1109/ICST.2018.00047

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/800183.810456
https://doi.org/10.5555/2029108
https://doi.org/10.5555/2029108
https://doi.org/10.1007/978-3-662-44202-9_6
https://doi.org/10.1145/505145.505149
https://doi.org/10.5555/2141100
https://doi.org/10.1145/3338843
https://people.csail.mit.edu/dnj/publications/ieee96-roundtable.html
https://people.csail.mit.edu/dnj/publications/ieee96-roundtable.html
https://doi.org/10.1016/j.jvlc.2017.04.005
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/s10817-022-09642-2
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1007/978-3-540-88313-5_34
https://doi.org/10.1007/978-3-642-30885-7_9
https://doi.org/10.1007/978-3-642-30885-7_9
https://doi.org/10.5281/zenodo.10463960
https://doi.org/10.5281/zenodo.10463960
https://arxiv.org/abs/cs/0207044
https://www.complang.tuwien.ac.at/ulrich/papers/PDF/wlpe97.pdf
https://doi.org/10.1007/3-540-45949-9
https://d3js.org
https://doi.org/10.14279/tuj.eceasst.7.94
https://doi.org/10.14279/tuj.eceasst.7.94
https://doi.org/10.1145/3106237.3122826
https://repository.library.brown.edu/studio/item/bdr:kgyft3b4/
https://doi.org/10.1007/978-3-030-91631-2_22
https://doi.org/10.1007/978-3-030-91631-2_22
https://doi.org/10.1109/ICST.2018.00047

Forge: A Tool and Language for Teaching Formal Methods 116:29

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In
PLDI. ACM, 530–541. https://doi.org/10.1145/2594291.2594340

Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018. The Behavior of Gradual Types:
a User Study. In DLS. ACM, 1–12. https://doi.org/10.1145/3276945.3276947

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2018. Automated Model Repair for Alloy. In ASE. ACM, 577–588.
https://doi.org/10.1145/3238147.3238162

Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2020. Fault Localization for Declarative Models in
Alloy. In ISSRE. IEEE, 391–402. https://doi.org/10.1109/ISSRE5003.2020.00044

Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Casburn, Curtis Cook, Mike Durham, and Gregg
Rothermel. 2003. Harnessing Curiosity to Increase Correctness in End-User Programming. In CHI. ACM, 305–312.
https://doi.org/10.1145/642611.642665

John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the Testers?. In ICER. ACM, 51–59. https:
//doi.org/10.1145/3230977.3230999

John Wrenn, Tim Nelson, and Shriram Krishnamurthi. 2021. Using Relational Problems to Teach Property-Based Testing.
Programming 5, 2 (2021), 9. https://doi.org/10.22152/programming-journal.org/2021/5/9

John Sinclair Wrenn. 2022. Executable Examples: Empowering Students to Hone Their Problem Comprehension. Ph. D.
Dissertation. Brown University. https://cs.brown.edu/research/pubs/theses/phd/2022/wrenn.john.pdf. Accessed 2024-01-
24.

Pamela Zave. 2020. Discourse Forum Reply. https://alloytools.discourse.group/t/visualization-for-alloy-what-do-you-
want/111/2. Accessed August 22, 2023.

Received 20-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 116. Publication date: April 2024.

https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3276945.3276947
https://doi.org/10.1145/3238147.3238162
https://doi.org/10.1109/ISSRE5003.2020.00044
https://doi.org/10.1145/642611.642665
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.22152/programming-journal.org/2021/5/9
https://cs.brown.edu/research/pubs/theses/phd/2022/wrenn.john.pdf
https://alloytools.discourse.group/t/visualization-for-alloy-what-do-you-want/111/2
https://alloytools.discourse.group/t/visualization-for-alloy-what-do-you-want/111/2

	Abstract
	1 Introduction
	2 Background: Teaching fm Gradually
	3 A Progression of Languages
	3.1 A Critique of Alloy's Language
	3.2 Language Levels

	4 Custom Visualization
	4.1 Example: Crypto Protocols
	4.2 Example: River Crossing
	4.3 Example: Network Reachability

	5 Testing: From Rough Ideas to Reliable Models
	5.1 Alloy Critique: Testing
	5.2 Design of Testing in Forge

	6 Architecture and Implementation
	7 Evaluation
	7.1 Evaluation: Language Levels
	7.2 Evaluation: Custom Visualization
	7.3 Formative Evaluation: Testing

	8 Related Work
	9 Discussion
	Acknowledgments
	References

