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Human Image Segmentation 



BNP Image Segmentation  

•! How many regions does this image contain? 
•! What are the sizes of these regions? 

Segmentation as Partitioning  

•! Huge variability in segmentations across images 
•! Want multiple interpretations, ranked by probability 

Why Bayesian Nonparametrics?  



BNP Image Segmentation 

Inference 
!!Stochastic search & 

expectation propagation 

Model 
!!Dependent Pitman-Yor processes 

!!Spatial coupling via Gaussian processes 

Results 
!!Multiple segmentations of 

natural images 

 cesses 

Learning 
!!Conditional covariance 

calibration 



Feature Extraction 

•! Partition image into ~1,000 superpixels 
•! Compute texture and color features: 

Texton Histograms (VQ 13-channel filter bank) 
Hue-Saturation-Value (HSV) Color Histograms 

•! Around 100 bins for each histogram 



Pitman-Yor Mixture Model 

Observed features 
(color & texture) 

Assign features 
to segments 

PY segment size prior 

Visual segment 
appearance model 
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Dependent DP&PY Mixtures 

Observed features 
(color & texture) 

Visual segment 
appearance model 

Color: 
Texture: 
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Assign features 
to segments 

zi ∼ Mult(πi)

Some dependent 
prior with DP/PY  

“like” marginals 

Kernel/logistic/probit 
stick-breaking process, 

order-based DDP, 
! 



Example: Logistic of Gaussians 

•! Pass set of Gaussian processes through softmax to get 
probabilities of independent segment assignments 

•! Nonparametric analogs have similar properties 
Figueiredo et. al., 2005, 2007 

Fernandez & Green, 2002 Woolrich & Behrens, 2006 
Blei & Lafferty, 2006 



Discrete Markov Random Fields 
Ising and Potts Models 

•! Interactive foreground segmentation 
•! Supervised training for known categories 

Previous Applications 

!but learning is challenging, and little 
success at unsupervised segmentation. 

GrabCut:   Rother, 
Kolmogorov, & Blake 2004 

Verbeek & Triggs, 2007 



Region Classification with 
Markov Field Aspect Models 

Local: 
74% 

MRF: 
78% 

Verbeek & Triggs, CVPR 2007 



10-State Potts Samples 

States sorted by size:   largest in blue, smallest in red 



number of edges on which 
states take same value 

1996 IEEE DSP Workshop 

edge strength 

Even within the phase 
transition region, samples 
lack the size distribution 
and spatial coherence of 

real image segments 

natural 
images 

giant 
cluster 

very 
noisy 



Geman & Geman, 1984     

200 Iterations 

128 x128 grid 
8 nearest neighbor edges 
K = 5 states 
Potts potentials: 

10,000 Iterations 



Product of Potts and DP? 
Orbanz & Buhmann 2006 

Potts Potentials DP Bias: 



Spatially Dependent Pitman-Yor Spatially D   
•! Cut random surfaces 

(samples from a GP) 
with thresholds 
(as in Level Set Methods) 

•! Assign each pixel to 
the first surface which 
exceeds threshold 
(as in Layered Models) 

Duan, Guindani, & Gelfand, 
Generalized Spatial DP, 2007 
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Spatially Dependent Pitman-Yor Spatially D     Pitman-Yor 
•! Cut random surfaces 

(samples from a GP) 
with thresholds 
(as in Level Set Methods) 

•! Assign each pixel to 
the first surface which 
exceeds threshold 
(as in Layered Models) 

Duan, Guindani, & Gelfand, 
Generalized Spatial DP, 2007 



Spatially Dependent Pitman-Yor Spatially D     Pitman-Yor 
•! Cut random surfaces 

(samples from a GP) 
with thresholds 
(as in Level Set Methods) 

•! Assign each pixel to 
the first surface which 
exceeds threshold 
(as in Layered Models) 

•! Retains Pitman-Yor 
marginals while jointly 
modeling rich spatial 
dependencies  
(as in Copula Models) 



Stick-Breaking Revisited 

0 1 

Multinomial Sampler: Sequential Binary Sampler: 



PY Gaussian Thresholds 

Sequential Binary Sampler: Gaussian Sampler: 

Normal 
CDF 

because 



PY Gaussian Thresholds 

Sequential Binary Sampler: Gaussian Sampler: 



Spatially Dependent Pitman-Yor Spatially D   
Non-Markov 
Gaussian 
Processes: 

PY prior:  
Segment size 

Feature 
Assignments 

Normal 
CDF 



Preservation of PY Marginals Preserva     
Why Ordered Layer Assignments? 

ation of   
Why Ordered L   

Stick Size Prior Random Thresholds 



Samples from PY Spatial Prior 

Comparison:  Potts Markov Random Field 



Outline 

Inference 
!!Stochastic search & 

expectation propagation 

Model 
!!Dependent Pitman-Yor processes 

!!Spatial coupling via Gaussian processes 

Results 
!!Multiple segmentations of 

natural images 

 cesses 

Learning 
!!Conditional covariance 

calibration 



Mean Field for Dependent PY 

K 

K 

Factorized Gaussian Posteriors 

Sufficient Statistics 

Allows closed form update of                  via                      



Mean Field for Dependent PY 

K 

K 

Updating Layered Partitions 
Evaluation of beta normalization constants: 

Jointly optimize each layer’s threshold 
and Gaussian assignment surface, fixing 

all other layers, via backtracking 
conjugate gradient with line search 

Reducing Local Optima 
Place factorized posterior on eigenfunctions 

of Gaussian process, not single features 



Robustness and Initialization 

Log-likelihood bounds versus iteration, for many random 
initializations of mean field variational inference on a single image. 



Alternative:  Inference by Search 

Consider hard 
assignments of 

superpixels to  
layers (partitions) Integrate 

likelihood 
parameters 
analytically 
(conjugacy) 

Marginalize layer 
support functions 
via expectation 
propagation (EP): 
approximate but 
very accurate 

No need for a finite, conservative model truncation! 



Maximization Expectation 
EM Algorithm 
!!E-step:  Marginalize latent variables (approximate) 

! M-step:  Maximize likelihood bound given model parameters 

ME Algorithm 
!!M-step:  Maximize likelihood given latent assignments 

! E-step:  Marginalize random parameters (exact) 

Kurihara & Welling, 2009 

Why Maximization-Expectation? 
!!Parameter marginalization allows Bayesian “model selection” 

!!Hard assignments allow efficient algorithms, data structures 

!!Hard assignments consistent with clustering objectives 

!!No need for finite truncation of nonparametric models 



Discrete Search Moves 

!!Merge:  Combine a pair of 
regions into a single region 

!!Split:  Break a single region 
into a pair of regions (for 
diversity, a few proposals) 

!!Shift:  Sequentially move 
single superpixels to the 
most probable region 

!!Permute:  Swap the position 
of two layers in the order 

Stochastic proposals, accepted if 
and only if they improve our EP 
estimate of marginal likelihood: 

Marginalization of continuous variables simplifies these moves! 



Inferring Ordered Layers 

Order A:  Front, Middle, Back Order B:  Front, Middle, Back 

!!Which is preferred by a diagonal covariance? 

!!Which is preferred by a spatial covariance? 

Order B 

Order A 



Inference Across Initializations 

Mean Field Variational EP Stochastic Search 

Best Worst Best Worst 



BSDS:  Spatial PY Inference 
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Outline 

Inference 
!!Stochastic search & 

expectation propagation 

Model 
!!Dependent Pitman-Yor processes 

!!Spatial coupling via Gaussian processes 

Results 
!!Multiple segmentations of 

natural images 

 cesses 

Learning 
!!Conditional covariance 

calibration 



Covariance Kernels 
•! Thresholds determine segment size:  Pitman-Yor 
•! Covariance determines segment shape: 

Roughly Independent Image Cues: 

Berkeley Pb (probability of boundary) detector 

probability that features at locations  
are in the same segment 

!!Color and texture histograms 
within each region:  Model 
generatively via multinomial 
likelihood (Dirichlet prior) 

! Pixel locations and 
intervening contour cues: 
Model conditionally via GP 
covariance function 



Learning from Human Segments 

!!Data unavailable to learn models of all the categories we’re 
interested in:  We want to discover new categories! 

! Use logistic regression, and basis expansion of image cues, 
to learn binary “are we in the same segment” predictors: 

!! Generative:  Distance only 

!! Conditional:  Distance, intervening contours, ! 



From Probability to Correlation 

There is an injective 
mapping between 
covariance and the 
probability that two 
superpixels are in 

the same segment. 



Low-Rank Covariance Projection 

!! The pseudo-covariance constructed by considering each 
superpixel pair independently may not be positive definite  

!!Projected gradient method finds low rank (factor analysis), 
unit diagonal covariance close to target estimates 



Prediction of Test Partitions 

Heuristic versus Learned 
Image Partition Probabilities 

Learned Probability versus 
Rand index measure 
of partition overlap 



Comparing Spatial PY Models 

Image PY Learned PY Heuristic 



Outline 

Inference 
!!Stochastic search & 

expectation propagation 

Model 
!!Dependent Pitman-Yor processes 

!!Spatial coupling via Gaussian processes 

Results 
!!Multiple segmentations of 

natural images 

 cesses 

Learning 
!!Conditional covariance 

calibration 



Other Segmentation Methods 

FH Graph Mean Shift NCuts gPb+UCM Spatial PY 



Quantitative Comparisons 

Berkeley Segmentation LabelMe Scenes 
!!On BSDS, similar or better than all methods except gPb 

! On LabelMe, performance of Spatial PY is better than gPb

!! Implementation efficiency and search run-time 

!!Histogram likelihoods discard too much information 

!!Most probable segmentation does not minimize Bayes risk 

Room for Improvement: 



Multiple Spatial PY Modes 

Most Probable 



Multiple Spatial PY Modes 

Most Probable 



Spatial PY Segmentations 



Conclusions 
!! efficient variational parsing of scenes 

into unknown numbers of segments 

!! empirically justified power law priors 

!! accurate learning of non-local spatial 
statistics of natural scenes 

!! promise in other application domains! 

Spatial Pitman-Yor Processes allow! 



Conclusions 
!!Conventional MCMC & variational 

learning prone to local optima, hard to 
scale to large datasets. 
But better methods on the way! 

!! Literature remains fairly technical. 
But growing number of tutorials! 

!but bravery is required 


