Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian **Processes**, not MRFs **Tutorial at CVPR 2012** Erik Sudderth **Brown University**

NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes. **CVPR 2012:** S. Ghosh & E. Sudderth, Nonparametric Learning for Layered Segmentation of Natural Images.

Human Image Segmentation

BNP Image Segmentation

Segmentation as Partitioning

- How many regions does this image contain?
- What are the sizes of these regions?

Why Bayesian Nonparametrics?

- Huge variability in segmentations across images
- Want multiple interpretations, ranked by probability

BNP Image Segmentation

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Feature Extraction

- Partition image into ~1,000 superpixels
- Compute texture and color features: Texton Histograms (VQ 13-channel filter bank) Hue-Saturation-Value (HSV) Color Histograms
- Around 100 bins for each histogram

Dependent DP&PY Mixtures

Example: Logistic of Gaussians

 Pass set of Gaussian processes through softmax to get probabilities of independent segment assignments

Fernandez & Green, 2002 Figueiredo et. al., 2005, 2007 Woolrich & Behrens, 2006 Blei & Lafferty, 2006

Nonparametric analogs have similar properties

Discrete Markov Random Fields

Ising and Potts Models

$$p(z) = \frac{1}{Z(\beta)} \prod_{(s,t)\in E} \psi_{st}(z_s, z_t)$$
$$\log \psi_{st}(z_s, z_t) = \begin{cases} \beta_{st} > 0 & z_s = z_t \\ 0 & \text{otherwise} \end{cases}$$

Previous Applications

- Interactive foreground segmentation
- Supervised training for known categories

...but learning is challenging, and little success at unsupervised segmentation.

GrabCut: Rother, Kolmogorov, & Blake 2004

Verbeek & Triggs, 2007

Region Classification with Markov Field Aspect Models

Verbeek & Triggs, CVPR 2007

10-State Potts Samples

States sorted by size: largest in blue, smallest in red

1996 IEEE DSP Workshop

The Ising/Potts model is not well suited to segmentation tasks

R.D. Morris X. Descombes J. Zerubia INRIA, 2004, route des Lucioles, BP93, Sophia Antipolis Cedex, France.

Figure 1. $< N(\mathbf{x}) > \mathrm{vs}\;\beta$ for $64 \times 64 \times 4\text{-state}$ Potts model

 $N(z) \rightarrow \frac{\text{number of edges on which}}{\text{states take same value}}$

→ edge strength

Even within the *phase transition* region, samples lack the *size distribution* and *spatial coherence* of real image segments

Geman & Geman, 1984

128 x128 grid 8 nearest neighbor edges K = 5 states Potts potentials: $\beta = 2/3$

200 Iterations

10,000 Iterations

Product of Potts and DP?

Orbanz & Buhmann 2006

- Cut random surfaces

 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)

てつ

 z_3

 x_{3}

 z_4

Duan, Guindani, & Gelfand, Generalized Spatial DP, 2007

- Cut random surfaces

 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)

Duan, Guindani, & Gelfand, Generalized Spatial DP, 2007

- Cut random surfaces

 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)
- Retains *Pitman-Yor marginals* while jointly modeling rich *spatial dependencies* (as in Copula Models)

Stick-Breaking Revisited

Multinomial Sampler: $u_i \sim \text{Unif}(0, 1)$ $z_i = \text{CDF}_{\pi}^{-1}(u_i)$

Sequential Binary Sampler: $b_{ki} \sim \text{Bernoulli}(v_k)$ $z_i = \min\{k \mid b_{ki} = 1\}$

PY Gaussian Thresholds

$$\mathbb{P}[\Phi(u_{ki}) < v_k] = v_k$$

because

 $\Phi(u_{ki}) \sim \text{Unif}(0,1)$ **Gaussian Sampler:**

 $u_{ki} \sim \mathcal{N}(0, 1)$

Sequential Binary Sampler: $b_{ki} \sim \text{Bernoulli}(v_k)$ $z_i = \min\{k \mid u_{ki} < \Phi^{-1}(v_k)\}$ $z_i = \min\{k \mid b_{ki} = 1\}$

PY Gaussian Thresholds

α

 \mathcal{V}_k

ρ

Preservation of PY Marginals

Samples from PY Spatial Prior

Comparison: Potts Markov Random Field

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Mean Field for Dependent PY

Factorized Gaussian Posteriors

$$q(\mathbf{u}) = \prod_{k=1}^{K} \prod_{i=1}^{N} \mathcal{N}(u_{ki} \mid \mu_{ki}, \lambda)$$
$$q(\bar{\mathbf{v}}) = \prod_{k=1}^{K} \mathcal{N}(\bar{v}_k \mid \nu_k, \delta_k)$$

Sufficient Statistics

$$z_i = \min\{k \mid u_{ik} < \bar{v}_k\}$$

Allows closed form update of $~q(heta_k)~$ via

$$\mathbb{P}_q[u_{ki} < \bar{v}_k] = \Phi\left(\frac{\nu_k - \mu_{ki}}{\sqrt{\delta_k + \lambda_{ki}}}\right)$$

 $\log p(\mathbf{x} \mid \alpha, \rho) \geq H(q) + \mathbb{E}_q[\log p(\mathbf{u}, \bar{\mathbf{v}}, \boldsymbol{\theta} \mid \alpha, \rho)]$

Mean Field for Dependent PY

Updating Layered Partitions

Evaluation of beta normalization constants: $\mathbb{E}_{q}[\log \Phi(\bar{v}_{k})] \leq \log \mathbb{E}_{q}[\Phi(\bar{v}_{k})]$ $= \log \Phi\left(\frac{\nu_{k}}{\sqrt{1+\delta_{k}}}\right) \overset{\times}{\mathsf{K}}$

Jointly optimize each layer's threshold and Gaussian assignment surface, fixing all other layers, via backtracking conjugate gradient with line search

Reducing Local Optima

Place factorized posterior on eigenfunctions of Gaussian process, not single features

Robustness and Initialization

Log-likelihood bounds versus iteration, for many random initializations of mean field variational inference on a single image.

Alternative: Inference by Search

 \mathcal{U}_{kl} U_{k2} \mathcal{U}_{k3} \mathcal{U}_{k^4} တ α Consider hard Z_2 Z_{l} assignments of superpixels to \mathcal{V}_k layers (partitions) Z_3 θ ်တ \mathcal{X}_{A} X_{z} ρ

Marginalize layer support functions via expectation propagation (EP): approximate but very accurate

> Integrate likelihood parameters analytically (conjugacy)

No need for a finite, conservative model truncation!

Maximization Expectation

EM Algorithm

- E-step: Marginalize latent variables (approximate)
- M-step: Maximize likelihood bound given model parameters

ME Algorithm

Kurihara & Welling, 2009

- M-step: Maximize likelihood given latent assignments
- E-step: Marginalize random parameters (exact)

Why Maximization-Expectation?

- Parameter marginalization allows Bayesian "model selection"
- Hard assignments allow efficient algorithms, data structures
- Hard assignments consistent with clustering objectives
- > No need for finite truncation of nonparametric models

Discrete Search Moves

Stochastic proposals, accepted if and only if they improve our EP estimate of marginal likelihood:

- Merge: Combine a pair of regions into a single region
- Split: Break a single region into a pair of regions (for diversity, a few proposals)
- Shift: Sequentially move single superpixels to the most probable region
- Permute: Swap the position of two layers in the order

Marginalization of continuous variables simplifies these moves...

Inferring Ordered Layers

Order A: Front, Middle, Back Order B: Front, Middle, Back

- Which is preferred by a diagonal covariance?
- > Which is preferred by a spatial covariance?

Order B Order A

Inference Across Initializations

Best

Worst

Best

BSDS: Spatial PY Inference

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Covariance Kernels

- Thresholds determine segment *size*: Pitman-Yor
- Covariance determines segment shape:

 $C(y_i, y_j) \iff$ probability that features at locations (y_i, y_j) are in the same segment

Roughly Independent Image Cues:

- Color and texture histograms within each region: Model generatively via multinomial likelihood (Dirichlet prior)
- Pixel locations and *intervening contour* cues: Model conditionally via GP covariance function

Berkeley Pb (probability of boundary) detector

Learning from Human Segments

- Data unavailable to learn models of all the categories we're interested in: We want to discover new categories!
- Use logistic regression, and basis expansion of image cues, to learn binary "are we in the same segment" predictors:
 - Generative: Distance only
 - Conditional: Distance, intervening contours, ...

From Probability to Correlation

$$\begin{aligned} q_{-}^{k}(\alpha,\rho) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\delta_{k}} \int_{-\infty}^{\delta_{k}} \mathcal{N}\left(\begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right) p(\delta_{k}|\alpha) du_{i} du_{j} d\delta_{k} \\ q_{+}^{k}(\alpha,\rho) &= \int_{-\infty}^{\infty} \int_{\delta_{k}}^{\infty} \int_{\delta_{k}}^{\infty} \mathcal{N}\left(\begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right) p(\delta_{k}|\alpha) du_{i} du_{j} d\delta_{k} \\ p_{ij} &= q_{-}^{1}(\alpha,\rho) + q_{-}^{2}(\alpha,\rho) q_{+}^{1}(\alpha,\rho) + q_{-}^{3}(\alpha,\rho) q_{+}^{1}(\alpha,\rho) q_{+}^{2}(\alpha,\rho) + \dots \end{aligned}$$

There is an injective mapping between covariance and the probability that two superpixels are in the same segment.

Low-Rank Covariance Projection

- The pseudo-covariance constructed by considering each superpixel pair independently may not be positive definite
- Projected gradient method finds *low rank* (factor analysis), unit diagonal covariance close to target estimates

Prediction of Test Partitions

Heuristic versus Learned Image Partition Probabilities Learned Probability versus Rand index measure of partition overlap

Comparing Spatial PY Models

PY Heuristic

Outline

Model

- Dependent Pitman-Yor processes
- Spatial coupling via Gaussian processes

Inference

Stochastic search & expectation propagation

Learning

Conditional covariance calibration

Results

Multiple segmentations of natural images

Other Segmentation Methods

Spatial PY

Quantitative Comparisons

Algorithms	PRI	VI	SegCover
Ncuts	0.74	2.5	0.38
MS	0.77	2.5	0.44
FH	0.77	2.1	0.52
gPb	0.81	2.0	0.58
PYdist	0.72	2.1	0.51
PYall	0.76	2.1	0.52

Berkeley Segmentation

gPb0.742.10.53PYall0.731.90.55

LabelMe Scenes

- > On BSDS, similar or better than all methods except gPb
- On LabelMe, performance of Spatial PY is better than gPb

Room for Improvement:

- Implementation efficiency and search run-time
- Histogram likelihoods discard too much information
- Most probable segmentation does not minimize Bayes risk

Multiple Spatial PY Modes

Most Probable

Multiple Spatial PY Modes

Most Probable

Spatial PY Segmentations

Conclusions

Spatial Pitman-Yor Processes allow...

- efficient variational *parsing* of scenes into unknown numbers of segments
- empirically justified *power law* priors
- accurate learning of non-local spatial statistics of natural scenes
- ➢ promise in other application domains...

Conclusions

...but bravery is required

- Conventional MCMC & variational learning prone to local optima, hard to scale to large datasets. But better methods on the way!
- Literature remains fairly technical. But growing number of tutorials!

