Applied Bayesian Nonparametrics 4. Infinite Hidden Markov Trees

Tutorial at CVPR 2012 Erik Sudderth Brown University

Work by J. Kivinen, E. Sudderth, & M. Jordan

ICCV 2007: Learning Multiscale Representations of Natural Scenes

using Dirichlet Processes

ICIP 2007: Image Denoising with Nonparametric Hidden Markov Trees

Low-level Image Analysis

Noise Removal

Deblurring

Inpainting & Restoration

What are the statistical properties of natural images?

Natural Scene Categorization

How do semantic labels affect these properties?

Wavelet Decompositions

Wavelets: Marginal Statistics

Gaussian Mixture Models

$$x_i = v_i u_i$$
 $x_i \sim \pi \mathcal{N}(0, \Lambda_0)$
 $v_i \ge 0$ $u_i \sim \mathcal{N}(0, \Lambda)$ $+ (1 - \pi)\mathcal{N}(0, \Lambda_1)$

$$x_i \sim \pi \mathcal{N}(0, \Lambda_0)$$

 $+ (1 - \pi)\mathcal{N}(0, \Lambda_1)$

Gaussian Scale Mixture (GSM)

Binary Gaussian Mixture

Computational advantages...

Wainwright & Simoncelli, 2000

Wavelets: Joint Statistics

Pairwise Joint Histograms:

Pairwise Conditional Histograms:

Large magnitude wavelet coefficients...

- Persist across multiple scales
- Cluster at adjacent spatial locations

Binary Hidden Markov Trees

Crouse, Nowak, & Baraniuk, 1998

- Coefficients marginally distributed as mixtures of two Gaussians
- Markov dependencies between hidden states capture persistence of image contours across locations and scales
- Each orientation is modeled independently

Validation: Image Denoising

Original

Corrupted by Additive White Gaussian Noise (PSNR = 24.61 dB)

Denoising with Binary HMTs

Noisy Input

Denoised (EM algorithm)

- Is two states per scale sufficient? How many is enough?
- Should states be shared the same way for all images, or for all wavelet decompositions?

Hierarchical Dirichlet Process Hidden Markov Trees

 $z_{ti} \longrightarrow \text{indexes } infinite \text{ set}$ of hidden states

$$z_{ti} \in \{1, 2, 3, \ldots\}$$

 $\pi_k o ext{infinite set of state} \ transition ext{distributions} \ z_{ti} \sim \pi_{z_{ ext{Pa(ti)}}}^{d_{ti}}$

 $x_{ti} \longrightarrow \text{observed } vector \text{ of}$ wavelet coefficients

 $\Lambda_k \longrightarrow \text{ state-specific } \underbrace{emission}_{covariances} \ x_{ti} \sim \mathcal{N}\left(0, \Lambda_{z_{ti}}\right) \ \Lambda_k \sim H$

Why a Hierarchical DP? (Teh et. al. 2004)

- Hierarchical DP prior allows us to learn a potentially infinite set of appearance patterns from natural images
- Hierarchical coupling ensures, with high probability, that a common set of *child* states are reachable from each *parent*

 $\pi_k^{d_{ti}}(\ell) = \Pr\left[z_{ti} = \ell \mid z_{\text{Pa}(ti)}\right] \qquad \beta \sim \text{Stick}(\gamma)$ Parent state Child state

transition distributions

Denoising: Input

24.61 dB

Denoising: Binary HMT

29.35 dB

Denoising: HDP-HMT

32.10 dB

Denoising: Local GSM

31.84 dB

Estimating Clean Images

Empirical Bayesian approach estimates model parameters from the noisy image

Denoising Einstein

Noisy 10.60 dB, 0.057

HDP-HMT (Transfer) 26.80 dB, 0.664

Original

BLS-GSM 26.38 dB, 0.647

BM3D 26.49 dB, 0.659

Natural Scene Denoising

Noisy 8.14 dB, 0.033

HDP-HMT (Transfer) 26.50 dB, 0.794

Original

BLS-GSM 25.59 dB, 0.726

BM3D 25.74 dB, 0.751

Natural Scene Categorization

Goals:

- Visually *recognize* natural scene categories
- Accurately model the statistics of natural scene categories

HDP-HMT Scene Model

• Hidden states z_{ti} generate vectors of clean wavelet coefficients x_{ti} at multiple orientations, or dense multiscale SIFT descriptors

... versus baseline HDP-BOF

HDP-HMT

HDP-BOF

Nonparametric Bayesian extension of LDA scene models (Fei-Fei & Perona, 2005) which ignore spatial locations of locally extracted image features

Number of States

Samples given MAP states

Markov Tree

Categorizing Natural Scenes

