
Specifying What to Search For

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI. 02912 USA

spr@cs.brown.edu

Abstract

In this position paper we look at the problem of
letting the programmer specify what they want to
search for. We discuss current approaches and their
problems. We propose a semantics-based approach
and describe the steps we have taken and the many
open questions remaining.

1. Motivation
One of the first things a programmer should do

when writing new code is to find existing, working
code with the same functionality, and reuse as much of
that code as possible. With the large amount of open-
source code available and the fact that most applica-
tions are not completely novel, one could imagine that
a significant amount of the code that is being written
today has been written before in some form, and much
of it is available in an open-source repository.

This is the type of motivation given for code
search. The emphasis here is on enabling reuse, avoid-
ing writing what has been written before, making
effective use of open source software, speeding up
development, and producing higher quality software
systems.

Code search, if it is going to achieve these ends,
has to be substantially different from traditional web
search. In particular it has to be designed and imple-
mented so that:
• It is easier to use the results returned from the

search engine rather than creating the code from
scratch. Reuse should be relatively simple.

• The results returned must do what the programmer
wants them to do. They shouldn’t be an approxima-
tion or just related.

• The programmer must be able to use the resultant
code. This means that the code must conform to all
the requirements for the potential application.

• Programmers must be able to find what they are
looking for. It is much trickier to determine this by
looking at the summary or even the code itself than
it is for textual information.

Achieving these goals should be the aim of the
code search community. This involves addressing
several problems. The first is getting access to all the
appropriate open source (and other) code. The second
involves organizing this data set and providing an
appropriate query mechanism. The last is to provide
the appropriate user interface for code search.

The first two of these problems, while difficult,
have proven tractable, as can be seen in the various
existing solutions. The difficulties lie in the fact that
most code is not designed primarily for human read-
ability and other factors such as program structure can
be important aspects of the search. The last problem
however, attempting to make the code search interface
meet the programmer’s needs, is the one that I find the
most interesting and the least tractable.

2. Current Solutions
Current interfaces to code search take three princi-

ple forms. The first and most prevalent approach uti-
lizes keywords. Here one depends on matching the
user’s vocabulary with that of the original programmer.
It also requires finding keywords that are unique
enough to actually identify the code in mind. Keyword
searches typically yield lots of unevaluated results. The
problem with this is that programmers have to read
each instance of returned code, attempt to understand
what it does, and then determine if it meets their
requirements.

My experience with keyword based code search is
that it creates a lot of work for the programmer. For any
simple piece of code, the effort required to analyze the
returned results is more than the effort that would have
been required to write the code in the first place. Also,
it can be a significant amount of work converting the
code into the programmer’s target framework after
finding an appropriate method or class. This makes
reuse based on code search difficult and unappealing.

The second approach is to use information about
program structure, for example method signatures or
expected loop structures [1-3]. These can be combined
with keyword search. While the additional information
can be helpful, its applicability is relatively limited.
When searching for a method, the program structure

used in the algorithm is generally unknown or irrele-
vant to the search. Moreover signatures are only rele-
vant if the code base being searched and the user’s
code share the same environment or if the programmer
happens to be looking for a code snippet that is inde-
pendent of their coding environment, a rarity in prac-
tice.

The third approach used today is to let the pro-
grammer specify test cases possibly accompanied by a
set of keywords. When keywords are not provided, the
test cases themselves can be used to derive keywords.

This approach is closer to what is needed for effec-
tive code search. Here the programmer is attempting to
define what they are looking for, and define it in a way
that the system might understand. Test cases can go
beyond simple functionality and check additional code
properties such as security and error handling. They
also can define the context in which the code has to
work.

There are several problems here. The first is that
test cases can be difficult to write. In many cases the
amount of code required for testing can exceed the
amount of code being retrieved. When part of test-
driven development, this might be an acceptable cost,
but otherwise it can be a deterrent [4]. The second
problem is that the problem might be one where test
cases are difficult to define because the solution is not
well defined. An example I’ve run across here is a
method that determines what countries a news article is
about, returning a probability vector where there is no
real “correct” answer. The third problem is that, as the
test cases and methods become more specific and con-
strain the set of possible solutions, the likelihood of
finding any code that does exactly what the program-
mer wants becomes diminishingly small.

3. Examples
To make this analysis more concrete, consider

some examples of code search I have attempted.
My first case was relatively simple. I needed to get

the text from an HTML page using a Java class or
method. The difficulty was that in my application white
space in the text was relevant and I needed to under-
stand one type of tag. Moreover, I wasn’t particularly
fussy about an interface; I could work equally well
with a parser that works with callbacks or a parser that
generated a tree of nodes.

Searching for the keywords “html parser”: tends to
yield lots of results, most of which are not relevant.
Even when I found an implementation of a HTML
parser this way, I still had to determine if that parser
collapsed white space or not. Because the parsers are
relatively sophisticated components, this involved sig-
nificant work. Often, it seemed easier to do this dynam-
ically, running the parser on a sample file and seeing
what it returned. However, this required writing a
framework that instantiated and used the parser first,

and the framework was essentially different for each of
the available parsers. This relates to the problem of
using test cases in this situation; because the parsers
have different interfaces, selecting a single test harness
will essentially limit or eliminate what might be viable
parsers from being considered. Once I select a particu-
lar callback framework or DOM model, it is very
unlikely that I will find more than one parser and that
parser is unlikely to do what I need with spaces.

In another example I needed to compute a topo-
graphical ordering for the set of nodes in a graph. The
problem here is that I have my own graph structure.
Code search finds lots of code that does topological
sort. The results fall basically into two categories. First
are those that are embedded in a graph class (or actu-
ally a whole hierarchy of graph classes). Of course the
graph class here is significantly different than mine,
and it looks like attempting to reuse the code is going
to be more work than writing topological sort from
scratch. Second are those that take sets of nodes and
edges as arguments. Here, the problem was that the sets
contain objects representing nodes or edges and these
objects were quite different from the objects in my
graph model. A further complication arose in under-
standing the behavior of the different algorithms when
the graph was cyclic and there was no topological
ordering.

Finally, I needed code that would find a least
squares solution to a system of linear equations. Here
code search helped to identify a relevant library that
could be used almost directly. The real problem arose
when we noted that we needed to add constraints so
that all the resultant values were non-negative. Search-
ing for this was not productive until it was pointed out
that this was an instance of a quadratic programming
problem. Searching for quadratic programming yielded
solutions, but none were close to the desired specifica-
tions. To use them I had to write significant code that
would convert the system of linear equations into a cor-
responding quadratic, set up the constraints, and then
map the resultant values into the actual solution.

These examples only touch the surface of what
programmers face when they attempt to use code
search to facilitate reuse. In each case the programmer
had a good idea of what he was searching for, however
it was either difficult to specify or the results required
significant work in order to be usable or both. Before
code search becomes usable, these problems will need
to be addressed.

4. Semantics-Based Search
In order for code search to be effective, the pro-

grammer needs to be able to specify what they are
interested in finding. They need to state what they want
the identified code to do functionally, where it has to fit
in, and what constraints (e.g. performance, error han-

dling, security, privacy, synchronization) they want to
impose on it.

This information is precisely a description of the
semantics of the code where semantics is taken in a
broad sense. It might include a formal description of
the behavior of the code (formal semantics), a high
level description of the code in terms of keywords or
text (informal semantics), pseudo code for the function
(structural semantics), test cases (semi-formal seman-
tics), security and privacy limitations, error handling
(formal or informally), recovery information, perfor-
mance requirements, synchronization requirements,
the context where the code will be used, and the
desired coding style and conventions.

The programmer generally knows a subset of this
information and needs to convey it to the code search
tool in some manner. The goal of a code search inter-
face should then be to encourage the specification of as
much of this information as possible.

But even if the programmer could be precise here,
it would not be enough. As programmers become more
precise as to what they want, the odds of identifying
code that exactly matches their specifications
approaches zero. Moreover, many of the problems, for
example signatures and use of the programmer’s envi-
ronment or context, need to be addressed in order to
correctly interpret other parts of the specifications such
as test cases.

Thus, an effective code search tool has to automate
much of the way that the programmer would want to
use the result of the search. In particular it has to auto-
matically refactor the located code to fit the program-
mer’s environment. Examples of the transformations or
refactorings that might be done here include: adapting
the signature of the identified code to the programmer’s
specification, eliminating unnecessary functionality,
isolating the desired functionality from the middle of
an existing routine, bringing in additional classes and
methods that are required to make the code functional,
modifying the code to use existing support classes
rather than their own, converting the coding style to
meet the current project’s requirements, adapting the
code to fit into an existing class, converting a class-
based implementation into a method-based one (or vice
versa), generalizing or specializing parameter and
return types, changing the way errors are reported, and
adding or removing logging or debugging statements.

5. The S6 Project
The goal of our research is to create an appropriate

front end for code search that allows semantic specifi-
cation of what to search for and automatically performs
the appropriate transformations that programmers
would otherwise have to do to make the identified code
usable in their application.

Our approach to date shows that this might be an
achievable goal, but that significant work still needs to

be done [5]. Our front end concentrates on allowing the
user to specify test cases quickly and effectively. It
requires keywords as a starting point for the search. In
addition, it allows contracts to be defined for each
method and the code to be run in a restricted Java secu-
rity context. A front end to the system is available at
http://conifer.cs.brown.edu/s6. Source code for the
system is available from the author.

While this is a start, much more needs to be done.
Keywords are sometimes hard to find or select.
Complex test cases, for example test cases that require
the user to write code, are not supported by the front
end. The Java security model is limited and does little
about privacy concerns. Contracts are only checked
when running test cases, not statically against the code.
Performance can only be evaluated in terms of the per-
formance on the test cases (which are generally too
simple for this purpose), and then only as part of
sorting the output. No information about the structure
of the target code is used, nor is anything done about
synchronization. There is only limited support cur-
rently for handling user context such as existing classes
and methods.

Our code search engine also applies a suite of
transformations to attempt to adapt the code to meet
the programmers’ requirements. While this is neces-
sary to accommodate test cases, and has been quite
effective in simpler cases, much still needs to be done.
The current transformations do not take into account
the target environment or attempt to map the implicit
environment of the identified code to the target envi-
ronment. This is where most of the work of adapting
identified code actually occurs. In addition, it only has
a limited set of type mappings and does not support
many class-level transformations. While much of this
is easy to add in theory, in practice it is difficult
because of the exponential number of possible map-
pings that can arise.

6. Challenges
Based on our experiences, we can identify several

challenges that need to be met before code search will
be really practical, challenges that we hope will be
taken up by the code search community.

The first is finding a practical approach to letting
the programmer specify the semantics of what they are
looking for. This approach has to handle of the com-
plexities of real world problems and situations. The
approach will have to be an amalgam, since no one
specification method or technique will work for all (or
even a majority of) cases.

The second is developing the underlying code rep-
resentations and search mechanisms that will support
such a front end. Keywords alone are not sufficient.
Signatures or program structures are helpful, but have
to be flexible enough to accommodate the possible
transformations. One should be able to search not only

based on the target code, but also on the desired and
original contexts.

The third is finding a suitably broad set of transfor-
mations that mimic what programmers do when they
adapt the result of code search to fit their applications,
and then automating these transformations in a practi-
cal way. The main problem here is making this process
intelligent, avoiding the potentially exponential
number of results, and integrating transforms with the
back end and the semantic specifications.

7. Acknowledgements
This work is supported by the National Science

Foundation through grant CCR0613162.

8. References
1. Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng
Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes,
“Sourcerer: a search engine for open source code supporting
structure-based search,” Proc. OOPSLA 2006, pp. 682-682
(October 2006).

2. Andrew Begel, “Codifier: a programmer-centric search
user interface,” Workshop on Human-Coputer Interaction
and Information Retrieval, (October 2007).

3. Raphael Hoffmann and James Fogarty, “Assieme: finding
and leveraging implicit references in a web search interface
for programmers,” Proc. UIST 2007, pp. 13-22 (October
2007).

4. Otavio Lemos, Sushil Bajracharya, Joel Ossher, Ricardo
Morla, Paulo Masiero, Pierre Baldi, and Cristina Lopes,
“CodeGenie: using test-cases to search and reuse source
code,” ASE ’07, pp. 525-526 (November 2007).

5. Steven P. Reiss, “Semantics-based code search,” ICSE
2009, (May 2009).

