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ABSTRACT

In many common scenarios, programmers need to imple-
ment functionality that is already provided by some third
party library. This paper presents a tool called HUNTER
that facilitates code reuse by finding relevant methods in
large code bases and automatically synthesizing any neces-
sary wrapper code. Since HUNTER internally uses advanced
program synthesis technology, it can automatically reuse ex-
isting methods even when code adaptation is necessary. We
have implemented HUNTER as an Eclipse plug-in and evalu-
ate it by (a) comparing it against S®, a state-of-the-art code
reuse tool, and (b) performing a user study. Our evalua-
tion shows that HUNTER compares favorably with S® and
increases programmer productivity.

CCS Concepts

eSoftware and its engineering — Programming by
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1. INTRODUCTION

In many common scenarios, programmers need to imple-
ment functionality that is already provided by some third
party library. In such cases, accepted wisdom dictates that it
is preferable to reuse existing code rather than reimplement-
ing the desired functionality from scratch. Indeed, there are
at least two benefits to software reuse: First, it increases
programmer productivity, allowing developers to focus on
more creative tasks. Second, implementations provided by
existing APIs are typically well-tested; hence, code reuse
decreases the likelihood that the implementation is buggy.
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Unfortunately, there is often a wide gap between the adage
“software reuse is good” and the reality of software develop-
ment: In many cases, programmers end up reimplementing
functionality that already exists in a library. This duplicated
effort is sometimes inadvertent because programmers may
not know whether the desired functionality exists or which
third-party library provides it. In other cases, the exposed
interface may not quite fit the developer’s needs, tempting
programmers to re-implement the desired functionality.

This paper seeks to address both of these problems by
presenting a tool called HUNTER for automatically reusing
existing code. To use the HUNTER system, the user provides
a search query, comprised of the signature of the desired
method, together with an English description of its function-
ality. In addition, the user also provides a few test cases that
HUNTER can use to check the correctness of the synthesized
code. Given this input, HUNTER finds existing methods that
fit the English description and automatically synthesizes any
necessary wrapper code. A key novelty of HUNTER is that
it allows code reuse even when the signature of the desired
method differs substantially from that of an existing method
in the corpus. In particular, HUNTER uses type similarity
metrics to “align” different method signatures and employs
type-directed program synthesis to generate adapter code.

As shown schematically in Figure the HUNTER tool
consists of three components, namely code search, interface
alignment, and synthesis. HUNTER’s code search component
is responsible for finding a ranked list of candidate adaptees
that fit the English description. For each candidate adaptee,
HUNTER invokes the interface alignment module to infer a
suitable mapping between the parameters of the adaptee £
and those in the desired method R (i.e., adapter). In par-
ticular, since the signature of R may differ from that of the
adaptee, HUNTER uses type similarity metrics to infer which
parameters of £ are likely to correspond to which parameters
of R. For instance, the interface alignment module might
infer that parameters p1 : 71,...,pn : T» of R are most likely
to correspond to parameter p : 7 of £. Given such a solu-
tion to the interface alignment problem, HUNTER invokes
the code synthesis module to generate code that “produces”
an object of type 7 by consuming objects of type 71,..., 7.

For any given code reuse task, HUNTER typically generates
many candidate implementations of the desired method and
runs it on the user-provided test cases. If any test case fails,
HUNTER backtracks by either finding a different solution to
the interface alignment problem or trying a different candi-
date adaptee identified by the code search module. When
HUNTER terminates, the synthesized code is always guaran-
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Figure 1: Workflow of the HUNTER tool

Q@Test public void test() {
Vector<MyPoint> vl = new Vector<>();
vl.add(new MyPoint (0, 0)); vl.add(new MyPoint(1, 1));
vl.add(new MyPoint(2, 1)); vl.add(new MyPoint(3, 2));
vl.add(new MyPoint(4, 2)); vl.add(new MyPoint(5, 3));
Vector<MyPoint> res = new Vector<>();
Bresenham.drawLine (new MyPoint(5, 3), res);
assertEquals(vl, res); }

Figure 2: Test cases for the desired drawLine method

teed to compile and pass the user-provided test cases.

We have implemented HUNTER as an Eclipse plug-in and
made it publicly available in the Eclipse marketplace [3|. To
assess the effectiveness of HUNTER, we compare it against S8,
a state-of-the-art code reuse tool, and show that HUNTER
can reuse more code compared to S°. We have also per-
formed a user study and show that HUNTER allows users to
finish programming tasks quicker and with fewer bugs.

2. MOTIVATING EXAMPLE

We now give an example of a programming task in which
HUNTER can be useful to programmers. Consider a user, Al-
ice, who needs to implement a procedure to draw a straight
line from the origin to a specified point. Specifically, Alice
wants to implement the following drawLine method:

void drawLine(MyPoint pt, Vector<MyPoint> res)

Here, pt is the point specified by the user, and res is
a vector of points on the raster that should be selected to
approximate a straight line between the origin and pt. Alice
knows about Bresenham’s line drawing algorithm that could
be used to implement this functionality, but she does not
know exactly how it works. While she would like to reuse
an existing implementation of Bresenham’s algorithm, she
cannot find an implementation that quite fits her needs.

In order to use HUNTER, Alice needs to provide the method
signature shown above as well as a brief natural language
description, such as “Bresenham’s line drawing”. Alice also
needs to provide a test suite (e.g., the one shown in Figure/|2))
that HUNTER can use to validate the synthesized code.

HUNTER first queries a code search engine using Alice’s
description and retrieves the top k results. To simplify the
example, suppose that the search engine yields a single func-
tion with the following signature:

Point[] bresenham(int x0, int yO, int x1, int y1)

Specifically, this function returns an array of Points to
approximate a line starting from (z0,y0) to (z1,y1). Note
that there are several differences between Alice’s desired
drawLine interface and the existing bresenham function:

e Alice’s interface uses MyPoint to represent the user-
specified point, while the existing function uses two
integers (namely, x1 and y1) to represent the end point.
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e Alice’s interface assumes the origin as a starting point,
whereas bresenham takes x0 and yO as input.

e The existing bresenham function returns an array of
Point’s, whereas Alice’s interface “returns” the line
by storing the result in res. Furthermore, Alice rep-
resents points using a custom type called MyPoint,
whereas bresenham uses a different type called Point.

Despite these significant differences, HUNTER is able to
automatically generate the following implementation of Al-
ice’s drawLine interface:

void drawLine (MyPoint pt, Vector<MyPoint> res) {
int vl = pt.getX(); int v2 = pt.getY();
Point[] v3 = external.bresenham(0, 0, vi, v2);
for (Point v4 : v3) {
int v6 = v4.getX(); int v6 = vd.getY();
MyPoint v7 = new MyPoint(v5, v6);
res.add(v7); }

Observe that the code generated by HUNTER first decon-
structs the MyPoint object pt into a pair of integers by invok-
ing the appropriate getter methods. Also note that HUNTER
can supply default values for x0 and y0 even though there are
no corresponding parameters in the drawLine interface. Fi-
nally, after invoking the existing bresenham method, HUNTER
can synthesize code to convert the array of Points into a
vector of MyPoints.

3. SYSTEM OVERVIEW

We now give a high-level overview of HUNTER’s code reuse
algorithm (shown in Algorithm as well as the various com-
ponents it uses. For details, we refer the interested reader
to the extended version of the paper |26].

Code search. HUNTER can use any code search engine that
yields results at the granularity of methods. In our cur-
rent implementation, we integrated HUNTER with the Pliny
code search engine [6] and use a database of over 12 million
Java methods collected from open source repositories, such
as Github [2| and Bitbucket [1].

Type similarity metrics. After performing code search,
HUNTER computes a type similarity matriz between the types
used in the desired signature and those appearing in the
search results. Specifically, the COMPUTETYPEDISTANCE
procedure used in line 5 of Algorithm [I] yields a matrix A
that maps each pair of types (7,7’) to a distance. The larger
the distance, the less similar 7 is to 7’ and the less likely it is
that an argument of type 7 will be mapped to an argument
of type 7. To compute type similarity metrics, we repre-
sent each Java type 7 using a multiset (bag) representation,
denoted as (7). For instance, given a class Point with two
integer fields, ¥ (Point) is the multiset { Point, int,int}. We



Algorithm 1 Code Reuse Algorithm

1: procedure CODEREUSE(S, D, T)
Input: signature S, description D, and tests 7
Output: adaptee £ with adapter R or failure L
[€] := CODESEARCH(S, D)
A := ComPUTETYPEDISTANCE(S, [£])
for all £ € [£] do
do
M := GETBESTALIGN(S, &, A)
R := ADAPTERGEN(M, &, S)
if RUNTESTS(R, &, T) then return (R, &)
while M # ()

return |

—

12:

then define the type distance §(r,7’) to be:

(% () = (=) U (") — (7))
[(r) U (7))
Note that §(7,7’) is a real number in the range [0,1] and

represents the fraction of elements in (1) U(7’) that are
not shared between (1) and (7).

S(r, ") =

Interface alignment. After performing code search and
computing type similarity metrics, HUNTER tries to generate
an implementation of the desired method using each candi-
date adaptee £ among the code search results. Towards this
goal, HUNTER uses the type similarity matrix A to find an
optimal alignment between the desired signature S and that
of candidate adaptee £. Specifically, the GETBESTALIGN
procedure used in line 8 of Algorithm [I] yields a minimum-
cost mapping M where the cost of M is computed using
a heuristic cost function based on the type similarity ma-
trix A. In order to maximize opportunities for code reuse,
note that we do not require the mapping M to be one-to-
one. Furthermore, to find the minimum cost mapping, we
solve a minimization problem using integer linear program-
ming (ILP). For example, the optimal alignment between
drawLine and bresenhan is given by the following mapping;:
x1: int -> pt: MyPoint ; yl1: int -> pt: MyPoint

v3: Point[] -> res: Vector<MyPoint>

Code synthesis. Given an optimal alignment M between
the adapter and the adaptee, HUNTER’s code reuse algo-
rithm invokes the ADAPTERGEN method (line 9 of Algo-
rithm (1)) to automatically generate wrapper code based on
this alignment. For instance, for our running example from
Section 2 ADAPTERGEN synthesizes code to “convert” the
pt object of type MyPoint to an integer x1 of type int.

In principle, HUNTER can be integrated with any type-
directed code synthesis engine, such as Prospector [19], In-
Synth [14], or CodeHint [13]. In particular, suppose that the
solution M returned by GETBESTALIGN maps parameters
P1:Ti,...,Pn : Tn to parameter p of type 7, HUNTER uses
a code synthesis engine to synthesize a function that takes
arguments of type 71,...,7, and returns a value of type 7.

In the current version of HUNTER, the ADAPTERGEN pro-
cedure is implemented by a new synthesis tool called SYPET,
which employs a novel type-directed synthesis algorithm ba-
sed on Petri net reachability analysis [12].

Running test cases. After synthesizing wrapper code for
a given candidate adaptee £ and alignment M, HUNTER au-

992

tomatically resolves all dependencies and runs the synthe-
sized program on the provided test cases. If any test fails,
HUNTER backtracks by adding an additional constraint to
the corresponding ILP problem and asking the ILP solver
for a different solution. If no such solution exists, it means
that HUNTER has exhausted all valid alignments for candi-
date adaptee £. In this case, it backtracks by considering a
different candidate adaptee. The CODEREUSE algorithm ter-
minates when HUNTER finds an implementation that passes
all test cases or it runs out of possible adaptees.

4. EVALUATION

To evaluate the usefulness of HUNTER, we compare HUN-
TER against S® [23]. We also perform a user study and eval-
uate how long participants take to complete various algo-
rithmic tasks with and without HUNTER. All experiments
are conducted on a Lenovo laptop with an Intel i7-5600U
CPU and 8G of memory running Ubuntu 14.04.

4.1 Comparison with S°

S8 [23] is a state-of-the-art code reuse tool with a web
interface that takes the same set of inputs as HUNTER (i.e.,
method signature, natural language description, and test
cases). We compare HUNTER against S® on a variety of
benchmarks collected from three different sources: (i) ex-
amples used to evaluate S® [23], (ii) all challenge problems
taken from the MUSE project |5] and (iii) linked list and bi-
nary tree benchmarks from Leetcode [4], which is an online
resource containing programming problems.

Table [ describes the 40 benchmarks used in our evalua-
tion in more detail. In this table, a v indicates that the tool
was able to successfully synthesize the desired code, and an
X indicates that synthesis failed. When the synthesis is suc-
cessful we also report the time taken by the corresponding
tool. As summarized in Table[l] HUNTER is able to solve all
benchmarks with an average running time of 14 seconds. In
contrast, S® can only solve 37.5% of the benchmarks. Since
both tools use the same underlying code corpus, these results
indicate that HUNTER is more successful at reusing existing
code compared to S°.

4.2 User Study

To evaluate the impact of HUNTER on programmer pro-
ductivity, we conducted a user study involving 16 graduate
students, 2 professional programmers, and 3 undergradu-
ate students. Specifically, we asked the participants to pro-
duce a Java implementation for three different programming
tasks, namely matrix multiplication (T1), longest common
subsequence (T2), and Bresenham’s line drawing algorithm
(T3). For each problem, we provided a detailed description
of the task to be performed, including a simple input-output
example. Since our goal is to compare programmer produc-
tivity with and without HUNTER, we instructed participants
to complete each task using two different methods:

e Manual: In this scenario, participants were asked to
complete the programming task without using HUNTER.
However, participants were explicitly told that they
can use any existing code search tool and adapt the
search results to their needs.

e Using Hunter: In this scenario, participants were
asked to use HUNTER to automatically synthesize the
desired code by providing a natural language query
and implementing appropriate JUnit tests.



Table 1: Comparison between HUNTER and S°

HUNTER S8 HUNTER S8
Id  Benchmark Solved Time(s) Solved Time(s) Id  Benchmark Solved Time(s) Solved Time(s)
1 SimpleTokenizer 19 23 21  FloodFill 26 X —
2 QuoteTokenizer 10 19 22  FindMedian 11 X —
3 CheckRobots 12 25 23 ListAverage 8 X —
4 LogBase 13 224 24 BresenhamLine 62 X —
5  RomanNumeral 14 99 25 BresenhamCircle 11 X —
6  RomanTolnt 11 120 26  Distance 18 X —
7 PrimeNumber 7 27 27  Slope 32 X —
8  PerfectNumber 7 24 28 PrimeSieve 7 27
9  DayOfWeek 13 58 29  Anagram 10 72
10 EasterDate 10 180 30 Palindrome 8 22
11  MatrixMultiplication 8 X 31 PartitionList 16 X
12 LcsInteger 7 X — 32 RotateList 15 X —
13 RemoveDuplicates 13 112 33 ListInsertion 12 X —
14  TransposeMatrix 10 X — 34 PalindromeList 10 X —
15 InvertMatrix 12 X — 35 SwapNodesPairs 12 X —
16  MatrixPower 8 X 36 InvertBinaryTree 14 X
17 DotProduct 9 X — 37 MinDepthBinaryTree 13 X —
18 MatrixDeterminant 10 200 38 BinaryTreePostorder 21 X —
19  CountingSort 13 X — 39 BinaryTreelnorder 11 X —
20 MatrixAddition 9 X — 40 SumRootLeafNumbers 8 X —
1900 IuHunrEeR |1 Manual one program throws an exception for matrices that are not
’ square, and one program produces the wrong result due to
1,000 - 5 a typo in the copy-pasted code. Hence, these results show
= 800 L i that programs synthesized by HUNTER are less error-prone
g compared to their manually written versions.
g 600} .
}C’J 400 |- i 5. RELATED WORK
200 |- 8 HUNTER is related to a line of work on automated code
0 . || [ | reuse |23}, [17} (16} |25 29 28] |7, {21}, (15} {20} [27] [10L [22L 19,
T1 T2 T3 18} 18l 24]. Among these tools, S® [23] is the most similar to

Figure 3: Comparison between HUNTER and manual

For both scenarios, we asked participants to stop working
on a given task after 30 minutes. Hence, any task that the
users could not complete within 30 minutes was considered
as a “failure”. For the manual implementation case, we did
not require participants to write test cases for their code.
Hence, there was no overlap between the tasks that the users
needed to complete for the two different usage scenarios.

Programmer productivity. Figure [ shows the average
time for completing each of the three tasks with and with-
out HUNTER. Overall, participants took an average of 130
seconds using HUNTER and an average of 948 seconds when
writing the code manually. Furthermore, while participants
were able to successfully complete 100% of the tasks using
HUNTER, success rate was only 85% without HUNTER.

To validate that these results are statistically significant,
we also performed a two-tailed paired t-test [11] for each
task, ignoring samples that were not completed within the 30
minute time-limit. Since the t-test for each task returned p-
values smaller than 0.0001, this evaluation shows that there
is a significant difference in average task completion time
with and without HUNTER.

Quality of solutions. To compare the quality of the so-
lutions implemented manually vs. using HUNTER, we also
manually inspected the solution and ran the programs on
a large test suite. While programs synthesized by HUNTER
pass all test cases, 19% of the manually written programs are
actually buggy and fail at least one of our test cases. Among
those buggy programs, ten of them contain off-by-one bugs,
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HUNTER. Specifically, S® uses a combination of test cases,
method signatures, and natural language description to find
relevant methods. Furthermore, similar to HUNTER, S® can
adapt existing code to fit the desired interface by perform-
ing various kinds of transformations. However, there are two
key differences between S® and HUNTER: First, S® directly
modifies the search result instead of synthesizing wrapper
code. Second, HUNTER uses integer linear programming to
measure similarity between type signatures and integrates
this information with program synthesis tools. As demon-
strated in our experiments, HUNTER outperforms S%, both
in terms of running time and in the amount of reusable code.

Another test-driven tool similar to HUNTER is CodeCon-
jurer [16], which allows users to specify class components
using test cases and UML-like interface description. Simi-
lar to HUNTER, CodeConjurer can find a suitable mapping
between the methods of the candidate class and those of
the desired class. However, CodeConjurer tries all possi-
ble method-mapping permutations and cannot synthesize
adapter code. Since the mapping technique is based on
brute-force search, CodeConjurer’s method matching pro-
cedure can take several hours. In contrast, HUNTER solves
a different kind of interface alignment problem and finds an
optimal solution through integer linear programming.

Similar to HUNTER, the CodeGenie tool [17] also uses test
cases to partially specify the behavior of the desired method.
Specifically, CodeGenie extracts the method signature and
search keywords from JUnit tests and queries Sourcerer |7]
to find relevant methods. It then uses the provided test cases
to validate the search result and merges the code into devel-
opment environment. However, unlike HUNTER, CodeGenie
cannot synthesize adapter code.
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