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Abstract The performance of multithreaded programs is often difficult to understand
and predict. Multiple threads engage in synchronization operations and use hardware
simultaneously. This results in a complex non-linear dependency between the con-
figuration of a program and its performance. To better understand this dependency a
performance prediction model is used. Such a model predicts the performance of a
system for different configurations. Configurations reflect variations in the workload,
different program options such as the number of threads, and characteristics of the
hardware. Performance models are complex and require a solid understanding of the
program’s behavior. As a result, building models of large applications manually is
extremely time-consuming and error-prone. In this paper we present an approach for
building performance models of multithreaded programs automatically. We employ
hierarchical discrete-event models. Different tiers of the model simulate different fac-
tors that affect performance of the program, while interaction between the model tiers
simulates mutual influence of these factors on performance. Our framework uses a
combination of static and dynamic analyses of a single representative run of a sys-
tem to collect information required for building the performance model. This includes
information about the structure of the program, the semantics of interaction between
the program’s threads, and resource demands of individual program’s components. In
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our experiments we demonstrate that models accurately predict the performance of
various multithreaded programs, including complex industrial applications.

Keywords Program analysis · Performance · Modeling · Simulation

1 Introduction

Multithreadedprogramsutilize resources ofmodern hardware efficiently.However, the
behavior ofmultithreaded programs is significantlymore complex than the behavior of
single-threaded applications. Threads rely on synchronization to enforce the ordering
of computations and to protect shared data. Moreover, multiple threads use shared
hardware resources, such as the CPU, disks, and the network, simultaneously. This
results in the parallel execution of some parts of the program’s code and the sequential
execution of others.

As a result, multithreaded programs demonstrate complex non-linear dependency
between the configuration and performance. Configurations may reflect variations in
the workload, program options such as the number of threads, and characteristics of
the hardware. To better understand this dependency a performance prediction model
is used. Such a model predicts performance of a program in different configurations.

Performance models are essential for a variety of applications (Israr et al. 2005;
Bennani and Menasce 2005; Narayanan et al. 2005). For example, a model may be
used to find a good configuration for deploying the Tomcat web server. For each
combination of configuration parameters, such as the number of available CPU cores,
the number of Tomcat working threads, and the rate of incoming connections, the
model will predict response time, throughput, and resource utilization for Tomcat. A
configuration that utilizes resources efficiently and satisfies a service agreement can
be used for deployment. Performance models also can be used to detect performance
anomalies and discover bottlenecks in the program.

Modern multithreaded applications can be large and complex, and are updated
regularly. Building their models manually is extremely time-consuming and error-
prone. To be practical, building such models should be automated.

However, building performance models of such applications in general is quite
difficult. First, it requires discovering the queues, threads, and locks in the program;
details of their behavior; and the semantics of their interaction. Doing this automati-
cally requires complex program analysis. Second, it requires measuring demand for
hardware resources such as the CPU, disk, and network. This is a complex prob-
lem that requires collecting and combining information from multiple sources. Third,
the performance of a parallel system is dependent on its contention for computation
resources and locks. Accurate modeling requires simulating these in detail.

This paper presents an approach towards automated performance modeling of mul-
tithreaded programs. Its main contribution is a combination of a model that accurately
simulates complex synchronization operations in a program and a methodology to
build such models automatically. Specifically, the paper makes the following techni-
cal contributions:

– A simulation model for predicting performance of multithreaded programs;
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– A combination of static and dynamic analyses for understanding the structure and
semantics of multithreaded programs automatically;

– An approach for collecting parameters of performance models from user- and
kernel-mode traces;

– Verification of our approach by constructing models of various multithreaded pro-
grams.

We implemented our approach into a PERformance SImulation Kit (PERSIK)
framework for building models of Java programs. We employed PERSIK to build per-
formance models of various multithreaded programs. These programs were subjected
to both CPU-bound and I/O bound workloads, and they were executed on different
hardware, including systems with 4 and 16 CPU cores. In all cases our models were
built from a single configuration of the program, and predicted its performance in a
variety of configurations, including different number of working threads, CPU cores,
and workload intensities. Our predictions included performance metric of the pro-
gram, such as a throughput or a response time, and utilization of resources, such as a
hard drive or a CPU.

First, we used PERSIK to build models of various small- to medium-size programs.
These programs included scientific applications, a financial application, a multimedia
program, and a web server. Sizes of these programs varied from 1006 to 3207 lines of
code (LOC). Themean relative prediction error εwas in (0.062–0.255) for CPU-bound
workloads and ε = 0.249 for I/O bound workloads. By modeling these programs
we demonstrate that our simulation framework can predict performance of various
programs that use different synchronization constructs and hardware resources.

Second, we built models of large industrial programs such as Apache Tomcat web
server1 and Sunflow 3D renderer.2 Size of these programs varied from 21,987 to
28,3143 LOC. The ε was in (0.032–0.134) for CPU-bound workloads and ε = 0.249
for I/O bound workloads. These results demonstrate that out approach can accurately
predict performance of large, industrial-grade multithreaded programs.

While working on the automatic model generation we made important findings.
First, the analysis of a program could be greatly simplified if that program relies
on well-defined implementation of high-level locks (semaphores, barriers, blocking
queues etc.), instead of constructing them from low-level synchronizationmechanisms
such as monitors and critical sections. In this work we rely on this assumption to build
performance models automatically.

Second, the resulting model must be simple and compact. Elaborate full-system
models can be very accurate. However, due to their size and complexity they can
run slower than the actual program, which defeats the whole purpose of performance
prediction. Moreover, the complex performance model is very hard to understand and
debug, if necessary. Building compact models requires identifying program constructs
that do not have significant impact on performance, and excluding these constructs
from the model.

1 http://tomcat.apache.org/.
2 http://sunflow.sourceforge.net/.
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Third, accurate prediction requires precise measures of resource demands for the
elements of the program. In certain cases small errors in measuring resource demands
can lead to large prediction errors.

The presented paper extends our prior work (Tarvo and Reiss 2012, 2014) in
nearly every aspect. We greatly expand the definition of our models, providing impor-
tant information on components of the model, their parameters, and interactions. We
describe our technique for automatic model generation in more detail, and outline its
practical implementation.We extend the verification sectionwith results from building
the performance models on different hardware. Finally, we provide a more elaborate
comparison of our work to the state of the art and present an extended discussion of
the results of our study.

The rest of the paper is organized as following. Section 2 outlines scope of this
work and challenges we faced. Section 3 defines our performance models. Section
4 describes a methodology to generate performance models automatically in detail.
Section 5discusses results of experimentswith performancemodels and their accuracy.
Section 6 discusses findings that we made about performance model, their limitations
and outlines future work. Finally, Sect. 8 concludes the paper.

2 Scope and challenges

In this work we analyze performance of multithreaded applications such as servers,
multimedia programs, and scientific computing applications. Such programs split their
workload into separate tasks such as an incoming HTTP request in a web server, a
scene or a some part of it in a 3D renderer, or an object in a scientific computing
application (Peierls et al. 2005). We do not model the performance of individual tasks
or requests; instead we model and predict the aggregate performance of the system for
a given workload.

Processing tasks is parallelized across thread pools. A thread pool is a set of threads
that have same functionality and can process tasks in parallel. Multiple threads rely
on synchronization to ensure semantic correctness (e.g. the thread may start executing
only after a barrier is lifted) and to protect shared data. This results in the parallel exe-
cution of some computations and the sequential execution of others. Threads also use
shared hardware resources, such as the CPU, disks, and the network simultaneously,
which may lead to their saturation. This combination of locking and simultane-
ous resource usage leads to complex non-linear dependencies between configuration
parameters of the program and its performance. As a result, even an expert may be
unable to understand such dependencies on a quantitative level. The best approach is
to build a performance prediction model.

We concentrate on the following aspects of performance modeling:
Automatic generation of performance models We minimize the need for human

participation in building the model. All our program analysis and model generation
are done automatically. The analyst need only inspect the generated model and specify
configurations in which performance should be predicted and the metrics that should
be collected.
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Generating models from running a program in a single configuration Building the
model should not require running the program many times in many configurations.
Such experimentation is time-consuming and may not be feasible in a production
environment. Instead, we want to generate the model by running a program in a
single representative configuration. In this configuration the behavior and resource
demands of the program approach the behavior and resource demands of a larger set
of configurations.

Accurate performance prediction for a range of configurations Our goal is to
accurately predict program-wide performance metrics such as the response time,
throughput, or the running time of the program; as well as the utilization of hard-
ware resources, such as the CPU, hard drive, and network.

Modeling programs running on commodity hardwareWe concentrate on predicting
the performance of programs on commodity hardware. Predicting the performance of
programs running on specialized systems such as a grid or cluster would require
developing an additional set of hardware models and potentially different approach
for program analysis, which is beyond the scope of this paper.

Building a general-purpose model We didn’t tailor our models to a specific use
case. We build predictive models that could be used for a variety of tasks. Porential
applications of our models include:

– serving as a decision making element in the autonomic data center (Bennani and
Menasce 2005). Given an application and a workload, the model would automati-
cally detect configurations providing both high performance and efficient resource
utilization;

– answering “what-if” questions. Answering questions like “what will be the per-
formance of the system for a given combination of configuration parameters?” or
“what combination of configuration parameters will produce the desired perfor-
mance?” is essential for capacity planning (Narayanan et al. 2005);

– detecting performance anomalies in the running software system (Thereska and
Ganger 2008). Significant and systematic deviations of measured performance
from the predicted performance are manifestations of the system’s abnormal
behavior.

Constructing performance models of complex, multithreaded systems is a chal-
lenging problem. The primary challenges are:

Accuratemodeling of locks and hardware resourcesPerformance of amultithreaded
program is determined by contention of shared resources such as the CPU, disks, and
locks. To accurately simulate resource contention the model must simulate locks,
hardware, and corresponding OS components, such as the thread and I/O schedulers,
and interactions between those. Building models of locks, OS and hardware that are
both fast and accurate is challenging.

Discovering the semantics of thread interaction Building the performance model
requires knowledge of the queues, buffers, and the locks in the program, their seman-
tics (e.g. is this particular lock a semaphore, amutex, or a barrier), and interactions (e.g.
which thread reads or writes to a particular queue or accesses a particular lock). There
are numerous ways to implement locks and queues, and to expose their functionality to
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threads. Discovering this information automatically requires complex program anal-
ysis.

Discovering parameters of the program’s components Performance of the program
depends on parameters of its locks and queues, and on the resource demands of its
threads. For example, the amount of time the thread has towait on a semaphore depends
on the number of available semaphore permits; the amount of time the program spends
on the disk I/O depends on the amount of data it has to transfer. However, retrieving the
parameters of locks and queues may require further program analysis and obtaining
resource demands may require instrumenting the OS kernel.

3 Model definition

Below we define the model for predicting performance of multithreaded programs.
Our models rely on the concept of a task, which is a discrete unit of work that

can be performed by the thread in the program (see Sect. 2). The performance of the
task processing system can be described by various metrics, such as the response time
R (an overall delay between task arrival and its completion), the throughput T (the
number of task served in the unit of time), or the number of task dropped.

We use discrete-event simulation models, where the simulation time t is advanced
by discrete steps (Law and Kelton 1997). It is assumed that the state of the system
does not change between time advances.

Our models are built according to the hierarchical principle (Ferrari et al. 1983)
and consist of three levels (tiers).

The high-level model explicitly simulates the flow of tasks as they are being pro-
cessed by the program. The high-level model is a queuing network (Lazowska et al.
1984) with some important extensions. The middle-level models simulate delays that
occur inside the program’s threads as they process tasks. It is a probabilistic execution
graph (PEG) of the thread, where vertices of the graph correspond to fragments of
the thread’s code. The lower-level model simulates delays that occur when multiple
threads compete for a particular resource, such as a CPU, a hard drive, or a synchro-
nization construct. The lower-level models are queuing networks with elements of
statistical modeling.

The combination of three different tiers into a single performance prediction model
is a key innovation of our work. Different model tiers simulate different factors that
affect performance of the system, while interaction of these tiers simulate a mutual
influence of these factors. Such architecture allows building accurate performance
models of various multithreaded programs.

3.1 High-level model

The high-level model is based on a queuing network model (Lazowska et al. 1984).
Service nodes of themodel {tr1, . . . , trm} correspond to the program’s threads (the full
notation used to describe the model is provided in the Table 1). Queues {q1, . . . , qn}
in the model correspond to the program’s queues and buffers used to exchange the
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Table 1 Notation used for description of the model and its parameters

Notation used in a high-level thread model

q1, . . . , qn A set of queues and buffers in the program

tr1, . . . , trm A set of all threads in the program

T p1, . . . , T pk , k ≤ m A set of all threads pools in the program,

where T pk = {tri , . . . , tr j }
Notation used in a mid-level thread model

S = {s1 . . . sn} The set of all nodes (code fragments) in the

probabilistic execution graph (PEG)

δ : S → P(S) Transition probabilities between nodes of

the PEG

τi Delay caused by executing CF si ∈ S

ci ∈ C Class of the CF si
C = {cCPU , cI O , csync, cin , cout } CF classes: CPU-bound computations, I/O

operations, synchronization operations,

fetching and sending data to queues

Πdisk = 〈dio1, . . . , diok 〉 Parameters of an I/O CF: a sequence of

low-level I/O operations initiated by the CF

ΠCPU = 〈CPUtime〉 Parameters of a computation CF:

the amount of CPU time

Πsync = 〈li , optype, tmoutsync〉 Parameters of a synchronization CF: the

lock that is called, the type of

synchronization operation, the timeout

Πinout = 〈{qi , . . . , q j }, optype, tmoutinout 〉 Parameters of cin and cout CFs: a set of

queues that can be accessed, the type of

the operation (send or fetch), the timeout

Notation used in a low-level model

L = {l1 . . . lm } The set of all locks in a program

Πlock = 〈lt ype, lparam〉 Parameters of a lock: the lock type and the

type-specific parameters

tasks between the different components of the software system. This includes queues
and buffers present in the program itself and in the operating system (OS).

Each thread tri can be related to one (and only one) thread pool T p j . The thread
pool or the thread group T p j ∈ {T p1, . . . , T pk}, k ≤ m is a set of one or more threads
that have same functionality and can process tasks in parallel. The number of threads
in the pool is an important configuration parameter that can significantly affect the
performance of the program. Each thread in a thread pool is represented as a separate
service node in the model.

Figure 1 (top) depicts a high-level model of a simple web server. The server puts
incoming connections into the OS connection queue q1. The accept thread tr1 fetches
a connection from q1 and forms a task object, which represents the HTTP request.
Then accept thread tr1 places that task into the program’s task queue q2. One of the
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Fig. 1 A model for a web server

working threads tr2, . . . , trn fetches the task from the queue q2 and processes the
request.

Our model has important differences from the classical queuing networks. First,
it does not restrict the structure of the model, the number of service nodes, or the
network’s parameters. Second, the service nodes are models on their own that simulate
program’s threads. When the service node receives a task, it calls the model of the
corresponding thread to simulate the amount of time necessary to process that task.
Finally, the high-level model does not explicitly define service demand for a task;
these are implicitly defined by parameters of lower-level thread models. Nevertheless,
the high-level model is capable of collecting same performance measures as queuing
models, such as response time, throughput, or the number of task in the system through
simulation.

3.2 Middle-level model

The middle-level model simulates the delays that occur in the program’s threads as
they process tasks. The thread model is a probabilistic execution graph (PEGs) of
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the corresponding thread. Each vertex si ∈ S of the PEG corresponds to a piece of
the thread’s code—a code fragment. The special vertex s0 corresponds to the code
fragment executed upon a thread start.

A code fragment (CF) is a contiguous sequence of instructions that perform one of
the following: a synchronization operation, an I/O operation, a CPU-intense computa-
tion, or accessing one of the program’s task queues. Some examples of code fragments
are: a bytecode instruction that unlocks a mutex; a call to a low-level library func-
tion that can perform a disk I/O operation, such as stat() libc function; or a
number of sequentially executed functions that perform CPU- or memory-intensive
computations. It is important that a code fragment is either executed completely, or
not executed at all. The Sects. 4.2 and 4.3 provide examples of code fragments and
discuss their detection in detail.

Edges of the PEG represent possible transitions of control flow between the CFs
and are labeled with their probability. For each vertex si ∈ S there is a subset of
vertices Snext = {sk, . . . , sm} that can be executed after si . The probability that the
the CF s j , j ∈ (k . . .m) will be executed after si ∈ S is denoted as p(si , s j ), where

m∑

j=k

p(si , s j ) = 1 (1)

Probabilities of transitions between all the CFs constitute a mapping δ : S → P(S).
For certain CFs the set Snext can be empty, such that Snext = ∅. These are terminal
CFs. After executing a terminal CF a thread stops its execution.

Computations performed by every CF si ∈ S take a certain amount of time to
complete. In the terms of the model computations performed by si are simulated as
introducing a delay with duration τi . The duration of the delay τi may vary between
different invocations of the same CF.

We distinguish three major sources of delays in processing tasks, which correspond
to three distinct classes of code fragments: I/O code fragments (denoted as cI O ) repre-
sent I/O operations; synchronization (csync) CFs represent synchronization operations;
computation (cCPU ) CFs represent computations andmemory operations. In addition,
we define cin and cout CFs that communicate with the high-level queuing model. cin
CFs fetch tasks from the queues of the upper-level queuing model. As a part of this
the thread model can suspend its execution until the request become available. cout
CFs send tasks to the upper-level queuing model. In the context of the multithreaded
program, cin and cout CFs correspond to operations on the program’s shared task
queues.

Figure 1 (middle) depicts the mid-level model of a web server. In the model of the
accept thread the s1 CF fetches incoming connections from the queue q1, s2–s4 CFs
create a task object, and s5 sends it into the task queue q2. In the model of the working
thread the s6 CF fetches the task from the task queue and processes it (s7–s8). The
working thread verifies that the requested page exists, reads it from the disk, and sends
it to the client. Finally, the thread closes the connection and fetches the next task from
the queue.
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3.3 Low-level model

Execution of each code fragment (CF) results in the delay τ . While the call graph
structure 〈S, δ〉 does not change between different configurations, execution times for
code fragments can be affected by resource contention. Resource contention occurs
when multiple threads simultaneously attempt to access a shared resource such as the
CPU, the disk, or a lock. For example, if the number of working threads that perform
CPU-intense computations exceeds the number of physical CPUs, the time required
for each thread to finish computations will be higher than if that thread was running
alone. Similarly, as more threads compete for a mutex, the waiting time for each of
those threads increases. As a result of resource contention, the time delay τi for the
CF si can vary significantly across different configurations of the program and cannot
be specified explicitly in the mid-tier thread model.

To accurately simulate the time delays τ that occur due to contention we use lower-
levelmodels. The lower-levelmodel simulates the system’s shared resources: theCPU,
the OS thread scheduler, the disk I/O subsystem, and the set L = {l1, . . . , lm} of locks
in the program. These models are part of Q(t) – the state of the whole simulation at
each moment of time t .

To accurately compute the delay τi of each fragment, we augment each code frag-
ment si with a set of parameters Πi , which represent the resource requirements for si .
When the thread model needs to compute as part of a simulation the τi , it calls the cor-
responding low-level model, passes it the parameters Πi , and waits for the response.
When the lower-level model receives the call, it updates the state Q(t) and simulates
the delay τi . Once the delay has passed, the lower-level model returns control back to
the thread model.

The nature of the parameters Πi and the actual semantics of interaction between
the thread model and the low-level model depends on the class ci of the code fragment
si . We describe discovery of parameters Π and provide examples in the Sect. 4.3.2.
Below we describe modeling different types of computations in general terms.

Modeling CPU computations CPU computations and memory operations are sim-
ulated by the cCPU computation CFs. The parameter of a computation CF ΠCPU =
〈CPUtime〉 is the CPU time for that fragment. The CPU time is the amount of time
required for the computation CF to complete if it would run on a CPU uninterrupted.
As CPUtime fluctuates across different executions of si , ΠCPU is represented as a
probability distribution of CPU times P

Π
CPU .

When the thread model has to compute τ for the computation CF, it sam-
ples CPUtime from the P

Π
CPU and calls the CPU/Scheduler low-level model. The

CPU/Scheduler model simulates a round-robin OS thread scheduler with equal prior-
ity of all the threads. It is a simple queuing model, whose queue corresponds to the
queue of “ready” threads in the OS thread scheduler, and service nodes correspond to
the cores of a simulated CPU.

Upon receiving the request the CPU/Schedulermodel creates a new jobwith service
time SCPU = CPUtime and inserts it into the back of the “ready” queue. Once the
service node becomes available, it fetches the job from the queue and introduces
a delay equal to min(CPUtime, OS time quantum). After the delay is expired,
the CPU/Scheduler checks if computations are complete for the job. In this case the

123



Autom Softw Eng

CPU/Scheduler deletes the job and notifies the thread model. Otherwise it places the
job back into the “ready” queue, where it awaits another time quantum. Multiple core
simulations are handled appropriately.

Modeling disk I/O operations I/O operations are simulated using cI O I/O code
fragments, whose parameters form a distribution P

Π
I O . Members of this distribution

are tuples Πdisk = 〈dio1, . . . , diok〉 of low-level disk I/O operations initiated by that
CF. Properties of each I/O operation dio j include the amount of data transferred and
the type of the operation such as “metadata read” or “readahead”.

The number k of I/O operations is used to implicitly simulate the OS page cache. It
was shown (Feng and Zhang 2008) that after serving a sufficient number of requests
(104 to 105 in our experiments), the cache enters a steady state, where the probability
of cache hit converges to a constant. In terms of our model, k follows a stationary
distribution, where k = 0 indicates a cache hit.

When the mid-level thread model must simulate the I/O CF, it fetches a sample of
disk I/O operations 〈dio1, . . . , diok〉 from the distribution P

Π
I O and issues a sequence

of calls to the DiskIO low-level model. Here each call represents a corresponding
I/O operation dio j ∈ Πdisk . If the I/O operation is synchronous (file read or metadata
read), the threadmodelwaits for the response from the low-levelmodel. If the operation
is asynchronous (readahead) the thread model does not introduce such wait.

The disk I/O model is a queuing model whose queue represents the request queue
in the I/O scheduler, and the service node represents the hard drive. The service
node delays the job for the τdisk , which is the amount of time necessary for the
hard drive to complete the I/O operation. τdisk can vary depending on the locality
of the operation (how close are the disk sectors accessed by different requests), the
number of requests in the queue, and other factors. Many of these factors are beyond
the control of the model. Thus we simulate the τdisk as a conditional distribution
P(τdisk |dio_t ype, dio_rate, dio_parallel), where
– dio_t ype: the type of the request: file read, metadata read, readahead;
– dio_rate: the intensity of the I/O workload; measured as the mean interarrival
time for the previous N I/O requests (in our experiments typically N = 20);

– dio_parallel: the degree of parallelism in I/O workload; measured as the number
of distinct threads that initiated the previous N requests.

Our models currently do not explicitly simulate write I/O operations which are
normally executed asynchronously. However, in our experiments we observed that
unless the application performs a massive amount of writes, the write I/O requests
do not have a noticeable impact on the performance of the system. Thus we leave
implementation of disk I/O write model as a subject of a future work.

Modeling synchronization operations and queue accesses Synchronization oper-
ations are simulated using csync synchronization code fragments. Parameters of
synchronization CFs are defined by the tuple Πlock = 〈l j , optype, tmoutsync〉, where
– l j ∈ L is the synchronization construct (lock) that is called;
– optype is the synchronization operation performed. Possible values of optype
depend on the type of the lock. For example, the possible values of optype are
{acquire, release} for a mutex, and {await} for a barrier;
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– tmoutsync ∈ (0, . . . ,∞) is the timeout for synchronization operation. By default
timeout is tmoutsync = ∞, which denotes the infinite timeout. Correspondingly,
tmoutsync = 0 denotes the absence of the timeout.

When the mid-level thread model has to simulate τ for the synchronization CF si ,
it calls the lower-level model and passes the parameters Πi of that CF along with the
call.

The lower-level model explicitly simulates behavior of each lock {l1, . . . , lm} ∈ L
in the program. Its internal state contains the status of each lock and the list of threads
currently waiting on that lock. For example, the model of the mutex contains the state
of the mutex (locked or open) and the list of threads waiting on that mutex.

If the synchronization operation cannot be completed within the timeout tmoutsync,
the lock model will return control to the mid-level model and the state of the simulated
lock is not changed. For example, if a mid-level model calls the model of the mutex
and the parameter tmoutsync = ∞, then the low-level model will not return to themid-
level model until the simulated lock can be acquired. Alternatively, if tmoutsync = 0,
the low-level model will return immediately, even if the mutex can’t be acquired.

We developed separate models for various types of locks such as barriers,
semaphores, mutexes, etc. Each lock l j ∈ L is described using 〈lt ype, lparam〉
parameters, where lt ype is the type of the lock, such as a semaphore, a barrier, or
a mutex, and lparam are the type-specific parameters of the lock. For example, the
parameter of a barrier indicates the barrier capacity, the parameter of a semaphore is
the number of permits, and a mutex has no parameters.

Fetching and sending a task to a queue are simulated by cin and cout code fragments.
Their parameters Πinout = 〈qid, optype, tmoutinout 〉 are the ID of the queue, type
of the operation such as { f etch, send}, and the optional timeout. Discovery of locks,
queues and their parameters is presented in the Sect. 4.3.2.

4 Automatic model generation

Constructing the performance model requires collecting the following information
about the program automatically:

– The set q1, . . . , qn of queues and buffers used to exchange tasks between program’s
threads. These correspond to the queues in the high-level model;

– The set tr1, . . . , trm of threads in the program. Threads correspond to the service
nodes of the high-level model;

– The set T p1, . . . , T pk of thread pools. The sizes of thread pools are configuration
parameters that impact performance;

– Information on interactions between the threads and queues in the program. This
corresponds to cin /cout CFs in the middle-level model;

– The computation, I/O, and locking operations in a program (correspond to the set S
of CFs) and the sequence of their execution (correspond to transition probabilities
δ);

– The parameters Π of each CF, required to model delays τ ;
– The set L of locks in the low-level model, their types, and parameters Πlock .
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Fig. 2 Model creation stages and intermediate results

The required data are collected using a combination of static and dynamic analysis.
During data collection, the program is executed in a single representative configura-
tion, in which 〈S, δ〉 and Π would be similar to the 〈S, δ〉 and Π of a larger set of
configurations forwhich the program’s performance should be predicted. This requires
the usage scenario for the program (e.g. the probabilities of accessing particular web
pages for a web server or the input dataset for a scientific application) to be similar
across the configuration space.

We collect the required data in four stages (see Fig. 2). Each stage saves intermediate
results into files that are used as input to subsequent stages.

First, the program is executed and its call stack is sampled. The stack samples are
used to detect thread groups and libraries in the program. Second, a static analysis of
the program is performed. During this stage csync, cin , cout , and cI O CFs are detected.
Third, the program is instrumented and executed again with the same configuration
as the initial run. The instrumentation log is used to detect program-wide locks and
queues, properties Π of code fragments, and to build the probabilistic call graphs
〈S, δ〉 of the program’s threads. Finally, the collected information is used to build a
performance model. All these operations are performed automatically.

Below we describe these stages in more details.

4.1 Collecting stack samples

During the stack sampling stage our framework finds thread pools, and functions that
are called frommultiple locations whichwe call library functions. Identifying libraries
is essential for generating correct probabilistic call graphs (see Sect. 4.3.1).

As the program is being executed, the framework periodically takes “snapshots”
of the call stack of the running program, which are merged to build a call trie of the
program. In a call trie each leaf node contains the code location being executed, which
includes the name of a function or a method and a line number. The non-leaf nodes
provide a call stack for that code location. For each leaf the framework maintains the
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Fig. 3 An example of a call trie

list of pairs 〈tr1, ex1〉, . . . 〈trn, exn〉, where the exi is the number of executions of that
code location by the thread tri .

An example of the call trie for amultithreaded program is depicted at the Fig. 3.Here
the method waitForce() was called by the method run(), while run() itself
was called by themethod main(). ThewaitForce()methodwas always executed
by the thread tr1; the total number of executions of that method detected during the
stack sampling is ex1 = 126. Similarly, the method getLen() was executed by
threads tr2 and tr3 98 and 117 times respectively.

The call trie is used to detect thread pools T p1, . . . , T pk in the program. A thread
pool T pl = 〈tri , . . . , tr j 〉 is a tuple of one or more threads tri , . . . , tr j , j ≤ m
that have same functionality and can process tasks in parallel. T p1, . . . , T pk, k ≤ m
constitute the set of all thread pools present in the program.

We detect thread pools from the call trie in two steps. During the first step our
framework forms a set of candidate thread pools T p1, . . . , T pq , , q ≥ k that can be
possibly found in the program. During the second step the framework refines the set
of candidate thread pools into the final set of thread pools T p1, . . . , T pk .

During the first step our framework initially creates a map T whose keys are the
candidate thread pools, and values are the total execution counts for these candidate
pools. Then the framework iterates through the leaf nodes of the call trie. For each
leaf node the framework retrieves a tuple T pl = 〈tri . . . tr j 〉 of threads that executed
the node along with the total number of executions Exl = ∑

(exi , . . . , ex j ). If T

does not contains the tuple T pl , the pair 〈T pl , Exl〉 is inserted into T. Otherwise the
number of executions for the existing tuple is increased by Exl . As a result of the first
step, the keys of the map T form the set T p1, . . . , T pq of candidate thread pools.

In our example T contains following information:

– T p1 = 〈tr1〉, Ex1 = 5 + 126 + 137 = 268
– T p2 = 〈tr2, tr3〉, Ex2 = 409 + 98 + 722 + 512 + 117 + 698 = 2556
– T p3 = 〈tr4, tr5〉, Ex3 = 384 + 276 = 660
– T p4 = 〈tr4〉, Ex4 = 12
– T p5 = 〈tr5〉, Ex5 = 25

However, the data collected by the stack sampling is not guaranteed to be accu-
rate. It is possible that some of the executions of a method by the thread were not
detected during the stack sampling, which results in a number of “spurious” thread
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pools detected at the first stage. In our example it is likely that calcRadius and
calcMass methods were also executed by threads tr5 and tr4 correspondingly. But
these executions were either too infrequent or too short to be detected by the stack
sampling. This resulted in detection of “spurious” thread pools T p4 and T p5.

During the second step spurious thread tuples in T are detected and merged with
the correct ones. The tuple 〈T p1, Ex1〉 is considered a spurious one and merged with
〈T p2, Ex2〉 if and only if all threads in T p2 also present in T p1 and Ex1 	 Ex2. The
resulting tuple is formed as 〈T p1, Ex1 + Ex2〉. After merging, the remaining tuples
T p1 . . . T pm ∈ T represent the thread pools detected in the program.

In the example depicted at the Fig. 3, tuples T p4 and T p5 are merged into T p3
because Ex3 	 Ex4 and Ex3 	 Ex5. The resulting set of threadpools is T p1 = 〈tr1〉,
T p2 = 〈tr2, tr3〉, T p3 = 〈tr4, tr5〉.

Stack samples are also used to identify program’s libraries. The knowledge of
libraries is necessary to generate a semantically correct performance model. For every
function or method f the framework generates the set of functions 〈 f1, . . . , fncall〉
that called f . If the number of callees ncall > 1, f is added to the set of library
functions. Although the stack sampling may not detect some rarely executed library
functions, this does not affect correctness of our models.

4.2 Static analysis

During the static analysis our framework scans the code of the program and detects
csync, cI O , cin and cout CFs. It also detects the creation points of locks and queues in
the program, as a prerequisite for the dynamic analysis.

The static analyzer represents the program as a dependency graph. The vertices of
this graph correspond to functions andmethods in the program (both called “function”
herein) and classes. The edges are code dependencies (e.g. the function A calls the
function B) and data dependencies (e.g. the function A refers the class B or creates
the instance of B) between these functions. The transitive closure of all the vertices
in the dependency graph represents all the code that may be executed by the pro-
gram.

The static analyzer traverses the dependency graph, starting from the functions
discovered during the stack sampling. It scans the code of the functions, searching for
the specific constructs that represent csync, cI O , cin and cout CFs. In the process the
analyzer searches for references to other functions and methods, that are subsequently
loaded and analyzed.

There are numerous ways to implement synchronization and queue operations in
a program. Practically all the modern programming languages such as C, C++ or
Java provide low-level primitives to implement threading and synchronization. These
primitives are built around the concept of the mutexes and condition variables (Hoare
1974). However, programmers rarely design and think of their programs in the terms
of mutexes and condition variables. Instead, programmers design their programs in
terms of higher-level locks such as semaphores, barriers, read-write locks, or producer-
consumer queues. Similarly, we simulate the semantics of thread interaction in the
program in terms of these high-level locks.
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Unfortunately, there can be numerous ways to design and implement high-level
locks using low-level primitives. As a result, detecting cin , cout and synchronization
CFs and determining their operation types optype may require complex analysis that
is very hard to automate.

However, manually implementing high-level synchronization constructs is a work-
intense and error-prone task for most programmers. The resulting implementations
often have inferior performance and are prone to bugs. To facilitatework of developers,
most of modern programming languages provide standard libraries of concurrent con-
structs: semaphores, barriers, synchronization queues, thread pools and other means
for thread interaction. Examples of such libraries are thejava.util.concurrent
package for Java, the System.Threading namespace in C#, and boost thread-
ing library in C++. Using standard implementations of locks and queues instead of
constructing them from low-level synchronization primitives is a recommended way
to developing concurrent applications.3

From the standpoint of building performance models, using known implementation
of high-level locks and queues greatly simplifies the analysis of the program. Imple-
menting thread interaction using a set of standard constructs allows programanalysis to
accurately identify queues Q and locks L and in the program, determine their types and
parameters Πlock , and discover synchronization operations that involve these locks.
Thus in the current study we concentrate on building models of programs that employ
standard implementation of locks and queues to implement thread interactions.

The analyzer considers calls to specific functions that perform synchronization
operations and access program’s queues as csync, cin , and cout CFs appropriately.
Typically, these are the functions that constitute the API of the corresponding thread
and locking library. The class of the CF and the type of synchronization operation
optype are inferred from the name and the signature of the called function. For exam-
ple, in a Java program the call to the Semaphore.acquire(int permits)
is considered as a csync CF whose type is optype=“Semaphore_acquire”. Simi-
larly, the call to the Semaphore.release() method is a csync CF whose type
is optype=“Semaphore_release”.

The analyzer also tracks low-level synchronization primitives, such as monitors,
mutexes, and synchronized regions. These constructs are often used to implement
simple synchronizations. Our models simulate these constructs explicitly as csync
CFs. However, when the combination of low-level primitives is used to implement a
high-level lock, the probabilistic execution graph (PEG) may not be able to capture
the deterministic behavior of such lock. Consider a custom implementation of a cyclic
barrier that maintains the counter of waiting threads. When the thread calls the barrier,
the program checks the value of the counter. If the value of the counter is less than
the capacity, the calling thread is suspended; otherwise the program wakes up all the
waiting threads. In the PEG this behavior will be reflected as a forkwith the probability
of lifting the barrier equal to 1/(barrier capacity). As a result, in certain cases themodel
will lift the barrier prematurely, and in other cases it will not lift the barrier when it is
necessary.

3 http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/overview.html.
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cin/cout CFs are detected in the same way as synchronization CFs. The
only difference is that the analyzer tracks a different set of API functions or
methods, which represent operations on the program’s queues. For example,
the call to ArrayBlockingQueue.take() is a cin CF, and the call to
ArrayBlockingQueue.put() is a cout CF.

The analyzer also tracks calls to the constructors and initializers of locks and queues.
These calls do not directly correspond to the csync CFs, but they are used to detect
queues and locks in the program and retrieve their parameters during the dynamic
analysis.

cI O code fragments are discovered in a similar manner. The static analyzer tracks
API functions that can perform disk I/O. Calls to the functions that may access the
file system metadata, such as File.exists() Java method or stat() libc
function, are considered as I/O CFs. Similarly, the bodies of low-level functions that
perform file I/O, such as native methods of the FileInputStream Java class, are
also considered as I/O CFs.

4.3 Dynamic analysis

The purpose of dynamic analysis is to identify cCPU CFs, the parameters Π of locks
and CFs, and the probabilistic call graphs 〈S, δ〉 of the program’s threads.

The dynamic analyzer instruments the program and runs it again in the same con-
figuration as the initial stack-sampling run. Each CF detected during the static analysis
is instrumented with two probes. A start probe is inserted immediately before the CF,
and an end probe is inserted right after the end of the CF. Each probe is identified by
the unique numeric identifier (probe ID).

Probes report the timestamp, the probe ID, and the thread ID. ForCFs corresponding
to a function call, the start probe reports function’s arguments, and the endprobe reports
the return value. For method calls probes also report the reference to the called object,
if relevant. This information is used to obtain parameters of csync, cin , and cout CFs.

During its execution the instrumented program generates the sequence of probe hits
on a per-thread basis, which constitute a trace of the thread. Two coincident probe hits
in the trace form a pair 〈start probe ID, end probe ID〉. Every such pair represents an
execution of a single code fragment.

The 〈start probe ID, end probe ID〉 pairs are “overlapping” in the trace, so the end
probe ID of one pair becomes the start probe ID of the next pair. Thus executions of
cI O , csync, cin , and cout CFs in the trace are interleaved with pairs of probe IDs. These
pairs, which represent computations performed between executions of cI O , csync, cin ,
and cout CFs, correspond to cCPU CFs.

We illustrate the analysis of the program with an example. The Fig. 4 contains a
snippet of a Java program that compares images. The program fetches an object img1
that represents an image (corresponds to a task in the terms of our model) from a
shared blocking queue tasksQueue. Then the program enters a synchronized region
guarded by the objLock object, loads a reference image imgRef from the file, and
exits the region. Next, the program compares img1 image against the imgRef and
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Line no.
1 FileInputStream fileRef = new FileInputStream("reference.jpeg");
2 FileInputStream fileLog = new FileInputStream("compareLog.bin");
3 MyImage imgRef = null;
4 MyImage img1 = tasksQueue.poll(100, TimeUnit.MILLISECONDS);
5 synchronized(objLock) {
6 byte[] bytesRef = fileRef.readBytes();
7 imgRef = new MyImage(bytesRef);
8 }
9 boolean match = Image.compare(img1, imgRef);
10 byte[] bytePrevComparisons = fileLog.readBytes();

...

Fig. 4 A code snippet that performs image comparison

Table 2 A corresponding fragment of the trace

ProbeID Timestamp
(ns)

ObjectID Arguments/
return value

Comments

10 11345231 7683745 100, 5 #Fetch the img1 object
(line 4)

11 11391326 7683745 4387459

27 11391365 87235467 #Enter a synch. region
(line 5)

28 11392132

10205 11392159 1872565 #Read a reference image
(line 6)

10206 19756012 1872565

6 19873872 87235467 #Exit a synch. region
(line 8)

7 19873991

10205 19923752 32748998 #Read a comparison log
(line 10)

10206 25576572 32748998

…

loads a comparison log from another file in order to append the result to it (writing
the result to the log is not shown in the listing because of space concerns).

The trace for a program is shown at the Table 2. Here the CF 〈10, 11〉 is a cin CF.
The object ID=7683745 recorded by the probe 10 identifies the tasksQueue queue,
the first argument denotes the timeout of 100 ms, and the second argument denotes
the unit of measurement (msec). The probe 11 reports the return value 4387459,
which is an ID of the retrieved task img1. 〈27, 28〉 and 〈6, 7〉 are the synchronization
CFs corresponding to the entry and exit from the synchronized region. The object
ID=87235467 identifies the monitor associated with that region (represented by the
objLock object in the program). Two instances of 〈10205, 10206〉 I/OCF correspond
to two unrelated file read operations. Their object IDs 1872565 and 32748998 identify
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the instances of file objects fileRef and fileLog correspondingly. Pairs 〈11, 27〉,
〈28, 10205〉, 〈10206, 6〉, and 〈7, 10205〉 are the computation CFs.

4.3.1 Construction of probabilistic execution graphs

A naïve approach to generating the probabilistic execution graph (PEG) for a thread is
to treat the set s1 . . . sn of CFs discovered in the trace as the set S of nodes in the PEG.
For each node si ∈ S the subset Snext = {sk, . . . , sm} of succeeding nodes is retrieved,
along with the numbers of occurrences of the pairs (si , sk), . . . , (si , sm) in the trace.
The probability of transition from the node si to s j , j ∈ (k . . .m) is calculated as

p(si , s j ) = count (si , s j )∑m
l=k count (si , sl)

(2)

Probabilities of transition for every pair of nodes constitute the mapping δ : S →
P(S) in the mid-tier model.

However, the naïve approach results in problems when building execution graphs
for real-world applications. It may not represent calls to the program’s libraries cor-
rectly and generates overly complex PEG. To become practical, this approach must
be improved.

Correct representation of library calls Distinct execution paths in the program
must be represented as non-intersecting paths in the PEG, so that the control flow
in the model will not be transferred from one such path to another. However, if these
execution paths call a library function containing a code fragment, the instrumentation
would emit the same probe IDs for both calls, which correspond to executing the same
CF. As a result, distinct execution paths will be connected by the common node in the
PEG. During the simulation the thread model may “switch” from one execution path
to another unrelated execution path, which is semantically incorrect.

For example, according to the trace shown on the Table 2 the program enters the
synchronized region, reads data fromafile, exits the synchronized region, and performs
another unrelated file read. The “ground truth” call graph has no loops or branches (see
Fig. 5, top). However, both I/O operations will eventually call the same readBytes()

Fig. 5 Top The ground truth PEG from the thread trace. Bottom The incorrect PEG generated from the
trace that contains a library call
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I/O API that contains an 〈10205, 10206〉 I/O CF. As a result, the generated PEG will
contain a loop in it (see Fig. 5, bottom). While simulating this loop the model may not
exit the synchronized region, or may attempt exiting it multiple times. In both cases
the behavior of the model will be incorrect.

To address this problem the dynamic analyzer represents separate calls to the library
CFs as separate PEG nodes using the node splitting technique described in Reiss
and Renieris (2001). For every CF located within one of the program’s libraries, the
analyzer adds a context information describing the origin of the call to that library.

This information is obtained by instrumenting calls to the library functions dis-
covered during the stack sampling (see Sect. 4.1). An entry library probe is inserted
before every call to a library function; an exit library probe is inserted after such call.
As the analyzer scans the trace, it maintains a call stack of library probes. When the
entry library probe is encountered in the trace, its ID is added into the stack. This ID
is removed from the stack when the corresponding exit probe is detected. When the
analyzer detects the CF, it adds the sequence of library probe IDs present in the stack
as the prefix of that CF ID. As a result, calls to the library CFs that originate from
different locations in the program are represented as separate nodes in the PEG.

For an example, consider that entry/exit library probes 500/501 and 502/503 were
inserted into the program, so the resulting sequence of probe IDs in the trace is 10,
11, 27, 28, 500, 10205, 10206, 501, 6, 7, 502, 10205, 10206, 503. The correspond-
ing sequence of CF is 〈10, 11〉, 〈11, 27〉, 〈27, 28〉, 〈28, 10205〉, 〈500, 10205, 10206〉,
〈10206, 6〉, 〈6, 7〉, 〈7, 10205〉, 〈502, 10205, 10206〉, which is consistent with the
ground truth PEG.

Reducing the complexity of the model Naïve approach results in an unnecessary
complex PEG, consisting of thousands of CFs (see Table 4). Such complex models
have low performance and are hard to analyze, so they must be simplified.

According to the naïve approach, all the computations between cI O , csync, cin ,
and cout CFs are represented as cCPU CFs, even if their impact on performance is
negligible. Similarly, every synchronization region is represented as a pair of CFs,
even if it is very short and never becomes contended in practice.

In our example the trace contains four computation CFs. Out of these CFs only two
correspond to actual code constructs in the program: 〈10206, 6〉 represents creating
the imgRef object (line 7, execution time 117,860 ns) and 〈7, 10205〉 represents
image comparison (line 9, execution time 49,761 ns). 〈11, 27〉 and 〈28, 10205〉 are
artifacts of the analysis. Such “spurious” CFs have zero impact on the performance.
Their execution times are very low—39 and 27 ns correspondingly.

Overly complex models have major problems. First, simulating spurious CF
requires more time than executing them. As a result, performance of the model that
has many such CFs will suffer greatly. For example, unoptimized models of Tomcat
(see Sect. 5.2) ran slower than the actual program. Second, such model is hard to
understand and debug. While implementing PERSIK we often had to analyze and
debug the resulting models. Debugging PEGs consisting of thousands of nodes was
nearly impossible.

To simplify the model we remove all the insignificant CFs that have negligible
impact on the program’s performance. Model optimization is performed in two steps.
Thefirst step is findingphases in the program’s execution that donot affect performance
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measurements and excluding these phases frommodeling. The second step is analysis
of the remaining CFs to eliminate those that do not have a noticeable impact on
performance.

During the first step the whole time line of the program’s execution is split into
three phases: the startup phase, when the program doesn’t process tasks yet; the work
phase, when the program processes tasks; and the shutdown phase, when the program
doesn’t process tasks any more. Finding phases is easy for programs that handle
external requests, such as servers. A timestamp marking the beginning of the work
phase is recorded before issuing the first request, and the end timestamp is recorded
after the last request is complete. If startup or shutdown phases cannot be easily defined
for a program, we assume these phases are absent in the trace.

The model doesn’t simulate program’s performance during the startup and shut-
down phases. Among all CFs executed during the startup phase, only the CFs that are
required to build a semantically correct model (cin , cout , and csync CFs that perform
complex synchronization operations, such as awaiting on the barrier) are incorporated
into the model. Remaining CFs are considered as insignificant. All the CFs executed
during the shutdown phase are considered as insignificant.

During the second step the insignificant CFs executed during the work phase are
detected and removed from the model. The following CFs are considered as insignif-
icant:

– Non-contended synchronized regions. A synchronized region is non-contended if
the mean time required to enter that region is comparable with the instrumentation
overhead;

– Computation CFs whose summary CPU times amounts to less than t% of the
overall CPU time for the thread;

– I/O CFs whose total number of I/O operations and summary data transfer amounts
to less than t% of data transferred by the thread.

Setting t between 3 and5%allows shrinking thePEGby50–70%without noticeable
impact on the accuracy.

Accounting for determinism in the program behavior Some programs express deter-
ministic behavior that is difficult to represent accurately using a probabilistic model.
This deterministic behavior must be addressed in the model in order to obtain accurate
prediction.

First, the execution flow of a thread may take different paths depending on the
availability of the task in the queue. For example the program may attempt to fetch
from the blocking queue and impose a timeout for the operation.Depending onwhether
the requestwas fetched successfully or if the fetch operation has timed out, the program
may execute a different set of code fragments.

To account for this we condition the execution flow in the PEG based on the result
of a queuing operation. Namely, the analyzer inserts “virtual” nodes after each cin
node in the PEG. The c f etch

in virtual node is executed when the cin CF was able to

fetch the task from the queue. cnof etchin node is executed if cin did not fetch the task
and exited by the timeout.

Second, representing loops as cycles in a PEG may affect the model’s accuracy
(Koziolek et al. 2006). If a loop that performs exactly n iterations is represented as a
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cycle in a PEG, then the number of iterations X for that cycle will not be a constant.
It can be shown that X will rather be a random variable that follows a geometric
distribution with mean n and a probability mass function Pr(X = k) = 1

n · (1 −
1
n )k−1. In most cases this representation has a minor effect on the prediction accuracy.
However, if the program’s performance y strictly follows the function y = f (n), the
predicted performance y′ will be a function of a random variable y′ = f (X), whose
parameters (mean, standard deviation) may differ noticeably from y.

In our experiments such mispredictions occurred when a loop was used to populate
the program’s queues with tasks. For an example, consider a program with O(N 2)

runtime complexity, where N is the number of tasks (the size of the input). Assuming
N = 5 and length of iteration 1 ms, the average running time of the program will
be 25 ms. However, if the loop that populates program’s queues with input tasks is
modeled as a cycle in the PEG, then the total number of tasks actually generated by
the model will follow a geometric distribution with Pr(N = k) = 0.2 · (0.8)k−1 and
mean N = 5. The predicted average running time will be 45 ms, which corresponds
to the mean prediction error ε(T ) = 0.80.

To address this issue the dynamic analyzer detects loops that populate task queues
using the algorithm in Moseley et al. (2007). The number of iterations in such loops is
simulated exactly. This ensures that the model will populate the queue with the right
number of tasks.

4.3.2 Retrieving parameters of code fragments

The analyzer retrieves parameters of the model’s constructs from the trace.
Parameters of locks and task queues Parameters of locks and queues are obtained

from the arguments passed to constructors and intializers corresponding to these locks
and queues and from their return values.

The lock type lt ype is inferred from the signature of the constructor/intializer of that
lock during the static analysis (see Sect. 4.2). The type-specific parameters lparam
are retrieved from the values of arguments passed to that constructor. For example,
in a Java program the capacity of the barrier is specified by the value parties
argument of the CyclicBarrier(int parties) constructor. Finally, the lock
ID lid is obtained from the reference to the lock returned by the constructor; it uniquely
identifies each lock li ∈ L .

Queues and their parameters are obtained in the same manner. For example, the
capacity of the queue is specified as the argument of the ArrayBlockingQueue
(int capacity) constructor.

Parameters of csync, cin, and coutCFs Parameters of these CFs are also obtained
from the arguments passed to functions and methods operating on locks and queues,
and from their return values. The ID of the called lock lid for a csync CF is obtained
from the reference to the lock; it is matched to the lid returned by the lock construc-
tor/initializer. The type of synchronization operation optype was inferred from the
signature of the called function earlier during the static analysis. The operation time-
out tmoutsync is retrieved from the arguments passed to the function. Parameters of
the cin/cout CFs are obtained in the same manner.
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Some low-level synchronization operations, such as an entry/exit from a synchro-
nized block,might not call functions ormethods. optype for such operation is obtained
by analyzing the corresponding instruction in the program. lid is obtained from the
reference to the associated monitor.

cCPU CFs The parameter of the cCPU CF is the distribution P
Π
CPU of CPU times

CPUtime. Generally CPUtime for a code fragment can be obtained as a difference
CPUtimeend−CPUtimestart , wereCPUtimestart is the threadCPU timemeasured
before executing the CF and CPUtimeend is the thread CPU time measured after
executing the CF. Here thread CPU time denotes the amount of time the CPU was
executing instructions of that thread.

CPUtime can be accurately measured when the execution time of a thread can
be determined. When this is not the case, CPUtime is measured as the difference
between the timestamps of start and end probes of the CF, substituting clock time for
CPU time. However, in order to use the latter approachwe need to avoid configurations
where CPU congestion is likely when defining model parameters.

cI O CFs. The parameters of the cI O CF are the number k and properties (the type
of I/O operation and the amount of data transferred) of low-level disk I/O requests
{dio1, . . . , diok} initiated by that cI O CF. This request-specific data can be retrieved
only from the OS kernel. We used the blktrace4 to retrieve the log of all kernel-mode
disk I/O operations initiated by the program.

Generally, the timestamps and thread IDs in the kernel-mode I/O log might not
match the timestamps and thread IDs in the instrumentation log. This makes asso-
ciating low-level I/O requests with execution of I/O code fragments in the program
difficult.

To match blktrace log to the instrumentation log the dynamic analyzer uses cross-
correlation—a technique used in signal processing (Stein 2000). The cross-correlation
( f � g)[t] is a measure of similarity between signals f and g, where one of the signals
is shifted by the time lag Δt . The result of a cross-correlation is also a signal whose
maximum value is achieved at the point t = Δt . The magnitude of that value depends
on similarity between f and g. The more similar are those signals, the higher is the
magnitude of ( f � g)[Δt].

The analyzer represents sequences of I/O operations obtained from the kernel-
mode trace and user-mode trace as signals taking values 0 (no I/O operation at the
moment) and 1 (an ongoing I/O). It generates user I/O signals U = {u(t)1 . . . u(t)N }
for each user-mode thread obtained from the program trace, and kernel I/O signals
B = {b(t)1 . . . b(t)M } for each kernel-mode thread from the blktrace log. The analyzer
discretizes those signals with a sampling interval of 1 ms.

Figure 6 depicts the cross-correlation between signals u(t) and b(t). The cross-
correlation signal (u(t) � b(t))[t] reaches its maximum value at the point Δt = 324,
whichmeans that the user signal u(t) is shifted forwards byΔt = 324mswith relation
to the kernel signal b(t).

The dynamic analyzer matches user to kernel I/O signals using a greedy iter-
ative procedure. For each pair of signals 〈u(t)i ∈ U , b(t) j ∈ B〉 the analyzer

4 http://linux.die.net/man/8/btrace.
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Fig. 6 Cross-correlation between user-mode and kernel-mode I/O logs

computes a cross-correlation signal xcorri j = b(t)i � u(t) j and the value Δti j =
argmaxt (xcorri j ). The user signal u(t)i matches the kernel signal b(t) j if the maxi-
mum value of the cross-correlation signal xcorri j [Δti j ] is the highest across the signal
pairs.

Next the analyzer aligns user and kernel-mode traces by subtracting the Δt from
the timestamps of the user-mode trace. Finally, the kernel-mode I/O operations are
associatedwith the user-mode states. Each kernelmode I/Ooperation dio j is described
as a time interval [tbstart , tbend ] between its start/end timestamps. Similarly, invocations
of the user mode I/OCFs are described as time intervals [tustart , tuend ]. The kernel-mode
I/O operation dio j is considered to be caused by the user-mode I/O CF if the amount
of intersection between their corresponding time intervals is maximal across all the
I/O CFs in the trace. Correspondingly, a sequence dio j . . . dio j+k of low-level I/O
operations associated with the execution of the user-mode CF are considered to be
parameters 〈dio1 · · · diok〉 ∈ P

Π
disk of that CF. A user-mode I/O CFs that does not

intersect any kernel-mode I/O operation is considered as a cache hit (k = 0).

4.4 Constructing the performance model

We implemented our methodology as a toolset for automatically building models of
Java programs. The toolset consists of two major parts: PERformance SImulation Kit
(PERSIK) framework for implementing performance models, and the ModelGen tool
for automatically generating the PERSIK model of a given program. The source code
of our toolset and examples of generated models are available at.5

5 https://sourceforge.net/projects/persik/.
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The PERSIK framework is based on the OMNeT++ toolset for implementing
discrete event models.6 A PERSIK model consists of interconnected modules that
communicate using messages (Varga and Hornig 2008). Simple modules form a set of
“building blocks” that is common for models of all the programs. We implemented a
variety of simple modules that simulate different types of CFs, queues, locks, hard-
ware; and also modules that perform service functions such as collecting simulation
results. Each simple module has a set of parameters, which correspond to parameters
Π of the corresponding entity of the formal model. Simple modules are grouped into
compound modules, which enables constructing hierarchical models.

PERSIK models generally follows the architecture of three-tier models described
in the Sect. 3. The main difference is that PERSIK models have two tiers instead
of three. The upper-level PERSIK model contains the higher-level queuing model of
the system. It also contains models of locks, I/O subsystem, and the CPU/Scheduler
model, which occupy the lowest level of the formal model. The lower-level PERSIK
model implements the models of working threads, which correspond to the middle tier
of the formal model. The architectural differences between the formal and PERSIK
models intend to facilitate the actual implementation of the models. These differences
are of a cosmetic nature and do not violate the semantics of our formal model.

PERSIK models are automatically generated by ModelGen. ModelGen relies on
ASM7 toolset for bytecode analysis and instrumentation. ModelGen implements pro-
gram analysis described in Sects. 4.1, 4.2 and 4.3. The result of the program analysis
is a set of text and xml files, which contain all the information required to gener-
ate the model: the list of threads, thread pools, and queues in the high-level model;
the set S of CFs, their classes and properties Π ; transition probabilities δ; the set
of locks L and their properties Πlock . ModelGen translates this information into the
PERSIK model of the program. Elements of the formal model strictly correspond to
the modules and and parameters of the PERSIK model, which makes such translation
straightforward.

To start using the model the analyst must specify the model’s configuration param-
eters (the numbers of threads in the thread pools, intensity of the workload, sizes
of the queues, the numbers of CPU cores etc). The analyst must also specify what
performance data should be collected. The model can provide performance data for
CFs (execution time τ ), for a group of CFs (e.g. a processing time of the task by the
thread), or for the whole program (e.g. throughput or a response time). These are the
only manual actions performed during the model construction.

5 Model verification

In this section we present experimental evaluation of our methodology for automatic
generation of performance models. We used our tool to automatically build perfor-
mance models of a variety of multithreaded programs and evaluated their prediction
accuracy.

6 http://www.omnetpp.org/.
7 http://asm.ow2.org/.
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To estimate the accuracy of our predictionswe built themodel of each program from
one configuration and used it to predict performance in a set of other configurations.
Then we measured actual performance of the non-instrumented program in same
configurations. To get reliable measurements we performed three runs of both the
actual program and its model in each configuration. The mean values of measured
and predicted performance metrics were used to calculated the relative error ε of the
model:

ε = |measured − predicted|
measured

(3)

Performance metrics we predict include program-wide metrics, such as response
time or throughput of the program, and also utilization of the computation resources,
such as a hard drive or a CPU.

Below we describe our simulations in detail. First, we present results for modeling
various small- tomedium-size programs. These results demonstrate that our simulation
framework is capable of predicting performance of various programs that use different
synchronization constructs and hardware resources. Second, we present results for
large industrial programs. These results demonstrate that out approach can be used to
build accurate models of large, industrial-grade multithreaded programs.

5.1 Modeling small- to medium-size programs

We built models of the following applications: Raytracer (a 3D rendering program),
Montecarlo (a financial application), Moldyn and Galaxy (scientific computing appli-
cations), and Tornado (a Web server). Raytracer, Montecarlo and Moldyn are parts
of the Java Grande benchmark (Bull et al. 1999) suite. Although relatively small in
size, these programs express functionalities peculiar to a wide range of multithreaded
programs. They implement thread interaction in different ways and use a great vari-
ety of synchronization mechanisms to enforce a correct order of computations across
multiple threads.

We used two hardware configurations for our experimentation. Configuration Con-
fig I is a PC equipped with the Intel Q6600 quad-core CPU, 4GB RAM, and 250
GB HDD. The computer was running Ubuntu Linux OS. Configuration Config II is
a PC equipped with 2 eight-core AMD Opteron CPUs (total 16 CPU cores) and 64
GB RAM. The computer was running Debian Linux OS. All the programs, except
Tornado, were run in both Config I and Config II configurations. Tornado, as an disk
I/O-heavy application, was run only in the Config I configuration.

Table 3 present a summary on these programs and their models. Below we briefly
describe these programs, along with results of their simulations.

Raytracer program renders the image at a given resolution using a ray tracing
algorithm. The rendering is parallelized across a pool of working threads; each thread
renders a given row of pixels and thus corresponds to a “task” in the terms of the
formal model. These tasks are stored in a synchronized queue that is initialized upon
the start of the program.

In our experiments Raytracer rendered a scene containing 64 spheres. The overall
time required to render the frame is the most important performance metric of Ray-
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Table 3 Small- to medium-size programs and their models

Raytracer Montecarlo Moldyn Galaxy Tornado

Size, lines of code 1468 3207 1006 2480 1705

Number of probes 16 18 30 72 40

Number of CFs 43 17 72 124 88

Number of nodes in the model 25 24 46 59 36

Fig. 7 Predicted and measured running time for Raytracer in hardware Config I

tracer. Assuming a constant size for the image, the number of working threads is a
determining factor of the performance of the Raytracer.

We built the model of Raytracer using a configuration with 3 working threads in
both Config I and II. Figures 7 and 8 compare the actual and predicted performance
of Raytracer in Config I and II correspondingly. We ran Raytracer in the Config I with
1,2,3,4,8,10,12,16 working threads. The relative prediction error in the Config I varied
in ε ∈ (0.029, 0.156) with the average error measured across all the configurations
ε = 0.117 (see Fig. 7). Correspondingly, we ran the Raytracer in the Config II with
1,2,4,6,8,10,12,15 working threads. The relative error in the Config II varies in ε ∈
(0.041, 0.173)with the average error ε = 0.086 (see Fig. 8). These results demonstrate
good prediction accuracy for both hardware configurations.
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Fig. 8 Predicted and measured running time for Raytracer in hardware Config II

Montecarlo simulates prices of marked derivatives based on the prices of the under-
lying assets. Using historical data on asset prices, the program generates a number of
time series using aMonte Carlo simulation. Each time series is considered as a “task”;
time series are generated independently using a pool of working threads. Threads are
synchronized using a barrier.

The number of threads is the main factor determining the performance of Monte-
carlo. The total time required to finish a simulation is the most important performance
metric in this case.

In the Config I we built the model of Montecarlo using a configuration with 2
working threads and executed Montecarlo with 1,2,3,4,8,10,12,16 working threads.
The relative error in this configuration varied in ε ∈ (0.014, 0.105) with ε = 0.062
(see Fig. 9). Correspondingly, in the Config II the model of Montecarlo was built
using a configuration with 4 working threads. Montecarlo was executed with with
1,2,4,6,8,10,12,15 working threads; the error varied within ε ∈ (0.029, 0.319) with
ε = 0.184 (see Fig. 10).

Although the prediction error remains within the acceptable limits in Config II,
the performance of the Montecarlo becomes less linear in relation to the number of
threads. To understand the cause of these errors we studied behavior of MonteCarlo
using the Linux perf utility. It appeared that the Montecarlo performs a large number
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Fig. 9 Predicted and measured running time for Montecarlo in hardware Config I

of memory operations. When executed on a 16-core machine these operations saturate
the memory bus, which leads to a performance degradation of the application. These
errors could be addressed by a more detailed simulation of memory operations, which
would involve collecting the information on memory accesses by the program and
developing robust models of a memory subsystem.

Moldyn simulates motion of argon atoms in a cubic volume. Moldyn discretizes
time into small steps (iterations). During each iteration Moldyn computes the force
acting on every atom in the pairwise manner, and then updates the positions of the
atoms.

Moldyn parallelizes computations across a pool of working threads. Objects that
represent atoms are stored in the global synchronized queue. One of these threads (the
main thread) coordinates actions of other threads using barriers. During each iteration
working threads compute forces acting on atoms, and then the main thread merges
forces computed by different threads and calculates updated positions of the atoms.

The length of the iteration is the most important performance metric of theMoldyn.
Given the constant number of atoms, the size of the thread pool is the only parameter
that determines performance of the Moldyn.

We built the model of Moldyn using a configuration with 2 working threads in both
hardware Config I and II. Figures 11 and 12 depict prediction results in these config-
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Fig. 10 Predicted and measured running time for Montecarlo in hardware Config II

urations. In Config I we executed Moldyn with 1,2,3,4,8,10,12,16 working threads;
the relative varies in ε ∈ (0.013, 0.155) with the average error measured across all
the configurations ε = 0.083 (see Fig. 11). In Config II we executed Moldyn with
1,2,4,6,8,10,12,15 working threads, and the relative error os ε ∈ (0.006, 0.485) with
the average error ε = 0.255 (see Fig. 12).

The model predicts performance of Moldyn on a 16-core machine with lower accu-
racy than on a 4-core machine. Again, we used perf utility to understand the root
cause of these errors.We discovered that specifics of data structure used by theMoldyn
causes the cache miss rate to increase along with the number of threads. In particular,
the miss rate for 1 thread is 0.0063%, while the miss rate for 15 threads is 0.0131%
(5× increase). As a result, as the number of threads increases, the CPU time for the
CFs increases as well, which leads to the reduction in the accuracy. An accurate model
for CPU cache remains a subject of future work. Directions toward developing this
model are outlined in the Sect. 6.3.

Galaxy simulates the gravitational interaction of celestial bodies using the Barnes
and Hut (1986) algorithm, which relies on an octree data structure to speed up com-
putations. During each iteration the main thread of the Galaxy rebuilds the octree,
then the pool of “force threads” computes forces and updates positions of bodies, and,
finally, the pool of “collision threads” detects body collisions. Pools communicate
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Fig. 11 Predicted and measured iteration length for Moldyn in hardware Config I

through the synchronized queues. The order of computations is enforced by the main
thread. The number of force threads and the number of collision threads are the two
parameters affecting the performance of the Galaxy. The time taken by an iteration is
the most important performance metric of the Galaxy.

In both Config I and Config II we built the model of the Galaxy with 2 force and 2
collision threads. In the Config I we ran the Galaxy with 1,2,3,4,8,12 and 16 “force”
and “collision” threads (total 49 combinations). The relative error for Galaxy in the
Config I varies in ε ∈ (0.002, 0.291) with average error ε = 0.075 (see Fig. 13).
In the Config II we ran the Galaxy with 1,2,4,6,8,10,12 and 15 “force” and “colli-
sion” threads. The relative error in the Config II varies in ε ∈ (0.004, 0.358) with
ε = 0.092 (see Fig. 14), which is almost as accurate as the prediction for 4 CPU
cores.

Our model correctly predicts some interesting aspects of the Galaxy performance.
First, the model correctly points that the influence of the number of “collision threads”
onperformance isminimal, as these threads constitute aminor fraction of computations
compared to the “force threads”. Second, themodel predicts the non-linear dependency
between the number of “force threads” threads and performance of Galaxy. Increasing
the number of “force threads” from1 to8 results in 5-fold improvement in performance,
while increasing the number of these threads from 8 to 15 improves performance only
by 35%. This phenomenon is explained by the Amdahl’s law (Amdahl 1967). Namely,
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Fig. 12 Predicted and measured iteration length for Moldyn in hardware Config II

rebuilding the octree is not parallelized, and is performed by the main thread. As the
number of working thread increases, the time for rebuilding an octree becomes a
dominant factor in performance. Furthermore, accessing synchronized queues by the
program’s threads is also a sequential operation that involves locking, whose impact
on performance becomes noticeable as the number of threads grow.

This analysis is reinforcedwith the prediction ofCPUusage by theGalaxy inConfig
II (see Fig. 15). In particular, we correctly predict that all the CPU cores are never fully
utilized. The relative prediction error for CPU utilization varies in ε ∈ (0.004, 0.191)
ε = 0.080.

Tornado is a simple web server, whose structure and behavior are described as an
example in the Sect. 3. Unlike Moldyn, Montecarlo, and Galaxy, which engage the
CPU-intense computations, Tornado workload is dominated by disk I/O operations.
The performance of the web server is influenced by two parameters: the incoming
request rate (IRR), which represents the intensity of the workload, and the number of
working threads. IRR is measured as the number of requests the web server receives in
a time unit. The performance of the web server is characterized by two main metrics:
its response time R and throughput T .

Predicting performance of the web server is a more complex problem because it
requires simulating not only computations but also the disk andnetwork I/Ooperations.
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Fig. 13 Predicted and measured iteration length for Galaxy program in Config I

Fig. 14 Predicted and measured iteration length for Galaxy program in Config II
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Fig. 15 Predicted CPU utilization for Galaxy in Config II

In our experiments Tornado was deployed in hardware Config I and used to host
roughly 200,000Wikipedia web pages.We used a separate client computer to simulate
the incoming connections.

In our experiments we ran Tornado with with 1,2,4 and 8 working threads and IRR
ranging from 19.75 to 97.2 requests per second (rps), measured at the server side. The
model of the web server was built using a configuration with IRR=57.30 requests per
second (RPS) and 1 working thread.

The prediction of the response time is shown at the Fig. 16. Predictions of the
throughput are shown at the Fig. 17. The relative prediction error for response time
R is in ε(R) ∈ (0.017, 1.583) with ε(R) = 0.249. Prediction for throughput T and
hard drive utilization Udisk are considerably more accurate. The relative error for
T is ε(T ) ∈ (0.000, 0.051) and ε(T ) = 0.012; the error for hard drive utilization
ε(U ) ∈ (0.000, 0.077), while ε(U ) = 0.025.

One cause for the relatively high error terms for R is the variance in page cache
hit rate; the next section of the paper describes these effects in more detail. Another
cause is the simplistic model of networking operations, which are currently simulated
as CPU computations.

The model correctly predicts that the number of working threads has a weak influ-
ence on the performance of Tornado. The single hard drive becomes a bottleneck, so
any increase in the number of parallel I/O operations is negated by the proportional
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Fig. 16 Predicted and measured response time for Tornado

increase in the average execution time for each I/O request (see Fig. 18 for predicted
hard drive utilization). We believe this example demonstrates the necessity of proper
simulation of I/O operations in multithreaded programs because they often become a
determining factor in the program’s performance.

5.2 Modeling large industrial applications

Modern multithreaded applications are significantly larger and more complex than
the programs studied in the previous section. To prove the practical value of our
methodology we must demonstrate that our framework is capable of building accu-
rate models of industrial-scale applications. We built models of the following large
open-source programs: Sunflow 0.07 3D renderer and Apache Tomcat 7.0 web
server.
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Fig. 17 Predicted and measured throughput for Tornado

We predicted the performance of Tomcat in two setups: as a standalone web server
that hosts static web pages and as a servlet container that hosts an iText library for
text conversion. Considering difference in Tomcat functionality over these setups, the
correspondingmodels are significantly different. Table 4 provides information on large
programs and their models.

Instrumentation did not alter semantics of these programs, but introduced some
overhead. The overhead, measured as a relative increase in the task processing time
by an instrumented program, ranged from 2.5 to 7.6%.

The complexity reduction algorithm eliminated 99–99.5% of all CFs as insignifi-
cant in the Tomcat and Tomcat+iText models correspondingly. Most of insignificant
CFs were detected during the startup or shutdown phases. No startup or shutdown
phases were detected in the Sunflow, and only 80% of its CFs were eliminated as
insignificant.
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Fig. 18 Predicted utilization of the hard drive by Tornado

Table 4 Large programs and their models

Tomcat (web server) Tomcat+iText
(servlet container)

Sunflow

Program size (LOC) 182,810 283,143 21,987

Number of probes 3178 3926 380

Mean instrumentation overhead 7.3% 2.4% 5.7%

Number of CFs 11,206 9993 209

Total number of nodes in the model 82 49 42

Simulation speedup 8–26 37–110 1050

Ourmodels run 8-1000 times faster than the actual program (seeTable 4). The actual
speedup depends not on the size of a program, but on a ratio between the times required
to simulate CFs by the model and times required to execute these CFs by the program.
Simulating a CF requires a (roughly) constant amount of computations, regardless of
its execution time. Thus models that invoke many CFs with short execution times or
simulate intense locking operations tend to run slower than models that execute few
long-running CFs. As a result, eliminating insignificant CFs is essential for achieving
a high performance of the model.

Using performance models offers two additional sources of speedup over bench-
marking. First, multiple instances of a model can run simultaneously on a multicore
computer. Second, the model does not require a time-consuming process of setting up
the live system for experimentation.

All the experiments with large applications were performed using configuration
Config I, on a computer with a 2.4 GHz Intel Q6600 quad-core CPU and 4 GB RAM.
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Belowwebrieflydescribe architecture of our large-size testing applications anddiscuss
the result of our simulations.

Sunflow 3D renderer Sunflow is a 3D renderering program for photo-realistic image
synthesis. The program features an extensible object-oriented design that allows for
extending and customizing the ray tracing core (See Footnote 2). The Sunflow offers
a wide range of features including various types of cameras, surface shaders and
modifiers, light sources and image filters, and various file formats for importing and
exporting data.

Upon the start of the Sunflow the main thread reads a scene specification from the
disk, splits the frame into multiple tiles that correspond to “tasks” in our model, and
stores tile coordinates in the queue. Then the main thread starts working threads. The
pool of working threads reads tile coordinates from the queue, renders the image tiles,
and synthesizes the resulting image.

Given the constant size of the image, the number of working threads and the number
of CPU cores are two main factors that determine the performance of the Sunflow.
The time required to render the image is the main performance metric.

Wepredicted Sunflowperformancewith 1,2,3,4,5,6,8,11,12 and 16working threads
and with 1,2,3 and 4 active CPU cores. Figure 19 compares predicted and mea-
sured rendering times in each of these configurations. The relative error varies in
ε ∈ (0.003, 0.097) with the average error across all the configurations ε = 0.032.

Apache Tomcat as a web server Apache Tomcat is a web server and Java servlet
container (see Footnote 1). Thanks to its reliability, flexibility, and high performance
Tomcat is widely used in industry8 However, these Tomcat features come at the cost
of the high internal complexity. Tomcat consists of over 200,000 lines of Java code
and hundreds of Java classes. Tomcat uses up to 10 different thread pools to start up
and shut down the program, to accept incoming connections, to process timeouts, to
serve incomingHTTP requests, and for other purposes.Web applications hosted by the
Tomcat can perform synchronization and start additional threads, further increasing
complexity of the system.

We used Tomcat to host over 600,000 Wikipedia web pages. In our experiments
Tomcat relies on a single blocking queue to pass incoming HTTP requests to a fixed-
size thread pool. The performance of the Tomcat was influenced by the size of the
thread pool and by the the workload intensity (the number of requests the server
receives in a second, req/s). The performancemetrics are response time R and through-
put T .

Themodel of theweb server was built using a configurationwithworkload intensity
92 requests per second (req/s) and 1 working thread. We predicted performance of
Tomcat with the number of working threads ranging from 1 to 10, and workload
intensity ranging from 48.3 to 156.2 req/s. During each run 10,000 requests were
issued.

The prediction results for R and T are depicted at the Figs. 20 and 21 respectively.
The relative prediction error ε(T ) ∈ (0.001, 0.087)with average error ε(T ) = 0.0121.
In non-saturated configurations throughput is roughly equal to the incoming request

8 http://tomcat.apache.org/.
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Fig. 19 Predicted and measured performance of Sunflow

rate, thus the relative error for saturated configurations is a more informative accuracy
metric: ε(Tsat ) = 0.027.

The error for R is ε(R) ∈ (0.003, 2.452) and ε(R) = 0.269. Similar to results
for the Tornado web server, the prediction error for the response time was relatively
high. We investigated this phenomena and concluded that increase in error terms is
attributed to fluctuations of the page cache hit rate k across the configuration space used
for Tomcat, which, according to our measurements, varied with mean k = 0.755 and
standard deviation σ(k) = 0.046. In statistical terms this means that in 95% of cases
the true value of k will vary between (0.663, 0.847) across different configurations.
These variations in the page cache hit rate cause proportional variations in the request
processing time by the working threads. However, in saturated configurations, when
theHTTP requests start to accumulate in the queue, even small variations in the request
processing time result in large variations in the response time R.
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Fig. 20 Response time of Tomcat in a web server setup

Fig. 21 Throughput of Tomcat in a web server setup

To verify our assumption about the cause of inaccuracies we introduced a 15% arti-
ficial bias in k. This resulted in increasing the relative error to ε(R) ∈ (0.015, 3.109)
with ε(R) = 0.882.Webelieve this experiment demonstrates the difficulties in predict-
ing the inherently variable disk I/Ooperations.Moreover, it emphasizes the importance
of precise data collection for accurate performance prediction because even a small
bias in data collection results in a large prediction error.
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Fig. 22 Response time of Tomcat in a servlet container setup

Ourmodel correctly predicts that the number of working threads has aminor impact
on performance of Tomcat in this setup. This can be attributed to a mixed behavior
of Tomcat in a web server setup. 81% of computational resources consumed during
processing the HTTP request is the I/O bandwidth, and 19% is CPU time. As a result,
the single hard drive becomes the bottleneck that prevents performance from growing
significantly as the number of working thread increases. At the same time, remaining
CPU computations are parallelized across four CPU cores, resulting in small but
noticeable performance improvement.

Apache Tomcat as a servlet container Tomcat is more frequently used as a servlet
container. We used Tomcat to host a web application that reads a random passage from
the King James bible, formats it, and converts into the PDF document using the iText.9

library.
Themodel of theweb server was built using a configurationwithworkload intensity

57.30 requests per second (req/s) and 1 working thread. We predicted performance
of Tomcat with the number of working threads ranging from 1 to 10 and workload
intensity ranging from 19.67 to 132.68 requests per second. During each run 10000
requests were issued. The prediction results for R is depicted at the Fig. 22, and results
for T are depicted at the Fig. 23.

The relative prediction error for response time across all the configurations ε(R) ∈
(0.000, 0.716) with the average error ε(R) = 0.134. The CPU time CPUtime fluc-
tuates less than the demand for I/O bandwidth, which leads to the lower prediction
error in a servlet container setup.

9 http://itextpdf.com/.
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Fig. 23 Throughput of Tomcat in a servlet container setup

The prediction error for throughput across all configurations ε(T ) ∈ (0.000, 0.236),
while the mean error ε(T ) = 0.053. For saturated configurations, ε(T ) ∈
(0.000, 0.356) and ε(Tsat ) = 0.099.

The model correctly predicts the workload intensity at which the server saturates.
PDF conversion is a CPU-heavy task, thus performance of the server is bounded by the
number and performance of CPU cores. Since there are four CPU cores available, the
actual saturation point depends on the number of threads. It ranges from 21.4 req/sec
for a configuration with 1 thread to 85.5 req/sec for 8 threads.

6 Discussion and future work

As we experimented with our models, we made some interesting findings about our
approach, discovered its limitations, and laid ground for the future work. Below we
discuss these aspects of our work in detail.

6.1 Findings

We found that modeling locks and synchronization operations is essential for an
accurate and semantically correct model of the multithreaded system. Locks not just
influence performance of the system. They often form a “skeleton” of the program,
which coordinates work of all the program’s threads. Failure to simulate these locks
results in a non-functional model of the program.

We learned that building simulation models that can handle a broad range of multi-
threaded programs is difficult. In particular, different programs use various approaches
to implement threading, so discovering the semantics of thread interaction can be dif-
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ficult in the general case. However, the analysis of the program is greatly simplified if
that program uses a specific implementation of high-level locks and queues. Models
of such programs can be built automatically.

Proper modeling of hardware is essential for an accurate simulation. This includes
modeling of CPU computations, disk I/O, CPU cache,memory and network. However,
it is challenging to construct models of hardware that are both accurate and fast.

Accurate performance prediction requires precise measures of resource demand for
the elements of the program. Small errors in measuring resource demand may lead to
large prediction errors. However, obtaining precise measurements of resource demand
without introducing a significant overhead is difficult. Moreover, resource demand can
vary in time, leading to a decrease in prediction accuracy.

We found that in order to be fast and easy to understand the resulting model must be
simple and compact. A large and complex model can run slower than the actual pro-
gram, which defeats the whole purpose of performance prediction. Building compact
models requires identifying program constructs that do not have significant impact on
performance, and excluding these constructs from the model.

Finally, debugging performance models is difficult. Often the only manifestation of
the bug is the deviation between the predicted and the actual performance.Althoughwe
use a simple step-by-step procedure for locating bugs in models, developing tools and
methods for debugging performance models may be a prerequisite for their practical
use.

6.2 Limitations

Although our framework is capable of building performance models automatically, it
imposes certain limitations on the programs we can model. Below we discuss limita-
tions in our approach. The next section outlines our plans to address those limitations.

Our high-level models represent computations as task processing. Although this
approach does not cover all possible programs, it allows simulating most programs of
interest for performance purposes. Moreover, our models do not simulate performance
characteristics of individual requests but rather predict average performance of the
system for a given workload.

Currently PERSIK can not model distributed systems. In particular, PERSIK does
not explicitly simulate calls made by the program to other systems, such as Web
services or SQL databases. Representing these calls as computations or I/O operations
would result in an inaccurate prediction.

The PERSIK model may become inaccurate if usage patterns for the program
change significantly. Examples of such patterns are the image resolution in Sunflow
or probabilities of accessing individualweb pages in Tomcat. Changes in these patterns
may result in changes in behavior and resource usage of the program, which will lead
to changes in performance. In terms of PERSIK, changes in usage patterns lead to
changes in transition probabilities δ and CF parameters Π of the model. Updating δ

and Π may require reconstructing the model.
Currently PERSIK cannot model programs that use low-level constructs, such as

Java monitors, to implement high-level locks like barriers or blocking queues. Our
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framework can automatically build models of only those programs that implement
multithreading using the well-defined synchronization operations. We do not see it as
amajor limitation asmodern programming frameworks offer rich libraries of locks, and
programmers are encouraged to use these instead of developing their own implementa-
tions of locks (See Footnote 3). Moreover, semantics of locks implemented using low-
level constructs can be discovered using analysis described in Reiss and Tarvo (2013).
However, programs that implement “custom” locks that cannot be assigned to one of
existing lock types (semaphore, barrier, mutex etc), cannot bemodeled at this moment.

Our framework can handle some changes in hardware, such as the different number
of CPU cores. However, this does not yet translate into an accurate prediction of the
program running on a totally different hardware. Differences in characteristics of CPU,
memory, and cache will result in different execution times for individual CFs.

PERSIK simulation framework does not include models of network, RAM, and
CPU cache. This prevents our framework from accurately modeling some aspects of
the system’s performance, such as of memory bus contention, network contention,
and cache coherence. As a result, the modeling accuracy can decrease for certain
workloads and hardware platforms.

6.3 Future work

We plan to address limitations outlined above and to extend the scope of our approach,
so it could predict performance for awider range of programs andworkloads. A special
attention should be given to predicting performance of programs running on different
hardware and having a wide variety of usage patterns. Examples are predicting perfor-
manceofSunflow image rendererwith different image sizes, or predictingperformance
of Tomcat on different hardware. These predictions may require developing newmod-
eling architectures and new approaches towards automatic building of these models.

One approach that would allow modeling changes in both usage patterns and hard-
ware is a hybrid of statistical and simulation models. In a hybrid model the usage
patterns such as the image size in a 3D renderer or the number of particles in molec-
ular simulator are defined using metrics X pat . The dependency (δ,Π) = f (X pat )

between the structure of the execution graph δ and resource demands Π on the
one side and the usage patterns X pat on the another side would be approximated
statistically. The resource demands ΠCPU and Πdisk for CFs running on differ-
ent hardware would be modeled in a similar manner. For example, the amount
of CPU time ΠCPU = CPUtime for a computational CF could be defined as
CPUtime = f (XCPU , Xcf ), where XCPU are metrics that describe a CPU (e.g.
microarchitecture and clock rate), and Xcf are metrics that describe the mix of CPU
instructions executed by that CF.

Data required to approximate (δ,Π) = f (X pat ) will be collected by running
the program with different usage patterns. Similarly, the dependency CPUtime =
f (XCPU , Xcf ) canbe approximatedusing a libraryofmicrobenchmarks.Microbench-
marks that are representative over a variety of CF types will be executed on different
hardware platforms. Performance of those microbenchmarks will be measured, pro-
viding information for building a variety of models.

123



Autom Softw Eng

Although building the hybridmodel would requiremultiple runs of the program, we
expect the number of these runs to be significantly smaller than if the pure statistical
model was used (Chun et al, 2010). One reason for that is that parameters XCPU , Xcf

and X pat are likely to be conditionally independent given δ, Π .
We expect that hybridmodels would be particularly useful in a cloud setting. Cloud-

basedprograms are executed in a variety of configurations, anddata on these executions
can be collected in a centralized manner. This data can be used to approximate depen-
dencies such as like (δ,Π) = f (X pat ). Furthermore, cloud providers usually offer a
limited variety of hardware, which simplifies modeling of different hardware config-
urations.

In a scenario where multiple runs are undesirable, changes in usage patterns can
be tackled by recollecting δ and Π directly from the running program and updating
the model on-line. This approach can account for usage patterns that were previously
unseen. However, it would require developing techniques for low-overhead program
analysis that can be enabled and disabled dynamically during the program’s execu-
tion.

If measuring hardware performance throughmicrobenchmarks is not possible, then
network, memory, and cache operations should be modeled explicitly. Although mod-
els for predicting memory and cache performance are known (Nethercote et al. 2006;
Gulur et al. 2014), these models either require data specific to a particular execution of
the program or work significantly slower than the program itself. Developing accurate
and robust models for predicting performance of memory and cache is a challenging
area.

Another direction for the future work is adopting PERSIK for modeling distributed
systems.Modern server-side applications are usually distributed. These programs issue
calls to remote applications running on different machines, such as databases or cache
services. As a result, the performance of such program is often determined by the
timing of these calls.

PERSIK models in their current form cannot simulate such distributed systems.
However, PERSIK can be extended by introducing another layer in the hierarchy of
models. This layer will represent the topology of the distributed system, where nodes
represents individual hosts and links between these nodes are the network connections.
The topological layer of themodel can be built using INET10 or NS311 simulators. The
topological layer will predict the performance of the distributed system at the global
scale by modeling delays caused by network communication between its individual
hosts. Subsequently, performance of each individual host will be simulated using a
corresponding PERSIK model.

6.4 Threats to validity

In our experiments we often relied on artificial benchmarks. We believe this is not
a major concern, as difference in workload would simply manifest as differences

10 http://www.inet.omnetpp.org/.
11 http://www.nsnam.org/.
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in structure δ and parameters Π of the model. A more elaborate validation would
require collecting actual workload of the production system, and replaying it in our
experimental setup.

We parameterized our model with only three variables: the number of working
threads, the number ofCPUcores, and theworkload intensity.Addingmore parameters
to the model, such as characteristics of the workload or hardware, would require
extending PERSIK framework as discussed in Sect. 6.3.

The precision of our experiments was limited by the precision of tools to measure
performance of the system.Wemeasuredwall-clock time usingSystem.nanoTime
Java call, which has precision of 1 ns. Measurements of CPU time, used to compute
CPU utilization, had lower precision of 10 msec. To ensure sufficient accuracy we
ran each experiment for hundreds of seconds, so effect of measurement inaccuracies
become negligible.

To evaluate accuracy of our models we repeated our experiments three times in
each configuration and compared mean values of performance metrics. Increasing the
number of executions to ten in few selected configurations didn’t alter our results
significantly. Thus we do not see the low number of repetitions as a potential threat to
the statistical validity of our results.

We evaluated PERSIK by buildingmodels of 8 different programs. Although our set
of programswasdiverse, itmaynot be representative over all the existingmultithreaded
programs, their workloads, hardware platforms and programming languages. This
threatens the external validity of our work and calls for a more thorough evaluation of
PERSIK with a wider range of programs and workloads.

We built models of only programs written using Java programming language. PER-
SIK can successfully model C/C++ programs (Tarvo and Reiss 2012), but automatic
building of models written in languages other than Java is not yet implemented. Sim-
ilarly, we used only two hardware setups in our experiments. Thus it is important to
validate PERSIK on a wider range of hardware platforms, including different CPUs
or different storage system architectures.

7 Related work

We divide the related work into two categories: performance modeling, and automated
program analysis and model construction.

7.1 Performance modeling of computer programs

At the high level the performance of the system can be represented as a function
y = f (x), where x are metrics describing the configuration and workload of the
system, and y is a measure of the system’s performance. Existing approaches to per-
formancemodeling canbedivided into three classes basedon their representationof the
dependency y = f (x): analytic models, statistical models, and simulation. Below we
review thesemodel classes and compare them toPERSIK,which is a simulationmodel.

Analytic models explicitly represent the dependency y = f (x) using a set of equa-
tions. They were used for a variety of tasks.
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An analytic model was used to predict the dependency between the size of the
DBMS cache and its response time R and throughput T (Narayanan et al. 2005);
the relative errors are ε(T ) ≤ 0.1 and ε(R) ∈ (0.33 . . . 0.68). Analytic models were
employed to predict the running time of MapReduce job (Herodotou and Babu 2011);
the profile of a job was retrieved using dynamic analysis. An analytic model was used
to predict the utilization of the L2 cache and memory bandwidth for a given program
on a multiprocessor system with the average error in (0.09–0.13) (Chen et al. 2011).
Analytic models were also employed to study performance of certain multithreaded
design patterns (Strebelow et al. 2012).

In Chen et al. (2005) an analytic model was used to predict the optimum size of
the thread pool for a component-based server-side application. Similarly to PER-
SIK, parameters of the model are estimated by benchmarking the program. The
accuracy of the model was ε(R) ∈ (0.001 . . . 0.27); the errors were highest in for
configurations where the size of the thread pool exceeded the number of simultane-
ous client connections. Furthermore, it is not clear if the program under the study
performed any synchronization operations and what were the characteristics on the
workload.

Analytic models are compact and expressive. They usually work faster than simula-
tion models, such as PERSIK. However building analytic models require knowledge
of the system’s functionality and a substantial mathematical skill to formalize this
functionality using a set of equations. Unlike PERSIK, analytic models have diffi-
culties expressing a complex behavior of a multithreaded application. In particular,
analytically predicting performance of a single thread pool requires development of a
complex mathematical model that must be solved iteratively (Menasce and Bennani
2006).

Nevertheless, analytic models can be used as a part of the larger model to predict
performance for some of the system’s components. For example, analytic models were
used as a part of the larger model to simulate individual components of the distributed
system, such as network and disk (Thereska and Ganger 2008).

Statistical models tend to overcome some drawbacks of analytic models. They
do not explicitly formulate the function y = f (x). Instead, the system is executed
in a number of configurations x1, . . . , xn ∈ X , where performance measurements
y1, . . . , yn ∈ Y are collected. Then a statistical method is used to approximate the
dependency Y = f (X).

Statistical models can predict performance of a wide range of systems. A k-NN
technique was used to predict the running time of SQL queries based on the fea-
tures of the DBMS query plan (Ganapathi et al. 2009). The correlation between the
actual and predicted execution times R2 ∈ (0.55 . . . 0.95). This technique was further
extended to predict the running time of Hadoop tasks (Ganapathi et al. 2010) with
R2 ∈ (0.87 . . . 0.93) A similar approach was used to predict performance of the SQL
queries running in isolation with ε ∈ (0.05 . . . 0.1) (Akdere et al. 2012). Here the
x vector can be built from individual operators of SQL query, which allows to train
models on-line. This approach was further developed to predict the running time of a
mix of concurrently running queries with ε ∈ (0.14 . . . 0.27) (Duggan et al. 2011).

Similarly, a non-linear regression was used to predict the response time in the
message-passing middleware software (Happe et al. 2010). A combination of a linear
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regression and neural networks predicted the running time of scientific computing
applications on a grid with ε ∈ (0.01, . . . , 0.25) (Lee et al. 2007).

Statistical models do not require knowledge of system’s internals, which is a major
advantage compared to PERSIK and simulation models in general. But unlike PER-
SIK, building statistical models require running the system in many configurations,
which is time-consuming and costly. Furthermore, any change to the system requires
re-training the whole model (Thakkar et al. 2008). Finally, the accuracy of a statistical
model strongly depends on the representativeness of the training dataset (Cheung et al.
2011).

There are attempts to alleviate these shortcomings. Statistical models can be built
when large amounts of data are already available, e.g. from the from a large user base
(Thereska et al. 2010) or from prior runs of the system in the cloud environment.
In particular, the work Chen et al. (2014) presents the StressCloud framework to
automatically generate workloads for cloud-based programs. StressCloud is used to
analyze system’s performance and energy consumption; however, same approach can
be employed to speed up constructing of performance models.

The size of the training set can be further reduced by the sophisticated program
analysis (Chun et al, 2010) or by special algorithms for composing a training set
(Westermann et al. 2012). Finally, statistical models can be used successfully when the
training dataset can be collected relatively quickly, e.g. by benchmarking. This allows
modeling individual components of a large system, such as the disk I/O subsystem.
CART trees were used to predict performance of the SSD disk with ε ∈ (0.17 . . . 0.25)
(Huang et al. 2011), a regression tree predicted performance of the traditional hard
drive with ε ∈ (0.17 . . . 0.38) (Wang et al. 2004), and the k-NN algorithm predicted
the running time of disk I/O operations with ε ∈ (0.02 . . . 0.2) (Anderson 2001).

Simulationmodels, such as queuing networks, Petri nets, and their extensionsmimic
the behavior and/or structure of the system. Thesemodels are very flexible and capable
of modeling complex systems.

Some simulation models can be solved analytically, which speeds up prediction
greatly. However, simulation remains the main tool for predicting performance using
thesemodels because simulation can represent complex behavior of the system. Build-
ing a simulationmodel does not require running the system inmany configurations but
requires knowledge of the components of the system, their properties and interactions.

A variety of formalmethods for building simulations have been developed. The first
suchmethodologywas queuingnetworks (Lazowska et al. 1984). In particular, queuing
networks were used to model impact of networking parameters at the performance of
theweb server (Mei et al. 2001). However, queuing networks in their classical form can
be too restrictive for simulating complex systems. As a result, a number of extensions
have been developed.

Layered queuing networks (LQN) extend traditional queuing networks by adding
the hierarchy of model components (Woodside et al. 1995). LQNs can be solved
analytically and are particularly useful for simulation of distributed systems. LQNs
were used to models performance of simple CORBA applications and web services
with ε ∈ (0.02 . . . 0.05) (Hoecke et al. 2005) and to predict performance of the CPU-
bound ERP application with ε = 0.15, although the application did not carry out
any I/O or synchronization activities (Rolia et al. 2009). However, analytic solution
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of LQN models that simulate complex threading behavior is challenging (Franks and
Woodside 1998).

Another simulation methodology is Petri nets and their extensions, such as colored
Petri nets (CPN) (Kristensen et al. 1998). CPN allow assigning values (denoted as
colors) to the tokens. CPN were capable of simulating the complex locking constructs
in a program (Roy et al. 2008). CPN predicted performance of a parallel file system
with ε ∈ (0.2 . . . 0.4) (Nguyen and Apon 2012). CPN was used to build a model of
the Linux Ext3 file system capable of simulating read and write operations, system’s
page cache, and the filesystem journal. The model predicted the average throughput
of the filesystem with ε ∈ (0.12 . . . 0.34) (Nguyen and Apon 2011). This study was
extended to allow simulation of the parallel file system with ε ∈ (0.2 . . . 0.4) (Nguyen
and Apon 2012). Queuing Petri Nets (QPN) extend the Colored Petri nets by adding
queuing and timing aspects into the model (Bause 1993). QPN was used to simulate
distributed component-based and event-based systems (Kounev et al. 2012).

Simulation models can be used in combination with other model types. The work
Liu et al. (2005) describes a combination of a queuing and an analytic models specifi-
cally designed to predict performance of EJB system. Similarly to PERSIK, the model
is hierarchical. The queuing model simulates the flow of a task, and every service node
contains an analytic model that estimates a resource demand for that node. The model
predicts performance of EJB applications with ε ∈ (0.05−0.14). Like PERSIK, the
model Liu et al. (2005) relies on a single representative run of the system to obtain
values of some parameters. But unlike PERSIK, the model is constructed manually.
It does not simulate contention of hardware and locks; it is unclear if the model can
handle programs other than EJB applications.

IRONModel also uses a combination of a queuing network and analytic model to
simulate a distributed system (Thereska and Ganger 2008). Finally, PACE framework
employs hierarchical approach to model MPI applications (Jarvis et al. 2008). PACE
predicted the execution time of the nreg image processing application with ε <= 0.1
(Jarvis et al. 2008).

Simulation models are more flexible than analytic or statistical models. As a result,
CPN and other methodologies were successful in simulating some aspects of mul-
tithreaded applications. However, we are not aware of any framework capable of
simulating both locks and simultaneous hardware usage. We address this by develop-
ing performance models that can simulate both complex synchronization operations
and simultaneous usage of hardware. This allows PERSIK to handle a larger variety
of multithreaded programs.

7.2 Automatic analysis and performance modeling of computer programs

Although simulation models are more flexible, their construction is significantly more
difficult because these models require extensive information on the system’s inter-
nals and functionality. This information can be retrieved manually, as in Woodside
et al. (1995), Mei et al. (2001), Hoecke et al. (2005), and Xu et al. (2005). However,
the manual analysis of the software system is time-consuming and error-prone. Thus
the problem of automatically analyzing computer programs and building their per-
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formance models has gained significant attention. Techniques used for constructing
performance prediction models are often used for other performance tools such as
intelligent profilers and descriptive models. As a result, the boundary between pro-
gram analysis techniques used to build predictive models and other performance tools
is often vague.

Program analysis have been extensively used to understand the structure of multi-
threaded programs. A CHET tool extracts specifications from the running parallel
programs and represents them as automata (Reiss 2004). This work was further
extended to identify synchronization mechanisms in a multithreaded program and
to determine their types through a dynamic analysis (Reiss and Tarvo 2013).

Similarly, the Magpie tool facilitates understanding the characteristics of the sys-
tem’sworkload by inferring the flowof request from the sequence ofAPI calls (Barham
et al. 2004). The THOR tool relies on a sophisticated combination of kernel and user-
mode instrumentations in order to understand and visualize relations between the Java
threads and locks (Teng et al. 2010).

Perfume tool (Ohmann et al. 2014) represents the behavior of the system as a finite
state machine (FSM). FSM actions correspond to the program’s states, and transitions
are conditioned on the resource demands of a state, such as memory or a CPU time.
Perfume models are built from existing logs, thus FSM states in Perfume correspond
to the system-specific concepts, e.g. TCP connection states or HTML page accesses.
As a result, the main application of Perfume is not to predict, but to describe behavior
of the system.

We believe Perfume is readily capable of building FSMs of multiple threads. How-
ever, representing semantic interactions between threads requires additional logic,
which in PERSIK is taken by the high-level model. PERSIK also has a very limited
ability to condition transitions in the probabilistic execution graph (PEG) on external
factors, such as presence of a request in the queue. Implementing a full Perfume-like
support for external conditions in PERSIK would enable simulating complex behav-
iors, such as modeling determinism in a program.

Program analysis has been also used to understand performance of the program.
Input-sensitive profiling automatically measures how the input size of the program’s
functions affects the running time of these functions (Coppa et al. 2012). Similarly, in
Zaparanuks and Hauswirth (2012) the tool automatically deduces the runtime cost of
the algorithm based on the size of the data structures. A similar approach was used to
measure the computational complexity of the application (Goldsmith et al. 2007). A
stack sampling technique was used to identify parallel idleness and parallel overhead
in the multithreaded program (Tallent and Mellor-Crummey 2009).

Coz causal profiler (Curtsinger et al. 2015) locates constructs that could be a suitable
candidates for optimization. For every such construct Coz slows down the rest of the
program by a predefined rate, thus virtually “speeding up” the candidate. Unlike PER-
SIK, Coz doesn’t analyzes the semantics of the program in order to build a simulation
of the system. Instead, Coz evaluates each candidate construct in a separate experi-
ment. It discovers the best candidates by measuring relative change in the program’s
performance.

Finally, the paper Brünink and Rosenblum (2016) presents an approach to detect
distinct performance patterns for the program’s functions and then to infer call paths
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that correspond to these patterns. This information is used to buildmodels that describe
the performance of the system. But unlike PERSIK, the resulting model does not
predict the performance in absolute terms. Instead, it is used to produce performance
assertions to facilitate regression testing of the program.

Program analysis techniques similar to those described above were used to auto-
matically construct performance models. It was shown that the semantically correct
LQN model of the message-passing program can be built from its trace automatically
(Israr et al. 2005). Similarly, an automatically constructed LQN model predicted the
performance of a document distribution service application with ε = 0.3 (Woodside
et al. 2001). A Palladio Component Model model was constructed from the trace of
the distributed EJB application; it could predict the CPU utilization and the response
time with ε ∈ (0.1 . . . 0.3) (Brosig et al. 2011). Finally, a model of MPI application
was built from its trace and demonstrated prediction accuracy (ε ≤ 0.15). However
its the accuracy dropped to ε ∈ (0.3 . . . 0.5) in configurations where nodes of the
system are involved in synchronization operations. Resource demands for such mod-
els are usually discovered by instrumenting the program and measuring the resource
demands of its individual components (Barham et al. 2004). If direct measurement
is not possible, the resource demands can be inferred using a Service Demand Law
(Brosig et al. 2009).

Despite a great variety in techniques for automated modeling of computer pro-
grams, they share one common feature: most of them are designed tomodel distributed
message-based systems. These techniques do not capture complex thread interaction
patterns and resource contention in the multithreaded systems. Consequently, they
cannot generate accurate performance models of multithreaded programs.

8 Summary

In this paper we presented a methodology for automatic modeling of complex multi-
threaded programs. We developed hierarchical models, where different model tiers
simulate different factors that affect performance of the program, and interaction
between the tiers simulates joint influence of these factors on the performance. This
unique architecture allows our models to accurately predict performance of a wide
range of multithreaded programs. To implement our models we have developed a
PERSIK framework – a discrete-event simulator written using a C++ language.

Building a simulation model of an arbitrary multithreaded program is hard. How-
ever, we discovered that analysis of a program is greatly simplified if that program
relies on a well-defined implementation of high-level locks and queues. Based on this
finding we developed a four-stage methodology to generate performance models auto-
matically. Ourmethodology relies on a combination of a static and dynamic analyses to
discover threads and thread pools in the program, interactions between these threads,
operations performed by each thread, and their resource demands. The discovered
information is automatically translated into the PERSIK model of the multithreaded
program.

We verified our approach by building models of various Java applications, includ-
ing large industrial programs such as a 3D renderer and a web server. Our models
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have average prediction error in (0.032 . . . 0.134) for CPU-intense and (0.262, 0.269)
for I/O-intense workloads, which is comparable to results reported by other studies
(Ganapathi et al. 2010; Duggan et al. 2011; Huang et al. 2011; Wang et al. 2004; Xu
et al. 2005; Nguyen and Apon 2012). At the same time, our framework builds program
models automatically and does not require running the program in many configura-
tions. The source code of our framework and generated models is available at (See
Footenote 5).

Our next steps will be improving the flexibility of our framework, which will allow
predicting performance for a wider range of applications and workloads.
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