
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WODA -- Workshop on Dynamic Analysis, July 21, 2008.

Copyright 2008 ACM 978-1-60558-054-8/08/07...$5.00.

Dynamic Detection of Event Handlers

Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI. 02912

spr@cs.brown.edu

ABSTRACT
This paper considers the problem of dynamically finding event
handlers in a running application using information obtained from
periodic stack samples. Knowing the set of event handlers in an
application is a prerequisite to building a model of the event
behavior of the application which is in turn needed to do perfor-
mance analysis, program visualization, or program understanding
in terms of events. We show that a trie-based statistical technique
can effectively and accurately find event handlers.

Categories and Subject Descriptors
D2.5 [Testing and Debugging]: Monitors, debugging aids.

General Terms
Performance, Experimentation.

Keywords
Event handler, dynamic instrumentation, trace analysis, monitor-
ing.

1. INTRODUCTION
Many of today’s applications are event-driven. Standard desk-
top applications wait for a user action and then process the cor-
responding event. Servers listen on multiple client
connections, waiting for input requests. When these requests
arrive, they process them as events and generate the appropri-
ate output. Inside the servers, requests are broken up into tasks
that are serviced as events by thread pools and task queues.

Attempting to analyze such applications requires understand-
ing their basic structure in terms of event processing and then
doing the analysis using that structure. For example, the inter-
esting performance problems in a modern server more often
relate not to its overall behavior but to the resources used in
processing particular requests.

Moreover, the programmer is often not interested in the overall
processing done by the application, but rather in specific

behaviors. For example, it is sometimes the case that while
most events are processed quickly, occasionally some event
will take significantly longer. Here the programmer is inter-
ested in identifying this event and understanding the resources
that its processing required. Without analyzing the perfor-
mance in terms of events, such behavior is very difficult to
ascertain because the more common event behavior will domi-
nate the global statistics.

In order to enable event-based analysis and understanding of
applications, one needs to understand the structure of event
processing in such applications. Because of the widely varying
nature of the types of events and the ways that events are han-
dled, current and prior work in this area has required that the
programmer define this structure for the application. This can
be a significant amount of work.

We are currently working on a performance analysis frame-
work for long-running applications. As part of this framework
we want to enable event-based analysis. Similarly, we are
working a framework for application-specific visualizations
that requires understanding event behavior. In both cases we
need to work with arbitrary applications while requiring a min-
imum of work on the part of the programmer. Given this, we
set out to determine if we can dynamically detect the event
structure of an application. While this might be possible to
ascertain through static analysis, such analysis would assume
that one has all the available libraries and relevant code to ana-
lyze, that one understood the behavior of native library rou-
tines (such as Java’s X11 event handler), and would not
necessarily be precise. We felt that dynamic analysis would be
more reliable and accurate and would better fit the type of
dynamic monitoring we were doing.

In this paper we show that it is possible to accurately detect
event handling routines on the fly through appropriate
dynamic analysis. In the next section we look at related work
and provide the details of the performance analysis framework
that are relevant to our scheme for determining the event struc-
ture of an application. Section 3 provides a more complete def-
inition of event handling and what we are looking for in terms
of a model. Section 4 and Section 5 then describe the method-
ology we use, while Section 6 describes the results we have
obtained.

2. PRIOR WORK
Traditional methods of performance analysis look at where the
overall system spends resources such as execution time, real
time, or memory. They assign resources to particular routines
or lines of source code. For example, the UNIXprof tool uses
sampling techniques to estimate how much time is spent in
each routine over the full run of the program. More sophisti-

cated methods, such asgprof [7], assign resources based
on two-level calls, that is, instead of looking at all
instances of routine R, they separate these instances based
on the different callers of R. Other tools such as HP’s
CxPerf provide a per-thread analysis of resource utiliza-
tion. Still other tools look at specific items in a complex
system. For example,Tmon [8] and theadmon [3] look at
the behavior and interaction of threads in a multithreaded
system. There have also been a variety of frameworks for
customizing performance analysis [1,6], but these have
only been used to do selective overall evaluation rather
than looking at the behavior of individual actions.

Some of the more recent performance tools provide a
foundation for event-based analysis but do so by putting
the burden on the user. These tools let the user tell the
program when to start collecting information and when to
stop collecting it. They then let the user browse over the
detailed performance information that was collected. For
example,Jinsight lets the user specify a method as a trig-
ger [9,10]. Trace collection occurs while the method is
being executed. The user can then useJinsight to browse
over the dynamic call tree, objects allocated, etc.JProbe
lets the programmer uses triggers to determine perfor-
mance differences between releases and lets the user
specify what parts of the program should be analyzed in
detail. Borland’sOptimizeIt lets you see performance by
thread, and then examine the dynamic call graph to exam-
ine the behavior of individual events. Wily’sInterscope
again collects enough data to let the programmer specify
filters and browse the dynamic call graph down to the
method level so that an individual event can be under-
stood.

Our prior work on event-based trace analysis required the
user to specify the event model by providing an XML file
that defined the event handling routines [12]. This model
was automatically extended to track events throughout
the execution by tracking objects within the trace. Our
experience here was that this required a significant
amount of work both in understanding the system librar-
ies and their behavior and in recalling and understanding
the application’s behavior. The result was error-prone,
requiring the programmer to iteratively add to or modify
the XML file based on the output to attempt to get the
correct set of events. Moreover, the set of system events
was both large and incomplete, requiring updates for each
new version of the system, each new system library, and
each new platform since event handling is sometimes
handled in machine-dependent code.

More recently, the X-Trace facility traces events through
multiple layers of applications and allows the recording
of associated behaviors such as time spent [4]. This sys-
tem has the disadvantage that the programmer has to doc-
ument the event model used by the application by
inserting code into the application. The understanding
and documentation of this model is a significant obstacle
to using the facility.

We have developed a general framework, DYMON, for
performance analysis of long-running applications [14].
The initial focus of this system is doing detailed perfor-
mance analysis within a fixed, user-settable overhead.
The system is organized using a set of agents, each of
which looks at a particular aspect of performance, for

example CPU time, I/O behavior, or heap utilization. The
monitor takes periodic stack samples (using a rate based
on the allowable overhead) and passes these to each
active agent for analysis. Based on their analysis, agents
can then request more detailed monitoring for a fixed
amount of time. For example, the CPU agent will request
a fifteen second sample of basic block counts for code
that appears to be heavily used based on the stack sam-
ples.

We want to use this framework to provide an event-based
analysis of performance. However, doing so requires that
the system understand how events are handled in the
application so that resources could be allocated to events.
This in turn requires that we first identify how events are
processed in the application. The DYMON framework
works directly from the running binary of the application,
so we needed a dynamic technique. Moreover, to fit in the
DYMON framework, we needed to structure our solution
as an agent that can build the event-handling model from
the information gleamed from occasional stack samples.

3. PROBLEM DEFINITION
The first specific problem we needed to address was how
to identify event handlers dynamically using only the
information from periodic stack samples. In order to do
this, one must first understand exactly what an event han-
dler is.

An event handler is defined in Wikipedia as “an asyn-
chronous callback subroutine that handles inputs received
in a program”. Similarly, an event is defined as “an action
which can be initiated either by the user, a device such as
a timer or keyboard, or even by the operating system”. To
find event handlers in the code then, we need to find rou-
tines that are called when an event occurs where an event
is characterized as something being read, something
being waited for, or something derived from the operating
system.

In practical terms, to find event handlers dynamically one
needs to understand how they appear in the code. In gen-
eral, an event based application has code that looks some-
thing like:

LOOP
Wait for the next event
Process that event

END

The problem is that this code can occur in a multitude of
different guises, with each of the lines of pseudo code
being replaced by large blocks of code, multiple, possibly
nested routines, additional processing, and hidden (low-
level or operating system) code.

For example, I/O events might be handled by a routine
that looks like:

LOOP
r = ReadNextMessage()
Process(r);

END

where the actual waiting and reading of the next message-
based event is handled by the routineReadNextMessage
while the Process routine is actually the event handler.

Alternatively, there might be multiple routines processing
routines called.
A work queue might be maintained with code that looks
like:

LOOP
SYNCHRONIZED

while (Queue is empty) {
wait();

}
e = Remove front of queue;

END
Process(e);

END

Here, the processing might not be as simple as a function
call; it could involve in-line code that determines the type
of event and then branches accordingly.
Another type of event handler is based on callbacks. For
example most user interfaces work by having the user
register a call back routine during the set up of the user
interface. Then, when the user interface code detects an
appropriate event, it calls the previously registered rou-
tines. This is generalized in the publish-subscribe pattern
[5], and some applications use it for handling messages
[11] and other program events.

Event handling is further complicated by the fact that it
typically involves a mixture of user and system code. The
I/O processing, waiting for events to be placed on a
queue, or analyzing inputs to generate appropriate events
are all sometimes done in user code, sometimes in system
code or system libraries, and sometimes in a combination
of the two.

The first step in building the event model for an applica-
tion is determining which application routines correspond
to the processing of an event. These are the variousPro-
cess calls in the above code and their generalizations as
well as routines that are invoked using callbacks. Here we
want to restrict ourselves to application routines and
ignore any system processing of events.

We find these routines in two ways. First, callbacks are
relatively straightforward to detect since they represent
user code fragments that are called from the operating
system or library code rather than vice versa. Non-call-
back routines are more difficult. Here we need to identify
locations in the code corresponding to waiting for an
event to happen, either by doing a blocking I/O operation,
by suitable polling, or using an appropriate wait loop.
Then we have to identify the processing routines that cor-
respond to the associated events.

Both of these detection mechanisms build on the founda-
tion provided by DYMON. DYMON provides for a suite
of agents, each of which addresses a particular perfor-
mance issues. Our goal was to define an agent that would
identify the appropriate event structure by first identify-
ing all the event handling routines in the code. As a
DYMON agent, the implementation needs to be in two
parts. The first part receives periodic stack samples to
collect the necessary information. It uses DYMON to
send this information back to the second part which does
appropriate data analysis and identifies the event han-
dlers. These two parts are described in the next two sec-
tions.

4. DATA COLLECTION
The back end or our event structure agent is in charge of
collecting and summarizing the information needed to
actually identify event handlers.

The input to the back end is a set of stack samples, one
for each active thread in the application given, provided
periodically at a rate dependent on the allowable over-
head. Each sample identifies the routine that is currently
active in that thread and the set of routines that are calling
that routine. This is provided by the Java Management
Framework calls that get the current set of threads and
then for each thread get the current stack trace as an array
of StackTraceElement objects. Each of these objects
holds the class name, method name, and line number of
the corresponding stack frame. DYMON augments these
objects with information as to whether each routine on
the stack is from the user’s application or from a system
library routine, and, if it is a system library routine,
whether that routine represents an input/output operation,
a sleep, or a wait.

We first note that some event handling can be obtained
directly from the information contained in a stack trace.
A callback is going to involve system code that calls user
code. Because the routines on the stacks are tagged as
user or system, we can readily identify user routines that
are called from system code. For each such routine we
keep a count of the number of times it is called and return
the set of such routines as potential callbacks.

Identifying callbacks that are based on I/O or waits called
directly by user code is more difficult. Because the stack
samples only provide snapshots of the execution, they
don’t provide direct evidence for event processing.
Instead, one has to accumulate a significant number of
stack samples and build a model of execution from which
one can determine which routines correspond to waits or
input/output and whether these routines are actually used
for event processing and, if so, which routines are the cor-
responding event handlers.

Our data collection agent builds such a model by con-
structing a trie that accumulates the relevant part of all
the stacks from all the stack traces. Assuming that the top
of the stack trace is the main routine for the correspond-
ing thread and the bottom is the currently executing rou-
tine, the first step we take is to edit the stack traces by
removing all system routines at the trace bottom so that
the either the new bottom of the stack trace is an applica-
tion routine or the stack trace is empty. Next we assign a
state to the bottom entry of the edited stack trace based on
what the system was doing in the currently executing rou-
tine in the original trace. This state is one of WAIT if the
system was waiting, IO if the system was doing an input
or output operation, or RUN if the system was executing.
Note here that waiting implies an explicit call to a wait
routine and does not reflect threads that are blocked from
executing due to synchronization.

From these edited stack traces we build a trie which
reflects the whole set of stacks. The first level of the trie
corresponds to the set of routines that occur at the start of
any sample stack. The second level of the trie then corre-
sponds to any routine called from a routine at the top
level. This is iterated down to the leaves of the trie which

are the set of routines that represent the currently execut-
ing application routine at the time the stack was sampled.
Each node of the trie is then augmented with state
counters that indicate how many times that node reflected
the bottom of an edited stack trace that was in one of the
states WAIT, IO, or RUN.

This trie represents a relatively compact summary of the
global behavior of all the threads. The counters in the trie
provide a statistical indication of what type of processing
is done at the various nodes and how frequently each type
of processing is done. The latter is needed because even
nodes that are waiting might be not always be in a wait
state when the stack is sampled and routines that are actu-
ally event handlers might be do internal I/O part of the
time and execute other parts of the time. A sample trie as
output by the data collection agent is shown in Figure 1.

The concept of accumulating stack samples has been used
before for performance analysis and program understand-
ing. For example, STAT analyzes stack traces from large
numbers of processes to build a statistical model of what
the processes are doing and then cluster these according
to their behavior, thereby reducing the problem space for
performance debugging [2]. CosmOpen accumulates

stack traces obtained when specific routines are called to
build a model of program behavior for reverse engineer-
ing [15].

5. DATA ANALYSIS
The front end of the DYMON agent is charged with ana-
lyzing the collected data and identifying the event han-
dling routines. Callback routines for system events are
found directly by the back end agent and are reported
directly. The main work of the front end is to analyze the
information in the trie to identify event handlers based on
either I/O or waiting.

The front end operates in stages. It first determines for
each node of the trie, what type of processing is repre-
sented by that node. Here the agent determines if the node
represents program execution (RUN), program input or
output (IO), waiting (WAIT), undetermined (ANY), or
some combination (MIXED).

In order to determine the trie node type, it first determines
if the node has been sampled enough times for the
returned statistics to be meaningful. By looking at a vari-
ety of applications, we experimentally determined that
this should be at least 10 samples and at least 0.0001 of

<REACTIONS LAST=’1206456881022’ MONTIME=’350731’ SAMPLES=’6696’ TSAMPLES=’22904’>
 <CALLBACK STACK=’6660’ USER=’solardraw.SolarDrawImpl@display’ />
 <TRIE>
 <TRIENODE CLASS=’solar.SolarMain’ IO=’0’ METHOD=’main’ RUN=’0’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’loadFile’ RUN=’1’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarBaseObject’ IO=’0’ METHOD=’<init>’ RUN=’0’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarVector’ IO=’0’ METHOD=’<init>’ RUN=’14’ WAIT=’0’ />
 <TRIENODE CLASS=’edu.brown.cs.ivy.xml.IvyXml’ IO=’0’ METHOD=’getAttrString’ RUN=’1’ WAIT=’
 <TRIENODE CLASS=’edu.brown.cs.ivy.xml.IvyXml’ IO=’0’ METHOD=’getAttrDouble’ RUN=’4’ WAIT=’
 <TRIENODE CLASS=’edu.brown.cs.ivy.xml.IvyXml’ IO=’0’ METHOD=’getElementByTag’ RUN=’1’ WAIT
 </TRIENODE>
 </TRIENODE>
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’cycle’ RUN=’0’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’getObjectCount’ RUN=’1’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’computeGroup’ RUN=’1’ WAIT=’0’ />
 </TRIENODE>
 <TRIENODE CLASS=’solar.SolarRootObject’ IO=’0’ METHOD=’computeLocalGravity’ RUN=’0’ WAIT=’0’
 <TRIENODE CLASS=’solar.SolarRootObject’ IO=’0’ METHOD=’rebuildTree’ RUN=’38’ WAIT=’0’ />
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’computeLocalGravity’ RUN=’10’ WAIT
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’waitForRoot’ RUN=’0’ WAIT=’6336’ />
 </TRIENODE>
 <TRIENODE CLASS=’solar.SolarRootObject’ IO=’0’ METHOD=’finishCycle’ RUN=’0’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’7’ METHOD=’finishCycle’ RUN=’119’ WAIT=’0’ />
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’checkPositions’ RUN=’156’ WAIT=’0’
 <TRIENODE CLASS=’solar.SolarRootObject’ IO=’0’ METHOD=’migrateObject’ RUN=’1’ WAIT=’0’ />
 </TRIENODE>
 </TRIENODE>
 </TRIENODE>
 <TRIENODE CLASS=’solar.SolarSystem$WorkerThread’ IO=’0’ METHOD=’run’ RUN=’18’ WAIT=’10864’>
 <TRIENODE CLASS=’solar.SolarSystem$GravityRequest’ IO=’0’ METHOD=’perform’ RUN=’0’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’computeLocalGravity’ RUN=’6’ WAIT=’0
 <TRIENODE CLASS=’solar.SolarGroupObject’ IO=’0’ METHOD=’computeLocalGravity’ RUN=’1032’ WA
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’queueComputeLocalGravity’ RUN=’11’ WAIT
 </TRIENODE>
 </TRIENODE>
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’access$100’ RUN=’5’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarSystem’ IO=’0’ METHOD=’handleDone’ RUN=’73’ WAIT=’0’>
 <TRIENODE CLASS=’solar.SolarSystem$Finisher’ IO=’0’ METHOD=’noteDone’ RUN=’7999’ WAIT=’0’
 </TRIENODE>
 </TRIENODE>
 </TRIENODE>
 <TRIENODE CLASS=’solardraw.SolarDrawImpl$DrawThread’ IO=’0’ METHOD=’run’ RUN=’0’ WAIT=’6665’ />
 </TRIE>
</REACTIONS>

Figure 1. Output from the back end agent showing callbacks and the trie.

the total samples collected. The absolute minimum forces
the analysis to wait until the system has been sampled
often enough. The relative minimum serves to eliminate
outlier nodes that are not relevant to the analysis.

If the node has been sampled enough times, we consider
the various ratios of the individual counts to the total
count to determine the state. If the ratio of the number of
waits to the total count is greater than a cutoff value and
the ratio of the number of waits to the number of samples
is greater than a total cutoff value, then we assign the
node a type of WAIT. If the ratio of the I/O count to the
total count is greater than a second cutoff value and the
ratio of the number of I/Os to the number of samples is
greater than a second total cutoff value we assign the
node a type of IO. If the IO cutoff was not met, but the
ratio of the sum of the run and I/O counts to the total
count is greater than a third cutoff value we assign the
node a type of RUN. Finally, if none of these occurs, we
assign the node a type of MIXED. The cutoffs here were
determined experimentally based on a sampling of differ-
ent applications. The ratio cutoffs are 0.99 for WAIT,
0.999 for I/O and 0.90 for RUN, while the total cutoffs
are 0.01 for WAIT and 0.05 for I/O.

Because we only assign counts to nodes in the trie when
they appear at the bottom of a stack trace, it is possible to
have nodes that are not sampled sufficiently themselves
but have children that are. In practice, this often occurs
when the top level routine that gets the next event actu-
ally consists of a hierarchy of calls. To handle this, if a
node has not been sampled enough times, we consider the
total counts of all of its trie children. This has to include
at least 40 samples and at least 0.0001 of the total sam-
ples to be considered, values again determined experi-
mentally. If these criteria are met, we use the total counts
to determine the type of the node using the same ratios
and cutoffs as with the case of single nodes. If neither the
node nor its children have been sampled enough times,
we assign the node a type of ANY.

Once we have assigned a type to each of the trie nodes we
are ready to identify event handlers. Based on the types of
patterns that event processing can take in an application,
we need to look for portions of the trie that have one of
the structures shown in Figure 2. The first two structures
shown here represent cases where the program is waiting
for an event, for example, using an event queue. The first
occurs where the function doing the wait calls the event
handling routine directly, while the second occurs where
there is a routine that returns the next event to process
(potentially after waiting for it). In both cases, the single
node labeled RUN can actually be a set of nodes labeled
either RUN or IO as long as at least one of the nodes is
labeled RUN and no node in the set is labeled WAIT.

The second two patterns represent the case where an
event is obtained by an I/O operation, typically a read.
These roughly correspond to the patterns for wait. In the
first of these patterns we require that none of the children
are marked as waiting or doing I/O.

In order to identify these patterns, we look at each trie
node starting with the top-level children. For each node
we count the number of children, and the number of chil-
dren labeled WAIT, IO, and RUN. We then look at the
label of the current node and the counts of its children.
Children that are labeled ANY are ignored. If a node does
not correspond to one of these patterns, we consider its
children.

6. RESULTS
In order to determine whether this simple scheme can
actually correctly identify event handlers, we used it as
part of the DYMON monitor and ran it on a variety of dif-
ferent applications. The results of this are shown in the
outputs in Figure 3.

The first output enumerates the event handlers in a multi-
threaded system that simulates thousands of objects inter-
acting via gravity. The callback method for the graphical
display is identified as are the three event handlers that
are used by the task queue. The additional routine,
access$100 is an artifact generated by the Java compiler.
As a check for here, the second output is for the same sys-
tem but this time running without threads and without the
task queue. Here our system correctly just identifies the
display callback.

The third output is from the kernel of a peer-to-peer sys-
tem that handles message traffic. Here the system cor-
rectly identifies the callbacks, although the first entry, for
TombMessage.toString, is not logically a callback but
occurs because some system routine is causing output to
be printed. All the event handlers in the system are cor-
rectly identified. The call tocurrentTimeMillis is not log-
ically an event handler, but is a routine called when an
event occurs to record the time of the event, so its inclu-
sion is acceptable.

The fourth output is from a server that handles message
requires. ThefindCategory routine is not actually a call-
back. It is chosen because it is called using Java reflection
which yields a false indication. The event methods that
are identified here are the correct ones, one for the thread
that waits for remote connections and one for the handler
that waits for messages.

The final output is from a search engine. Here all the
event handlers are identified as callbacks as the wait loop
was implemented using theJavaThreadPool classes.

WAIT

RUN

IOWAIT

RUN

RUNRUN IO

Figure 2. Trie patterns indicative of event handling

From these examples, we see that the system is quite suc-
cessful in correctly identifying the event handlers in an
active application without knowledge of the application.
It identifies a few extra routine that the programmer
would not at first characterize as event handlers, but some

of these could be easily eliminated (e.g. ignore internal
Java calls and calls from java.lang.reflect).

The analysis is also quite stable. Although the system
continually recomputes the set of event handlers, this set
tends to stabilize within thirty seconds and then remain
the same for the rest of the run.

<REACTION>
<CALLBACK METHOD="edu.brown.cs.cs032.solardraw.SolarDrawImpl@display"/>
<EVENT METHOD="edu.brown.cs.cs032.solar.SolarSystem@access$100" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.cs032.solar.SolarGroupObject@computeLocalGravity" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.cs032.solar.SolarSystem$GravityRequest@perform" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.cs032.solar.SolarRootObject@rebuildTree" TYPE="NODE_WAIT"/>

</REACTION>

Figure 3. Result of event handler analysis.

<REACTION>
<CALLBACK METHOD="edu.brown.cs.cs032.solardraw.SolarDrawImpl@display"/>

</REACTION>

<REACTION>
<CALLBACK METHOD="edu.brown.cs.cs032.crawler.crawl.CrawlSwingParser$Callback@handleEndTag"/>
<CALLBACK METHOD="edu.brown.cs.cs032.crawler.crawl.CrawlSwingParser$Callback@handleStartTag"/>
<CALLBACK METHOD="edu.brown.cs.cs032.crawler.crawl.CrawlSwingParser$Callback@handleText"/>
<EVENT METHOD="edu.brown.cs.cs032.crawler.crawl.CrawlMain@startThreads" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.cs032.crawler.crawl.CrawlMain@loadUrls" TYPE="NODE_WAIT"/>

</REACTION>

 <REACTION>
<CALLBACK METHOD="edu.brown.cs.taiga.tomb.TombMessage@toString"/>
<CALLBACK METHOD="edu.brown.cs.taiga.tomb.TombClient$ReplyFlipper@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.tomb.TombHost$LogTimer@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.tomb.TombClient$ConnectChecker@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.comm.CommHost$LogFormatter@format"/>
<CALLBACK METHOD="edu.brown.cs.taiga.tomb.TombPublisher@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.kernel.KernelStore$CacheChecker@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.kernel.KernelComm$SocketCopyPinger@run"/>
<CALLBACK METHOD="edu.brown.cs.taiga.kernel.KernelComm$SocketCopyThread@run"/>
<EVENT METHOD="edu.brown.cs.taiga.tomb.TombTcpClient$ClientReader@processXmlMessage" TYPE="N
<EVENT METHOD="edu.brown.cs.taiga.kernel.KernelComm$SocketCopy@handleRead" TYPE="NODE_IO"/>
<EVENT METHOD="edu.brown.cs.taiga.comm.CommHost@currentTimeMillis" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.taiga.tomb.TombTcpClient$ClientWriter@handleWrite" TYPE="NODE_WA
<EVENT METHOD="edu.brown.cs.taiga.tomb.TombWriter$StringFail@getString" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.taiga.tomb.TombWriter$StringFail@getFailHandler" TYPE="NODE_WAIT

</REACTION>

<REACTION>
<CALLBACK METHOD="edu.brown.cs.webview.classify.ClassifyXml@findCategory"/>
<CALLBACK METHOD="edu.brown.cs.ivy.mint.client.MintClient@pollNext"/>
<CALLBACK METHOD="edu.brown.cs.taiga.rind.RindSecurityPolicy@checkPermission"/>
<EVENT METHOD="edu.brown.cs.taiga.core.CoreRemoteConnection$MessageThread@process" TYPE="NODE_WAIT"/>
<EVENT METHOD="edu.brown.cs.taiga.core.CoreConnection$ReaderThread@processXmlMessage" TYPE="NODE_IO"/>

</REACTION>

<REACTION>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaResolver$RefPass@visit"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchKrugle$ScanSolution@run"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchKoders$ResultCallback@handleStartTag"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchBeagle$LoadFile@run"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.FragmentJava$FindVisitor@visit"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchBeagle$RunBeagle@run"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaResolver$DefPass@visit"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchKoders$LoadSolution@run"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaTyper$TypeFinder@visit"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchKoders$ScanSolution@run"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaTyper$TypeSetter@endVisit"/>
<CALLBACK METHOD="edu.brown.cs.s6.engine.EngineTester@testMethod"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaResolver$RefPass@endVisit"/>
<CALLBACK METHOD="edu.brown.cs.s6.language.java.JavaTyper$TypeSetter@visit"/>
<CALLBACK METHOD="edu.brown.cs.s6.keysearch.KeySearchKrugle$LoadSolution@run"/>

</REACTION>

7. FUTURE WORK

In this paper we have shown that it is possible to use rela-
tively simple dynamic analysis techniques to quickly and
accurately find the event handlers in a running applica-
tion. While our approach isn’t perfect, it is quite accept-
able for its intended purpose of performance analysis and
can be easily improved, for example by detecting uses of
reflection and Java compiler artifacts.

Finding event handlers, however, represents only the first
step towards understanding program performance and
behavior in terms of events. There are several more steps
that need to be accomplished before we can provide the
programmer with accurate and complete information.

The next step is to use the event handler information as a
basis for organizing and presenting performance informa-
tion to the programmer. This can be done by observing
which event handler the system is currently processing in
a stack trace and allocating run time to that event handler.
To provide more detailed information, we would have a
DYMON agent that instrumented the event handling rou-
tines to determine the number of times they were called
and the time (or other resources) spent per call.

The subsequent step involves detecting and following
events throughout a programs execution. While many
transactions may be handled completely with one event
handler, other transactions require multiple event call-
backs, with processing partial processing of the event
being done on each callback. Here one event triggers
other events, for example deferred processing. Similarly,
in distributed systems, events in one process might trig-
ger events in another process. In both these cases, a com-
plete understanding of event processing requires tracking
the causality of events. We are planning to tackle this
problem with additional dynamic analysis possibly com-
bined with some static analysis of the program and user
input on how to uniquely identify messages.

We also plan to use this framework to help automatically
define interesting events for program visualization,
replacing the programmer’s event definitions in our
VELD framework [13] with ones that are determine heu-
ristically.

The code described here is available as part of the
DYMON package which can be found in the WADI sys-
tem at ftp://www.cs.brown.edu/u/spr.

8. ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion through grant CCR0613162.

9. REFERENCES

1. Ziya Aral and Ilya Gertner, “Non-intrusive and
interactive profiling in Parasight,”Proc.

ACM/SIGPLAN Conf. on Parallel Programming, pp.
21-30 (January 1998).

2. Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski,
Gregory Lee, Barton P. Miller, and Martin Schulz,
“Stack trace analysis for large scale debugging,”Proc.
IPDPS 2007, pp. 1-10 (March 2007).

3. Bryan M. Cantrill and Thomas W. Doeppner, Jr.,
“Threadmon: a tool for monitoring multithreaded
program performance,”Proc. 30th Hawaii Intl. Conf. on
Systems Sciences, pp. 253-265 (January 1997).

4. Rodrigo Fonseca, Goerge Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica, “X-Trace: a pervasive network
tracing framework,”Proc. 4th USENIX Symp. on
Networked Systems Design and Implementation, pp.
271-284 (2007).

5. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns, Addison-Wesley (1995).

6. Michael M. Gorlick, “The flight recorder: an architecture
for system monitoring,”ACM/ONR Workshop on
Parallel and Distributed Debugging, pp. 175-183
(December 1991).

7. Susan L. Graham, Peter B. Kessler, and Marshall K.
McKusick, “gprof: A call graph execution profiler,”
SIGPLAN Notices Vol. 17(6) pp. 120-126 (June 1982).

8. Minwean Ji, Edward W. Felten, and Kai Li,
“Performance measurements for multithreaded
programs,”Proc. ACM SIGMETRICS/Performance ’98,
pp. 161-170 (August 1998).

9. Wim De Pauw and Gary Sevitsky, “Visualizing reference
patterns for solving memory leaks in Java,” in
Proceedings of the ECOOP ’99 European Conference
on Object-oriented Programming, (1999).

10. Wim De Pauw, Nick Mitchell, Martin Robillard, Gary
Sevitsky, and Harini Srinivasan, “Drive-by analysis of
running programs,”Proc. ICSE Workshop of Software
Visualization, (May 2001).

11. Steven P. Reiss, “Connecting tools using message
passing in the FIELD environment,”IEEE Software
Vol. 7(4) pp. 57-67 (July 1990).

12. Steven P. Reiss, “Event-based performance analysis,”
Proc 11th IEEE Intl Workshop on Program
Comprehension, pp. 74-81 (2003).

13. Steven P. Reiss, “Visualizing program execution using
user abstractions,”SOFTVIS 06, pp. 125-134
(September 2006).

14. Steven P. Reiss, “Controlled dynamic performance
analysis,”Proc. 2nd Intl. Workshop on Software and
Performance, (June 2008).

15. Francois Taiani, “CosmOpen: a reverse-engieering tools
for complex open- source architectures,”Proc. Intl.
Conf. on Dependable Systems and Networks, pp. A49-
A51 (June 2003).

