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ABSTRACT
We are interested in obtaining detailed performance information
on-the-fly from long-running systems without adversely affecting
the performance of the systems. We have developed a
methodology consisting of a framework, DYPER, and a number of
specialized agents called proflets each of which analyzes a
different performance aspect. DYPER gathers performance
information with a guaranteed maximum overhead that is
dynamically settable by the programmer using priorities set by the
proflets. Moreover, the type of information that the system can
provide is generally only available for tools that generally have too
much overhead to be usable in production or long-running
systems. DYPER includes the ability to control and display
performance data as the program is run.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and

Design Aids.

General Terms
Performance, Measurement.

Keywords
Performance analysis, profiling, statistical analysis,

instrumentation.

1. INTRODUCTION
Programmers often want to know about the dynamic behavior
of their program. They want to know about performance
anomalies and how they can eliminate them. They want to
know where the program is spending its time or what it is
allocating or why they are not getting expected performance
out of multiple threads. They want to know the how long it
takes to respond to an event. They want to know about
potential bottlenecks and memory leaks.

While a large number of tools have been developed to address
these issues [51], most of these tools do not address modern

software systems. Today’s systems are typically much more
complex than previous ones and thus much harder to
understand. They typically involve multiple threads that can
interact in non-obvious ways. They typically involve
significantly more code, often millions of lines of source when
libraries are considered. Moreover, they are often long running
systems, often even servers that are designed to run
continuously and forever.

Traditional profiling tools are inadequate. They typically
involve slowing the program down significantly, often by
25%-100% or more, in order to get the necessary
information.They often provide only postmortem analysis
which is not that helpful when one needs to consider a program
that never terminates or when one is interested in a particular
time slice of the execution rather than the overall execution.
They are also generally limited in domain, concentrating on
one aspect of performance or another, and not attempting to
address all aspects simultaneously.

Our goal has been to provide a performance analysis tool that
will work with modern software systems. This led to several
requirements:

• The tool must offer a guarantee on overhead. The tool
should let the programmer decide what the allowable
overhead for performance monitoring should be, be it 10%,
1%, or even 0.1%, and the tool should ensure that it works
within the given bound.

• The tool should provide on-the-fly analysis. The
programmer needs to know what the program is doingnow.

• The tool should give the programmer control of the
performance analysis, allowing it to be reset and turned on
and off either by programmer control or automatically based
on conditions in the program.

• The tool should consider multiple domains of performance
analysis, addressing cpu usage, memory, thread behavior,
etc. Moreover, new analyses, even ones specific to a
particular application, should be easy to incorporate.

• The tool should be flexible enough to be used to identify
transient performance issues.

• The tool should deal with multiple threads and multiple
processes.

• The tool should be applicable to a wide range of
applications.

• The tool should have a flexible interface that provides the
programmer with an overview of what is happening, details
where they are important, as well as control of the analysis.

In this paper we describe the DYPER framework we have
created to meet these requirements. The framework treats



performance analysis as a resource allocation problem, doing
the necessary instrumentation at and for intervals that are
dependent on the estimated priorities of the different analyses,
on the allowable overhead, and on the costs associated with the
analysis. The framework provides multiple performance
analysis agents we callproflets, handles multiple processes,
and offers a web-based front end that gives the programmer
control over the performance analysis tasks as well as on-line
feedback on what is currently happening.

The next section goes over some of the related work and
similar systems. Section 3 then describes the overall
architecture of DYPER. Section 4 then describes the dynamic
control of the instrumentation based on resources. The
subsequent section describes the current set of proflets.
Section 6 describes the user interface. Finally, we conclude
with a discussion of the tools effectiveness and our proposed
future work.

2. RELATED WORK
Performance analysis or profiling has been around for a long
time. Perhaps the best known tools are UNIXprof and gprof
[20]. These use system facilities to sample the program counter
periodically (originally every 60th of a second, more recently
every 100th or 1000th of a second) to identify what routine is
currently executing and instrument the start of every function
to get execution counts of either that function (prof) or of that
function and its caller (gprof). This approach, combining
statistical sampling with some instrumentation is the basis of
most of the performance analysis tools that have been
produced.

Prof and gprof are not perfect. They required separate
compilation to do the instrumenting and had a significant
overhead that was generally greater than 25%. Moreover, they
only provided information about cpu utilization at the function
level, provide only postmortem information, and did not deal
nicely with multiple threads. Most newer tools, ours included,
are aimed at dealing with these deficiencies.

Dealing with separate compilation involved developing tools
that instrument the binary file directly. Pixie did
instrumentation at the basic block level on binary files [53].
Tools such as EEL [26]provide a general framework that was
used for developing profiling tools [4]. Today there are a
variety of instrumentation tools such as BCEL [16] and
JikesBT [25] which we use for Java as well as Vulcan for .Net
[52]. JRat provides an instrumentation framework for Java
geared more toward profiling [50]. Alternative approaches is
to use aspect-oriented programming tools such as Aspect/J to
do the instrumentation [40], or provide a user-level
instrumentation language [48].

Dealing with the overhead has been more difficult. Sampling is
relatively inexpensive because it occurs relatively infrequently
and can provide a lot of information [1,27]. However, some of
the information a programmer wants for performance analysis
cannot be obtained in this way. For example, it is very difficult
to get counts, even approximate counts, of the number of times
a routine is called since sampling cannot distinguish one long
call from many smaller ones. However, sampling-only tools
have been used effectively for special purpose applications
such as providing the input needed to an optimizing compiler
[59]. Our tools use samples to get as much of their information
as possible, and then, like the compilation tools, use this data
to help dynamically determine performance issues and

priorities.Our current overhead measurements concentrate on
CPU time, but a broader interpretation considering other
resources such as that of ROCC is possible [58].

An alternative approach, used by JFluid [17] is to do selective
instrumentation of known performance bottlenecks,
concentrating on cpu usage through dynamic call graphs.
JFluid has the ability to dynamically instrument and
uninstrument code so as to obtain statistical information about
performance with a relatively small overhead (1% to 2000%
depending on the application and the percentage of time the
program was instrumented). Our approach makes use of
similar techniques to achieve much of its performance.
InsECTJ provides an alternative framework, letting the user
create run time information that is then made available through
Eclipse [49].

Another approach is to do efficient instrumentation and to cut
down the amount of data that is collected. Techniques such as
path profiling [5], selectively instrumenting libraries [35], and
restricting the raw data by doing some initial analysis can all
reduce the profiling overhead. Using additional available
processors, something that is becoming more common today
with multicore architectures, is another approach [2]. Our
previous work on visualizing dynamic program behavior made
use of some of these techniques [44,45]. Another approach
here is that of Vetter and Reed where a variety of performance
metrics are gathered initially and then statistical techniques are
used to limit instrumentation to those metrics that will be of
interest [56].

Another approach is illustrated by DTrace, Sun’s dynamic
tracing facility [12]. This uses a combination of hooks and
buffers inside the operating system, user-controlled
instrumentation that can be enabled and disabled dynamically,
interactive displays, and programmable instrumentation
facilities to facilitate instrumenting production systems.
DTrace is notable both for its flexibility and for the many
modules that incorporate it in Solaris. For example, there are
DTrace hooks for most of the facilities of JVMTI available in
Java 6 [31]. While we share many of the goals of DTrace and
we could build our system in part on top of its facilities, we go
beyond this by providing automatic control of the
instrumentation, the ability to trace across the Internet,
specialized agents, and Internet-based displays.

CA Wily’s Introscope uses agents that monitor interactions
among web processes to identify bottlenecks and other
performance problems in web applications with very low
overhead [54]. It can identify problems at a high level, but not
delve into the internals of any component. KOJAK is another
monitoring tool, this time specialized toward parallel programs
using hardware performance counter support within MPI [60].

Dealing with on-the-fly statistics involves developing tools
that can dynamically control and monitor the profiling. This
was done with gprof in FIELD [42] and in Sun Microsystems
programming tools[32]. More sophisticated techniques such
as allowing dynamic triggering of trace collection based on
program events has also been tried, for example in JinSight
[39].

Prof and gprof relied on UNIX facilities to interrupt the
program for profiling purposes at given intervals. Modern
platforms such as Java now offer a variety of facilities as a
basis for profiling. For example, Java offers the JVMTI tool
interface [30] which superseded the original JVMPI profiling
interfaces [57]. JVMTI provides facilities for access stacks,



monitor thread states, analyzing the heap, looking at garbage
collection, monitoring locks, and trapping method entry and
exit. It is the basis of most current profiling tools such as TPTP
in Eclipse [18] and the OpenJDK package JConsole [14].
However, when used extensively, JVMTI can introduce
significant overhead to an application, mainly due to Java
treating the JVMTI callbacks as native code. It is also non-
selective; you can trap all method calls, but trapping only
selected calls or allocations requires using debugging facilities
such as the setting and handling of breakpoints.

More recently, in Java 5, Sun introduced the Java monitoring
and management interfaces [15]. This interface provides is
more efficient, utilizing native Java hooks into the virtual
machine and offers some of the capabilities of the JVMTI with
much less overhead. Its facilities include the ability to sample
stacks, to monitor threads, to look at memory usage and
garbage collection, and to get timings for execution and
blocking. Our tool makes use of this both JVMTI and the
management interfaces, using the former for information not
available from the latter such as a detailed analysis of the heap,
and using the management interface to minimize overhead.
Both JVMTI and the management interface also provide the
ability to dynamically instrument and modify Java binary files,
a feature used earlier in tools such as CC4J [24] and which our
tool uses as well.

Performance analysis tools offer a variety of different
analyses. Memory analysis has been available separately in
profiling tools for some time [28,43,61]. The extensible Java
profiler [55] also offers a programmatic interface for
controlling profiling, but is geared more to obtaining precise
execution time information. Jinsight provides a variety of
different analyses through a visual framework, relying on trace
data collection and analysis [36-38]. J-SEAL2 uses
performance instrumentation to ensure that processes or
threads don’t overuse system resources, using byte code
instrumentation to monitor memory and CPU utilization [7-9].

The Komorium system uses instrumentation to count byte
codes executed as an alternative to time-based sampling [10]
in order to provide more reproducible results from profiling.
The system also is capable of dynamically tuning the sampling
rate to trade-off accuracy and overhead. Our tools in part use
similar tuning techniques to achieve a fixed overhead.

Another approach is adaptive statistical sampling from
Microsoft [13]. This approach builds on a tracing
infrastructure that instruments the code so that there is a
profiled version and an unprofiled version and the program can
switch between them on the fly [21]. Adaptive sampling traces
code at rates that are inversely proportional to their frequency.
This is useful for using sampling for detecting programming
problems where coverage is important but more detailed
sampling of hot points is not. However, the approach does
yield useful information with small overhead, reportedly about
5%. We use a similar approach but with very different tracing
technology to accommodate production systems and using
adaptation to investigate different problems and to other
relevant statistics.

The effort that is closest to our work is Paradyn from U.
Wisconsin and its extensions [33]. Paradyn, while specialized
for scientific applications, includes many of the features that
we require in a performance architecture. It provides on-the-fly
analysis that can be controlled by the programmer; it provides
information for multiple aspects of program performances,

including CPU, locking, and I/O; it offers multiple interfaces
including useful visualizations; and it allows the programmer
to limit the overhead.

One interesting aspect of Paradyn is that it uses an intelligent
approach to adding instrumentation, looking for routines that
use significant CPU time and then recursively instrumenting
the routines they call. This minimizes the amount of
instrumentation while providing accurate results [6,11].
Crosswalk extends this approach to work being done in the
kernel [34]. These ideas have been integrated into various
tools. STAT analyzes stack traces from large numbers of
processes to build a statistical model of what the processes are
doing and then cluster these according to their behavior,
thereby reducing the problem space for performance
debugging [3]. Paradyn uses the callgraph-based search to
detect CPU-based bottlenecks with independent bottleneck
search agents that are part of the monitor [47]. These agents
can make use of historical performance data from previous
runs [23]

The approach we are taking, while similar in many respects to
that of Paradyn, differs in that we have a broader target domain
of applications, that we are attempting to make it easier to add
new proflets to handle different types of performance
including being able to do application-specific performance
analysis and analysis of transient problems, and in our
approach to controlling the overhead. Paradyn doesn’t vary the
sampling rate and maintains an ordered queue of
instrumentation tasks and just ignores tasks that would exceed
the overhead limit, eventually getting to them if other tasks
find no problems and are thus eliminated [22]. A later
extension uses the same approach locally, but incorporates a
more sophisticated scheduler to resolve global and local
conflicts in distributed performance analysis [46]. Our
approach lets agents set relative priorities and then computes a
schedule for instrumentation based on those priorities and the
overhead. It does not discard or ignore requests, but instead
either delays them or uses their priority to delay other requests.

3. DYPER ARCHITECTURE
Our goal is to create a flexible performance analysis
environment that provides a variety of types of information
within a fixed overhead. To achieve this we use adaptive
techniques and dynamic control of that adaptation.

The basic idea behind the architecture is that we want to use
sampling techniques to get a coarse view of performance, and
then to use dynamic instrumentation to get finer levels of
detail. In order to guarantee a fixed overhead, we vary the time
between samples and do detailed instrumentation only for
relatively short periods of time. For example, if we want to
estimate the number times a routine is called over the run, we
would create a patched version of the class containing the
routine that counted entries, swap this instrumented version in
for ten seconds, and then project the counts we obtained to the
overall run. By changing the sampling interval and the
frequency and duration of the instrumentation appropriately,
we can provide guaranteed limits on the overhead while
offering statistically significant performance information.

The framework we use consists of four separate components
connected using a messaging framework (MSG) based on that
of FIELD [41]. The framework allows arbitrary performance-
specific agents we call proflets to be attached to the



components. This is illustrated in Figure 1 for the case where
there are only two proflets.

The main control is handled by the monitoring component
DYMON. Its jobs is to control the instrumentation, to
coordinate performance monitoring proflets, and to
communicate with the user interface as necessary. DYMON is
in charge of coordinating proflets and the user interface and of
managing the various timings involved in limiting the
overhead.

The DYPATCH component handles byte code instrumentation,
providing a facility that makes it easy for proflets to specify
what to patch and how.

The DYPER component consists of a Java Management proflet
that is dynamically attached to the user process. This
component handles communication with DYMON and sets up
a monitoring thread inside the process. At whatever intervals
DYMON determines, this component gets a snapshot of the
stacks of all active threads and passes this to each of the
proflets to do appropriate processing. When requested, it
creates a report containing sampling information as well as
data from each of the proflets. It also provides the facilities
used by DYMON and DYPATCH to insert and remove
dynamic instrumentation.

The system supports multiple performance analysis proflets.
Each proflet consists of a class inside DYMON that is in
charge of processing and analyzing the appropriate data.
Proflets can also include an object that is dynamically loaded
into the user process and attached to DYPER. This object will
be called to accumulate data while sampling by DYPER and to
report that data to DYMON when requested. It can also
provide entry points that can be called from dynamically
instrumented code. When needed, a performance analysis
proflet can also include a JVMTI agent.

Finally, the system supports multiple user interfaces that can
connect directly to DYMON. We currently are using a
dynamic Web-based interface that does dynamic updating and
a Swing-based interface that emphasizes minimizing display
space.

4. DYNAMIC CONTROL
The DYMON monitor is charged with ensuring that the
overhead of performance analysis is within whatever bounds
the user sets. It does this by allocating time appropriately to
DYPER for stack monitoring and reporting, and to each of the
DYPER proflets for detailed analysis.

In order to determine how to allocate time, DYMON needs
information about the costs involved. As DYPER does stack
monitoring and reporting, it determines the total time that it
and the various proflets take to do stack monitoring and the
total time needed for reporting. These times are reported to
DYMON. Each proflet, p, provides DYMON with four pieces
of information:

• OVHD(p): The fixed overhead (in milliseconds) associated
with its detailed analysis.

• SLOW(p): The factor by which the application is slowed
when the proflet is doing detailed analysis.

• ITVL(p): The length of time (in milliseconds) that detailed
analysis should be done.

• PRTY(p): A priority that indicates the importance of doing
detailed analysis based on the type of analysis and what the
application is doing. This is a value between zero and one,
with zero indicating that the proflet needs no detailing and
one indicating the highest priority.

From these values for each proflet, DYMON computes:

and

Here COST(p) represents the estimated cost of doing a
detailed analysis using this proflet. This is a function of the
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fixed overhead and the slowdown over the interval when
detailing will be done.

The second value,TPRI(p), is more complex. It is meant to
represent a time-biased priority for the proflet. This is an
attempt to handle proflets that have widely divergent
overheads. For example, doing a detailed memory profile has a
slowdown of which is about three orders of magnitude larger
than the overhead associated with computing thread timings.

DYMON works by assuming it has a given fraction of the
programs clock time to allocate to performance analysis. This
fraction is set by the user based on the amount of overhead to
allow. It then dynamically determines what fraction of this
overhead should be allocated to stack monitoring, reporting,
and to detailing for each proflet.

DYMON first apportions the time for stack monitoring and
reporting. It starts by determining the average priority, P, of all
active proflets. It then determines the fraction of time to
allocate to stack monitoring and reporting using:

This function yields 1.0 (100%) when the average priority is
zero, 0.5 (50%) when the average priority if one-half, and 0.25
(25%) when the average priority is one. This fraction is further
broken up to provide 10% of the time to reporting results and
the remaining 90% of the time to stack monitoring. DYMON
next takes this fraction of the time along with the costs of stack
monitoring and of reporting as returned from DYPER and
determines the frequency with which each should be done in
order to stay within this bound. Finally, it makes sure that the
resultant values are reasonable, assuming a minimum delay for
stack monitoring and that reporting should be less frequent
than monitoring, and sends the computed timings to DYPER.

DYPER uses these values to set a time-based delay between
stack monitorings and to check if it should, after a monitoring
report the result. In order to avoid having the time delays
synchronize with the application, it actually delays for a
gaussian random value whose mean is the value given by
DYMON.

Next DYMON allocates the remaining time to the various
proflets. It does this using the time-biased priorities given by
the proflets, providing each proflet with a share which is in
proportion to its TPRI value versus the total of the TPRI
values. Then, given that the proflet is allowed to use this
amount of time, DYMON computes how often it should do
detailing. This computation takes into account the fixed
overhead of the proflet, that is the cost to set up detailing, and
the slowdown factor times the amount of time that detailing
will occur which provides the dynamic overhead. This value is
translated into a delay that is then used to schedule detailing
for the proflet at an appropriate time.

This allocation of proflet detailing time is where the exact
form of the TPRI function becomes important. If the TPRI
function were equal to PRTY, then each proflet would be given
a fraction of time based solely on its priority. For proflets that
had significant overhead, this would mean that detailing for
that proflet would rarely be done. On the other hand, if TPRI
were the simple product of PRTY and COST, then the
scheduler would be “fair”, in that two proflets with the same
priority would run with the same frequency. This however,

causes proflets with large overheads to significantly reduce the
frequency of detailing for all proflets. The function we chose,
using the square root of COST, is meant to be a compromise
between these two extremes, providing relatively fair access to
all proflets without having any one hinder the others. This
choice was based on our experiences in using the system and
seems to work quite well.

Finally, DYMON provides a queueing service for proflet
detailing that ensures that proflets don’t interfere with one
another and that proflets can take into account their own
overhead to adjust their results if they need to. This service
allows each proflet to specify whether which if any other
proflets can do detailing at the same time as this proflet. It also
ensures that proflets that need to patch class files to do
detailing do not have conflicting patches. This flexibility is
useful because some proflets, such as timing, have very little
effect on others, while others, such as basic block counting can
affect the behavior of other proflets.

Given all this, the cost of performance analysis should fall
inside the limits specified by the user. Because much of the
analysis (e.g. the stack monitoring and reporting) is done in a
separate thread, the analysis is almost free if there are
available processors on the target architecture, but the above
analysis is not that optimistic. The analysis can be wrong if the
proflets provide bad estimates of their overhead or if suddenly
stack analysis takes significantly longer than it used to, but
generally it should be within the proper limits.

This can be seen in Figure 2 that shows the results of running
an application with different overhead settings. The
application in this case was a multiple particle gravity
simulation with 10,000 objects that ran for a fixed amount of
simulated time and provided 3D graphical output. It used most
of the two processors that were available on the machine in
doing so that performance analysis should not be free. Each of
the values represents the average of ten runs. We note that
even with ten runs, these results are still approximate, with the
standard deviation being about 5 seconds. The results for 5, 10,
and 25 percent overhead show that the actual overhead grows
appropriately and is well within the specified limits. The result
for 1% overhead is again proportional, but is proportionally
slightly higher. Some of the variance here is due to the
pessimistic assumptions made in computing the overhead and
slowdown for proflet detailing, and noting that such detailing
occurs more often with higher overhead.

The fact that the overhead used can be significantly less than
the overhead allowed provides our system with additional
opportunities. Currently, we do not make use of the available
overhead, instead preferring to run the underlying application
as fast as possible. Ideally, one would like to adjust the various
parameters dynamically to get better statistics within the user’s
limits. While this seems possible, we note that the system
would have to estimate the various overheads and many of the
costs of instrumentation (for example JITing the modified
code) can be quite variable and are out of our control. This is a
good candidate for future work.

5. PROFLETS
Our framework uses proflets to provide a flexible means for
incorporating different analyses. Each proflet is in charge of
collecting the appropriate high-level data based on stack
samplings, collecting more detailed data if appropriate,
determining the priority for that detailed data, and specifying
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the overhead and duration of any detailed analysis. In addition
each proflet is required to output is results in an XML format
for the user interface.

We currently provide six different proflets, one for looking at
where execution occurs, one for analyzing the heap, one for
I/O behavior, one for thread behavior, one for looking at
allocations, and one for timings.

5.1 CPU Proflet
The CPU proflet is responsible for determining where the
program is executing. It provides information both about what
percentage of CPU time is spent in each routine and at each
line of the code and how many times each line is executed.
Because it is statistical in nature, it restricts itself to routines
and lines that are used more that 0.5% of the time.

The basic analysis is done via stack sampling as inprof or
gprof. This record the number of times that when a stack
sample was taken a particular routine or line was being
executed. This information is translated into the percentage of
CPU utilized by that line. The proflet tracks both what is
currently executing and the locations of calls to that routine.
Moreover, it can be set to attribute costs associated with
system libraries to the location that called that library.

Detailed analysis is needed to determine how many times a
give line or routine is executed. This is done by determining
which routines are candidates for such analysis using the basic
analysis and then instrumenting just these routines by inserting
counters at the start of each routine and each basic block. The
instrumented routines are then run for some period of time
(currently 15 seconds), and the results extrapolated to the
overall execution. As this detailing occurs multiple times over
a run, the results become more statistically significant.

The CPU proflet determines the priority for doing detailing by
looking both at the number of candidate routines and at how
cpu-bound the application is.

We note that the analysis done here could be extended to
include gprof-like call information using techniques proposed
in [19].

5.2 I/O Proflet
The I/O proflet provides information about how much time the
application spends doing I/O, broken down by thread and by
what application routine is invoking the input or output
operation.

The basic analysis for I/O is done by looking at the stack
samples. The I/O proflet starts by knowing which methods in
the Java system libraries correspond to I/O operations. This
information is defined in a resource file that is passed from
DYMON and can be adapted to each particular application.
When it finds that a thread is executing in one of these
routines, it tracks that routine and the application routine that
called it. The counts here provide the statistical data needed to
allocation I/O percentages.

The proflet does detailed analysis by instrumenting those I/O
routines that are used most frequently and getting counts of the
number of times these are invoked during the detailing
interval. The priority for such detailing is dependent on the
amount of I/O that is detected as well as the number of
different I/O routines.

5.3 Memory Proflet
The memory proflet determines how many objects of each type
are allocated as well as the total amount of memory used and
the number of garbage collections.

The basic analysis uses the Java management facilities to get
information about memory utilization and garbage collection
each time the stacks are sampled.

Detailed analysis is done by instrumenting the constructor of
the base classjava.lang.Object with a routine that gets the
actual class of the allocated object and counts the number of
instances. This approach is more efficient than using JVMTI to
trap allocations, but has the disadvantage that we do not get to
count allocations of arrays. The detailing is done for ten
second intervals and the results are extrapolated to the overall
run.

The priority of doing detailing here is determined by looking at
how the number of garbage collections and the size of memory
change over the last fifty reports, figuring that the more these
change the more likely we are to need to understand memory
behavior.

This proflet provides two detailing modes, one which just
looks at the class of the allocated object and one that looks at
the stack at the point of allocation to determine the line in the
user’s code that causes the allocation. The latter mode has
significantly greater overhead than the former. However, both
modes are accommodated having the scheduler treat them as
separate proflets and thus schedule both. Because the source
mode has a significant overhead, the scheduler causes it to be
run less frequently.

Target
Overhead

Clock Time User Time System Time % Cpu Used
Actual

Overhead

None 6:33.12 12:39.95 2.39 193.31 0

1% 6:38.61 12:45.18 3.37 191.6 1%

5% 6:42.54 12:49.59 3.53 191.2 2%

10% 6:53.87 13:05.67 3.92 189.8 5%

25% 7:33.64 14.20.04 5.73 189.6 15%

Figure 2. Actual overhead versus target overhead.



5.4 Heap Proflet
The heap proflet tracks the current contents of the heap,
identifying the number and size of objects of each allocated
type.

This proflet is different in that it is implemented as a JVMTI
plugin rather than as a class that interacts with the DYPER
monitor. The proflet does no basic analysis. When it gets a
chance to do detailed analysis, it sends a message to the
JVMTI proflet. The proflet then uses the JVMTI facilities to
scan the heap and count the number and size of the objects
there based on their type. This information is reported back
and tracked in the DYMON heap proflet.

The difficulty with this proflet is that execution effectively
stops when the heap is scanned and the scanning time depends
on the number of objects on the heap. To account for the
overhead appropriately, the JVMTI agent tracks the amount of
time each heap scan takes and returns the worst case time to
the heap proflet. This time plus some delta is then used as the
approximate overhead involved with the detailed analysis.

5.5 Thread Proflet
The thread proflet determines what threads are blocking on
other threads, estimating counts of who is blocking whom. It
also tracks the amount of time each thread spends running,
blocking, waiting, sleeping, or doing input or output, providing
a profile of thread behavior.

The basic analysis looks at each thread and determines its
state. Most of this information is available directly, but the
information returned by Java is incomplete. We determine if a
thread is doing I/O by checking if it is running in an I/O related
method or if it is blocked in a windows-related method. We
determine if the thread is sleeping by seeing if it is inside a call
to Thread.sleep. In addition, if the thread is blocked, we use the
information provided by Java to determine which thread is
blocking it.

Counting the number of times each thread is in each state when
we sample the stacks provides an approximation to the amount
of time the threads are actually in that state. The proflet uses
detailing to get more accurate information by turning on
contention monitoring to force the JVM to compute the amount
of time each thread spends waiting and blocking. This incurs a
small overhead (which we account for), but can provide more
accurate results.

5.6 Timing Proflet
The timing proflet provides information about the actual CPU
time spent by a thread as well as general information about the
number of active threads.

The basic analysis records the number of active threads in each
stack sample. It computes the average number and the standard
deviation of these values as well as the number of available
processors.

The detailed analysis enables the JVM feature that computes
per-thread CPU time. Again, using this incurs some overhead.
The proflet then looks at the actual CPU time spent during the
detailing interval and extrapolates the actual time used from
there.

This information is designed to complement the timings
accumulated by the thread proflet. In particular, if there are
more threads available to run than processors available to run

them, the thread proflet will show that the threads were
running, but the timing proflet will show that they were
effectively blocked.

6. DYPER USER INTERFACE
The DYMON monitor provides an application interface based
on XML over a socket. It is designed so that one or more front
end applications can attach to the monitor, control the
monitoring process, and obtain the information they need to
display information to the user.

Our initial user interface implementation uses a web-based
front end implemented using FlapJAX [29] for dynamic web
update based on XML, Javascript for handling user commands,
and PHP to interface between DYMON and the web server.

The basic interface, shown if Figure 3, shows the user the
current set of processes that can or are being monitored. The
interface lets the user control whether a process is attached to
DYMON (i.e. has the DYPER libraries installed) and whether
it is currently being monitored or not.

Clicking on the process itself brings up a summary window
that shows detailed information about the process, lets the user
control monitoring, and displays performance information that
is noteworthy. A view of this can be seen in Figure 4. Clicking
on any of the headers in this view provides a detailed view of
all the relevant information concerning that aspect of
performance. For example, Figure 5 shows detailed views of
thread and cpu statistics.

The second interface we developed is shown in Figure 6. The
view at the upper left shows the status of the different proflets,
with hue encoding whether the proflet thinks there might be a
problem and brightness encoding the confidence the proflet
has in that assessment. This view is quite compact so that it is
unobtrusive and so that significant numbers of such
visualizations can be effectively displayed at one time.
Clicking on the red dot for CPU time in the first view brings up
the second view, shown below the first, which shows summary
information from the CPU proflet. Tool tips are used in this
view to provide additional details on the meter and the bar
graph. Finally, clicking again brings up the third view which
shows the detailed performance information. All views are
continually updated as the process runs.

7. EXPERIENCE
We have used DYPER to analyze the performance of several
of our longer-running systems. In addition to the multiple
particle gravity simulation described earlier, these include a set
of experiments where we use different learning techniques to
learn the coding style of a corpus of code, a peer-to-peer
application that supports distributed programming and that is
running on fifty different nodes at Brown, a 3D pinball
program, and a web crawler.

The system provides reasonably accurate statistics that match
our prior knowledge of what each of these programs are doing.
In particular, it was able to rapidly highlight a previous known
performance bottleneck in the web crawler related to accessing
robots.txt, a problem that had taken us several weeks to track
down with standard tools. Moreover, the statistics seem to be
stable, not changing significantly from one detailing to
another, an indicator that the values returned by the detailings
are reasonably accurate.



For the most part, using the system does not seem to adversely
affect the run time or behavior of the applications being
monitored. Especially with the lower overhead settings, we did
not notice any appreciable slowdown in any of the
applications. The major problem here is a bug in Java that
causes a monitored program to randomly abort, generally after
being monitored for an extended length of time. While we are
attempting to track this problem down, we have been hesitant
to publicize the system outside Brown because of it.

The other problem that we observed in running the system is
that it often takes several minutes of running the profiled
system before one has meaningful statistics. Originally, this
was especially true for proflets that had high overhead since
they were not run often. This is what led us to define the time-
based priority function and use it for scheduling. The current
system still takes several minutes, but typically reports the
more relevant statistics, the ones that are assigned higher
priority, within a minute or two.

8. RESULTS AND FUTURE WORK
DYPER provides a powerful framework for analyzing and
presenting performance data from long-running, production
applications within fixed overhead bounds that are settable by
the user. The framework is easily extensible both in terms of
what is monitored and how it is presented. Moreover the data
analysis can be customized per application.

It is relatively easy to add proflets to the framework, with most
current proflets consisting of a total of 1000 lines of source
generally split evenly between their DYPER library and the
DYMON controller. We are looking at additional proflets to
monitor use of Java collections classes, for handling events
and callbacks, for detecting memory leaks, for tracking
performance history rather than summaries, that make use of
DTrace information, and for message processing.

It is also possible to write custom proflets for particular
applications.This can be used both to analyze information
specific to an application and to define proflets that
automatically trigger detailed or high-frequency sampling
when they detect an anomalous event. The framework is also
designed to monitor multiple processes and proflets can work
with the simultaneous data from these processes
simultaneously. This should allow the creation of proflets to
model generic and application-specific interprocess
coordination.

The code for the framework is available as part of wadi at
ftp://ftp.cs.brown.edu/u/spr/wadi.tar.gz.
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