
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’05, November 7-11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011...$5.00.

A Component Model for Internet-Scale Applications
Steven P. Reiss
Brown University

Providence, RI 02912
401-863-7641, spr@cs.brown.edu

ABSTRACt
This paper describes a component model where the overall
semantics of a component is included in the interface definition.
Such a model is necessary for future computing where programs
will run at Internet-scales and will employ a combination of web
services, grid technologies, peer-to-peer sharing, autonomic
capabilities, and open source implementations. The component
model is based on packages and supports static and dynamic
objects, interfaces, structures, and exceptions. The interface
definitions provide a practical approach to defining functional
semantics and include appropriate extensions to provide semantics
for security, privacy, recovery, and costs. The component model
has been implemented in a prototype framework and demonstrated
in an Internet-scale example.

Categories and Subject Descriptors
D. Software; D.2 SOFTWARE ENGINEERING; D.2.2 Design
Tools and Techniques; Modules and interfaces, Software
libraries, Evolutionary prototyping.

General Terms
Design, Languages, Reliability.

Keywords
Component models, Internet-scale applications, Interface
semantics.

1. INTRODUCTION
The concept of a program is changing from a local, self-con-
tained object into an Internet-scale, pervasive, self-organizing,
omnipresent entity. We have developed a novel component
model that addresses the programming issues that will make
this transition smooth and manageable. This model has been
implemented using a prototype framework that demonstrates
its potential.

There are a number of current trends that point to the future of
programs and programming. These include web services, grid
computing, peer-to-peer computing, autonomic software [11],
the open source movement, and more-reliable networking.

These trends are converging. Programs are written using a
multitude of web services some of which use other web ser-
vices. These web services are written by different, often anon-
ymous programmers and change with little or no notice. Grid-
based applications such as today’s database systems run on
any available machine and find new computational resources
as needed. Data is shared across the Internet both through web
services and through peer-to-peer connections. Instant messag-
ing, SETI, Gnutella [6], Napster, and Electric Sheep [8] are
examples of current Internet-scale applications, with more to
come.

Dealing with this new reality will require us to change the way
we think about programs and programming. We can’t continue
to think of a program as a self-contained entity with only local
effects that we control. Instead, we need to work in terms of a
global system where we do not control most of the components
or interactions. We need a means for programming in a world
where software systems will be built mainly from components
designed, developed, maintained, and modified by different
people, on machines that are not under the control of the soft-
ware developers or designers, and where the components
themselves evolve outside of the control of the software sys-
tem. It is this set of problems that our research tries to address.
Our goal is to ensure:

Developing an Internet-scale application should be no
more difficult in the future than developing a standalone
application is today.

The remainder of this paper details the component model we
have constructed to achieve this goal and an implementation of
that model. We start by illustrating an Internet-scale applica-
tion and discussing the lessons it provides. This is followed by
a detailed discussion of the underlying component model and
the prototype framework called TAIGA that implements the
model.

2. AN EXAMPLE APPLICATION
As an example of an Internet-scale application we have built a
system for visualizing what people are browsing on the web.
The application gathers data from potentially millions of users,
monitoring what pages they are currently browsing. It summa-
rizes this information by categories and then displays the
results so that users can understand browsing patterns over
time and spot trends. The application and framework are avail-
able for download athttp://www.cs.brown.edu/people/spr/web-
view.html.

A view of the application is shown in Figure 1. Time is repre-
sented by the concentric circles, with the outermost circle
being the most recent time interval (the past 5 minutes) and the
innermost circle representing the earliest interval (the previous

2 days). Within each circle, hue is used to show the Open
Directory (http://dmoz.org) category (labeled in the outer cir-
cle), the span of the arc reflects the number of views of that
category, and color saturation shows the relative number of
views (whether there were more or fewer page views than one
would expect for the time interval). Additional information is
shown by the wavy line that traverses each circle. The fre-
quency of the waves within the category shows the relative
number of distinct URLs that were browsed, so that a flat line
indicates few and a wavy line indicates a lot. The width of the
line indicates the relative number of users.

This application was developed using three external interfaces
and global files. One interface is used to accept information
from data miners about a web page as it is browsed by a user.
The implementation of this interface gathers such information
from multiple users, accumulates it by category, and periodi-
cally outputs a record to the current global file containing the
number of pages, users, and distinct URLs for each category.
A second interface manages the global files, creating a new file
when the current file gets too large and providing an index that
lets the visualizer find the appropriate file for a given time in
the past. The third interface is used to provide the category for
a URL. We have three implementations of this interface, one
based on the Google web service, one based on MeURLin [14],
and one that reads the Open Directory database and builds a
decision tree.

The web usage visualizer is coded as if it were a standalone
application. The data miners save their data by simply calling a
recorder method. The recorders append to a file that is opened
and used as if it were local. The manager similarly reads and
writes files that it thinks are local. Finally, the visualizer itself
gets the current file from the manager via a method call and
then uses standard Java file methods (available and readLine)
to determine when new data has been added and to read that
data.

Experience with this application has illustrated several points
about Internet-scale programming. First, it pointed out the
importance of dynamic binding of implementations to inter-
faces. After we had been running it for a while, Google, with-
out notification, changed their web service so that the Open
Directory category was no longer returned for all pages. Our
framework detected this and choose a different implementation
without user intervention. Second, it illustrated the importance
of using cost models. The initial version of MeURLin was very
slow and this was reflected in the costs based on the time
needed to run various test cases. An improved version of
MeURLin was put up (again without our knowledge), and our
framework detected that the new version was practical to use.
MeURLin also illustrated the importance of having multiple
implementations. Its server has a tendency to be down once or
twice a week; this is detected by our framework and the next
best implementation is chosen. We have also seen the need for
dynamic rebinding. We run the decision tree classifier on a
local machine. Unfortunately, that machine has had some hard-
ware problems and has needed to be rebooted relatively fre-
quently. When this occurred, our system automatically found
an alternative binding, either by running the classifier on
another local node or using one of the other implementations.

We have also implemented several simpler applications in our
framework, most notably a chat program and a N-body prob-
lem solver. Our experiences with all these programs led us to
the object model and implementation we currently use.

3. INTERNET-SCALE COMPONENTS
Programming in a pervasive, Internet-scale environment
requires a new approach that can handle the issues of scale, the
notion of change and failure, the consequences of lack of con-
trol, and the effects of global sharing of data and code. The pri-
mary requirement is a component model that can deal directly
with these issues and their corollaries.

We have developed a component model that attempts to meet
this requirement. Our model ensures:

• Existing web services, libraries, and other component
implementations can be used as components without mod-
ification;

• Implementations actually implement the interface as
intended;

• Interfaces and implementations define and enforce secu-
rity and privacy properties;

• Fault tolerance and recovery are defined as part of the
interface and are inherent to the system.

• Versioning and evolution of interfaces and implementa-
tions is dynamic and built into the system [23];

• Interfaces support classes and objects and can contain
static methods, constructors, and concrete methods.

• Interfaces can be bound and rebound dynamically.

• Components can be used synchronously in a threaded
environment or asynchronously with appropriate call-
backs.

3.1 Related Work
There are many different object-based component systems.
Most of these take the approach of CORBA or Microsoft’s
ActiveX and utilize a separate interface definition language.

Figure 1. WebView visualization

This language is then mapped into appropriate stub and skele-
ton code for passing and accessing remote objects. These have
the advantage of being relatively language independent, but
the disadvantage that the user has to define the interface as
well as a corresponding implementation class with the same
name. Java RMI works only for Java, but uses the Java reflec-
tion mechanisms to work directly from the implementation
class, eliminating the need for a separate definition. More
recent work here is reflected in the notion of a web service
defined by a separate interface definition language, WSDL.
The WSDL files are typically generated automatically from the
particular implementation, are globally accessible, and can be
used to build an appropriate programming interface for an
arbitrary client. JavaBeans takes a different approach. Here the
component interface is essentially the same for all compo-
nents. This interface offers the ability to get and set properties,
to register event listeners, to generate events, and a reflection
mechanism. A reflection mechanism is provided so that beans
can query the properties and events of other beans. Beans
interact with other beans by knowing the types of events to
generate and listen for.

An approach that is more network oriented is illustrated by Jini
[19]. Here the components are services which can have multi-
ple implementations. Servers register for a service with a
lookup server. Clients can then find a relevant server through
the lookup mechanism. The abstract services are effectively
Java interfaces which are implemented by remote clients using
Java RMI with Jini providing the binding mechanism.

There are also a variety of techniques for combining these dif-
ferent component systems. Web services based on SOAP are
able to support .Net components directly and other components
via wrappers. Similarly, legacy systems or other components
are often used as components in various component models
using appropriate wrappers [22]. Frameworks like the VCF
[20] formalize this process by automatically producing wrap-
pers.

One problem with these approaches is the significant common-
ality required between the client using an interface and the
implementation. For CORBA and RMI, any objects that are
being shared usually require that appropriate stubs be loaded
both in the implementation and in the client. For a web service,
the WSDL file defines the particular implementation of the
web service complete with the URL to be used, and not a
generic specification. For JavaBeans, the clients and imple-
mentations have to be implemented as beans and the different
components need to understand the properties and events used
by the other components. For Jini, the clients and implementa-
tions need to agree beforehand on the service interface and its
semantics.

These approaches do not work at Internet scales in a pervasive
world. Servers cannot be expected to load the stubs needed to
support classes from all potential clients. Objects will often
need to be passed through multiple services, and the interven-
ing services might not want or need to understand the object.
There will be no standard set of properties or events that can be
created on the fly to cover all potential developers. Binding of
interfaces to implementations needs to be dynamic and muta-
ble to handle failure and recovery. All this is difficult with the
technologies currently used. A more flexible and less tightly-
coupled approach is needed.

One approach to doing this decoupling is to change to a pro-
gramming model that enforces it such as Linda [1]. Here a cen-

tral tuple space is used for communication and coordination
among the various clients. Tuples in the tuple space follow a
standard format and are easily shared. While the original ver-
sion was designed for local systems, extensions such as
Javaspaces [9] and TSpaces [25] provide scalable implementa-
tions. This approach has the advantage of being relatively
simple and isolating the distributed aspects of the computation.
However, it is a different programming model and is rather
limiting for many types of applications.

Language support for components and component technologies
has also been relatively common. Modula 3 and Ada both
allow the definition of package-based interfaces that effec-
tively describe the set of classes in a component. Java provides
interfaces, but at the class level not the component level. Lan-
guage support makes using components easier for program-
mers by letting them work with standard frameworks and
programming models.

We wanted our component model to be fully integrated into
the base programming languages. It is important that program-
mers be able to work with components using traditional pro-
gramming metaphors and styles, and that components be easily
integrated into existing applications. A component needs to
represent the equivalent of a Java package, i.e. a set of classes,
interfaces, and exceptions that are related and actually share a
single implementation. At the same time, we wanted to remain
language independent as much as possible and to be flexible in
the way an implementation can match an interface. There
might be multiple web services that perform a single function,
each of which uses slightly different calling conventions. A
single interface should be usable for all such implementations.
Moreover, the implementations themselves should not have to
be modified.

3.2 Outerfaces and Implementations
Our approach is to provide an interface definition language
that essentially defines a Java package or its equivalent, pro-
viding not only the syntax of the calls, but also their semantics.
To differentiate our interfaces from Java interfaces, we call
ours anouterface. The basic outerface definitions used by the
web usage visualizer are shown in Figure 2. As seen in the
example, outerfaces can include class definitions with abstract
static methods, traits (properties), and test cases. Outerfaces
can also include definitions for classes with dynamic methods,
constructors, and concrete methods; interfaces for implement-
ing callbacks; structures for handling call-by-value; contracts;
security and privacy specifications; availability restrictions; a
cost model for choosing an implementation; and recovery
information.

Outerfaces are hierarchical and can either extend or restrict
existing outerfaces. If an outerface extends an existing one,
implementations of the new outerface will be considered as
candidates of the old; if an outerface restricts an existing outer-
face then implementations of the old are candidates for the
new. When restricting an outerface the user is limited to add-
ing new test cases, adding additional security or privacy con-
straints, and changing the cost model.

The outerface definitions are used by the prototype to generate
Java packages that the user can code to directly. Thus the web
visualizer source code contains the import line:

import edu.brown.cs.webview.taiga.WebManager.*;

and then just uses the classFileManager as if it were directly
implemented. When this class is first used by an application,
the framework gets control, dynamically finds a matching
implementation, and does the appropriate binding. This
approach to dynamic binding is more general and broader-
based than previous approaches such as [16,21].

Implementations are defined using a separate but similar lan-
guage, with the WebView examples shown in Figure 3. These
identify the class and then define the mapping between the out-
erface class and the implementation. The description language
is flexible enough to allow name mapping, parameter reorder-
ing, default parameters, and simultaneous implementation of
multiple outerfaces. As illustrated, the implementation
descriptions can also define traits, cost information, and avail-
ability restrictions.

These examples define outerfaces and specify implementations
with a language based on Java, using similar keywords and
constructs. The language itself is merely a front end to an
internal XML description that embodies the principle elements
and has been changing significantly as the system evolves.

3.3 Classes, Interfaces, and Structures
The component model needs to support a variety of program-
ming methodologies and techniques. Outerfaces are generally
built around classes that can support either object-oriented or
procedural programming. The outerfaces of Figure 2 are essen-
tially procedural since the classes provide only static methods.
Figure 4 shows a more complex outerface for a chat server.

This outerface is consistent with object-oriented programming.
The programmer can create instances of the classChatServer
and then call methods on those instances. Since the outerface
specifies the implementation should be shared in the trait
clause, these instances will be implemented as proxies to
remote objects. If the implementation was in the form of a

downloadable library, the objects would have been local
objects. This example also illustrates that outerface classes can
have constructors and methods with a predefined implementa-

outerface edu.brown.cs.webview.taiga.WebManager {

trait { rebind=true; }
class FileManager {

static public String getCurrentFile();
static public String getFileForDate(long date);

}

testcase Test0 { ... }}

} // end of outerface WebManager

outerface edu.brown.cs.webview.taiga.WebRecorder {

trait { rebind=true; }
class Record {

static public void record(String url,String usr,long date,int tzoff);
static public String getUniqueId();

}
} // end of outerface WebRecorder

outerface edu.brown.cs.webview.taiga.WebClassify {

trait { rebind=true; }
class Classify {

static public String findCategory(String url);
}

testcase Test0 { .. }
testcase Test1 { ... }
testcase Test2 { ... }
}

Figure 2. Outerface definitions used by WebView (with the

test case code elided).

implementation edu.brown.cs.webview.taiga.SimpleManager {
using edu.brown.cs.webview.recorder.RecorderManager;

implements edu.brown.cs.webview.taiga.WebManager {
using class FileManager = edu.brown.cs.webview.recorder.RecorderManager;
}

}

implementation edu.brown.cs.webview.taiga.SimpleRecorder {
using edu.brown.cs.webview.recorder.RecorderMain;

implements edu.brown.cs.webview.taiga.WebRecorder {
using class Record = edu.brown.cs.webview.recorder.RecorderMain;

}
}

implementation edu.brown.cs.webview.taiga.GoogleClassify {
using edu.brown.cs.webview.classify.ClassifyGoogle;
available edu.brown.cs.*;

implements edu.brown.cs.webview.taiga.WebClassify {
using class Classify = edu.brown.cs.webview.classify.ClassifyGoogle;

}
cost = 100;

}

implementation edu.brown.cs.webview.taiga.XmlClassify {
using edu.brown.cs.webview.classify.ClassifyXml;

implements edu.brown.cs.webview.taiga.WebClassify {
using class Classify = edu.brown.cs.webview.classify.ClassifyXml;

}
trait { javaopts = "-Xmx1700m"; startup = 2000 }
available edu.brown.*;
cost = 10;

}

implementation edu.brown.cs.webview.taiga.MeurlinClassify {
using edu.brown.cs.webview.classify.ClassifyMeurlin;

implements edu.brown.cs.webview.taiga.WebClassify {
using class Classify = edu.brown.cs.webview.classify.ClassifyMeurlin;

}
cost = 40;

}

Figure 3. Implementation definitions for the web usage

visualizer.

outerface edu.brown.cs.taiga.examples.chat.ChatPackage {

import edu.brown.cs.taiga.base.TaigaTupleSpace;
available edu.brown.*;

trait { shared }
class ChatServer {

public static final ChatServer getServer(String url) {
 TaigaTupleSpace ts =
TaigaBase.the_kernel.getTupleSpace(“edu.brown.cs.spr.ChatServer”);
 ChatServer cs = (ChatServer) ts.get(url);
 if (cs == null) {
 cs = new ChatServer(url);
 ts.put(url,cs);
 }
 return cs;

}
static private ChatServer createServer(String url);
private ChatServer(String url);
public Connection establishConnection(String uid,ServerCallback cb)

throws TooBusy;
public void dropConnection(Connection c);
public void send(Connection c,String msg);

}
interface ServerCallback {

void handleMessage(String u,String m);
void handleNewUser(String u);
void handleUserQuit(String u);

}
exception TooBusy;
abstract class Connection;
testcase Test1 { }

}

Figure 4. Outerface definition for a chat server.

tion. The former lets the programmer use standard program-
ming techniques when dealing with outerface objects; the
latter simplifies the implementation which preserving a more
sophisticated outerface.

A common technique in today’s programs involves using call-
backs, either as an instance of an observer design pattern [10],
to simply handle calls from the implementation back to the cli-
ent, or to allow for asynchronous calls. Our component model
handles these through the definition of interfaces within the
outerface. TheServerCallback interface in Figure 4, for exam-
ple, is implemented by some client class and passed to the
ChatServer object to register the client. The implementation
handles the fact that this might indicate a remote object in the
implementation and that the implementation will have a differ-
ent name for the callback interface.

Outerfaces also support abstract classes and exceptions.
Abstract classes represent private objects that are passed back
from the implementation to the client and can only be used as
parameters to calls to the implementation. In the chat example,
the connection is represented as such a class. These are imple-
mented as suitable remote objects where necessary. Exception
declarations in the outerface are used to create corresponding
subclasses of java.lang.Exception for the client. The corre-
sponding exception class in the implementation is mapped to
the client class when the exception is thrown.

Finally, outerfaces support passing objects by value rather than
simply as remote objects. This is done by declaring an “inter-
face class” rather than a standard class. Interface classes are
essentially structures. They can have fields and implemented
methods, but cannot have any abstract methods. An assump-
tion is made in this case that such items are passed by value;
the above restrictions ensure that no remote method calls will
be needed.

3.4 Functional Semantics
Central to our component model is the fact that theouterface
includes the semantics of the implementation. By semantics
here we mean not only what the calls do, but also how the
implementation addresses issues such as security, privacy,
availability, and reliability. Including the semantics in the out-
erface lets us use arbitrary implementations with a degree of
confidence, provides a rational means for choosing among
implementations, and offers a basis for ensuring that imple-
mentations act as expected.

The most used approach for defining the functional semantics
of an interface is to use a natural language definition such as a
requirements specification document. Experiences with such
informal descriptions have shown that there are many ways of
misunderstanding what is really needed and it is extremely dif-
ficult to have the descriptions cover all the cases or even be
unambiguous in the minds of the implementor. For these rea-
sons, more structured approaches have been taken. The Java
Community Process, for example, is a formal but open, com-
mittee-based mechanism whereby new interfaces for Java
libraries can be proposed, discussed, and formally understood.
However, it is cumbersome and typically takes months or years
for a new proposed interface to be fully understood and
accepted. For the framework we envision, we needed some-
thing that was much less cumbersome, much quicker, and that
could accommodate large numbers of interfaces and imple-
mentations.

An alternative approach is to express the semantics using a
mathematical language such as Z [24] or Larch [13] or a high-
level specification language. While such specifications are
becoming more common, they are still difficult to write and
more difficult to get correct, even for relatively simple pro-
cesses. When you have a complex process as many web ser-
vices are, writing such specification is often more difficult that
implementing the process in the first place.

A more widely used approach is to use contracts as introduced
in Eiffel [17]. Contracts attempt to constrain the behavior of a
process by defining what inputs are allowed and how the out-
puts are related. They are typically expressed in the form of
preconditions and postconditions on methods or as conditions
on a class. More recently, dynamic contracts have been used to
specify the ordering and behavior of sets of methods of
classes. For example, contracts in the form of AsmL or
extended finite state automata have been used to specify more
detailed behavioral properties of components [2,3,5]. Con-
tracts are relatively easy to specify, but they don’t fully cap-
ture the semantics or the intent of the interface.

Another solution can be found in the agile or extreme program-
ming approach to development where test cases are developed
first and the implementation is tested continually. The test
cases provide the developers with a good sense of what the
implementation should do and ensure that the resultant imple-
mentation works correctly, at least for the circumstances it was
envisioned for.

The problem of semantics is related to the “component trust
problem” [18]. The latter problem deals with trusting a compo-
nent once you know what it does while our problem doesn’t
even assume we know what the component is supposed to do.
The techniques used here are a combination of formal
approaches, contracts, and testing [4]. The same techniques are
appropriate for our problem.

Indeed, we feel the most appropriate approach is a combina-
tion. In our component model, the main semantics of an outer-
face are specified by a set of test cases defining the
implementation’s behavior. The framework guarantees that
any implementation passes all the test cases of the outerface.
Thus, for theWebClassify outerface of Figure 2, the system
ensures that any implementation passes the three test cases that
are included. Users can also restrict outerfaces by defining
additional test cases. In this case, the user is guaranteed that
any implementation chosen will pass both the original test
cases and the new ones.

Test cases are used to control the binding of outerfaces to
implementations. When the user requests an outerface, the sys-
tem searches for implementations that specify (directly or indi-
rectly) that they can be used for that outerface. For each such
implementation, the system runs the appropriate test cases and
validates whether the implementation can or cannot be used. It
will then choose one of the acceptable implementations and
dynamically bind the outerface to it. For efficiency, the infor-
mation about allowable bindings of outerfaces to implementa-
tions is cached by the system and shared globally.

In addition, the outerface can include contracts in the form of
preconditions and postconditions on methods and general con-
straints on the behavior of an outerface class. Checks for these
are inserted into the code generated for the outerface. If a pre-
condition fails, the call is aborted; if a postcondition fails, then
the implementation is viewed as failing and a new implementa-
tion will be used. The recovery mechanism here is the same as

that described in Section 3.6. Note that contracts augment the
test cases since a failing postcondition will result in a failing
test case and hence will

Finally, availability constraints, part of the outerface, are used
to determine who can access and use it.

3.5 Security and Privacy
Security and privacy are two sides of the same coin. Security
constraints specify what the implementation will do for the cli-
ent based on authentication of the client. For example, an
implementation might specify that a certain method can only
be called only if the client has the appropriate certificate or
capability. Privacy constraints, on the other hand, let the client
specify what it will let the implementation do. For example, a
client might specify that the implementation can perform no
local writes or that a particular parameter (for example a credit
card number) can only be passed to a particular client (a bank)
and never saved.

In order for Internet-scale programming to be widely used,
both security and privacy must be part of the outerface defini-
tions and both must be enforced by the underlying system. We
are currently researching the best way that this can be done,
balancing ease of specification, ease of checking, and potential
implementations. The framework implementation includes a
security context to hold the various certificates and associated
information. The current security context is maintained across
calls, both local and remote, and is integrated with the Java
security context. Research so far has been focused on formaliz-
ing different privacy and security specification languages such
as P3P [7] or EPAL [15], and on creating an appropriate sand-
box that can be used to check privacy and security. Currently,
TAIGA lets both the implementation and outerface specify
their own privacy constraints and checks that the implementa-
tion is at least as restrictive as the outerface.

3.6 Recovery
Recovery from network or component failures needs to be an
essential part of an Internet-scale computing framework. This
can be seen in the various experiences we have had with Web-
View and the implementations it was trying to use. The recov-
ery model we use, while not fully implemented, attempts to
address the problems.

First, our framework specifically supports the dynamic binding
and rebinding of implementations. If an outerface fails, for
example due to network connectivity or a failing postcondi-
tion, then the framework will automatically unbind and unload
the original implementation, choose a new implementation that
satisfies the outerface, load and bind this new implementation,
and then reexecute the failing call. All this is done so as to be
invisible to the user.

This works well in the simple case where the implementation
does not manage any state and where there are no remote
objects passed back from the implementation. This case, while
restrictive, is not uncommon. Most web services, for example,
follow this model. The definitions of Figure 2, note through
their trait definitions that all three outerfaces can be dynami-
cally rebound in this way.

We are currently working on handling the more complex cases.
This first involves defining structures as part of the outerface
that represent the information needed to recover an object or a
class and requiring that any implementation be able to restart

from this class data and recreate objects from the object data.
Recovery would then consist of maintaining the appropriate
data objects in the client’s memory so that the appropriate state
of a new implementation could be created. In addition, we are
looking at ensuring transactional semantics for particular
remote calls.

3.7 Cost Model
The final component of an outerface definition is an cost
model that lets the underlying framework choose among dif-
ferent implementations. The cost model we currently provide
lets the user define the cost of an implementation as a weighted
total of cost elements. The current cost elements include the
cost of using a particular implementation, the cost of a particu-
lar type of binding (e.g. library vs. web service), costs associ-
ated with various traits, costs associated with resource (time or
memory) utilization over all the test cases, or costs associated
with resource utilization for a particular test case.

The ability to include test case resource utilization here means
that the client can define test cases that reflect their important
use cases and can then have the system choose the implemen-
tation that most appropriately addresses those test cases. Note
also that by restricting an existing outerface, a user can spe-
cialize the cost model to their own requirements.

4. THE TAIGA FRAMEWORK
The notion of outerfaces for Internet-scale programming is
attractive and seems to be relatively comprehensive. However,
in order for it to be practical, we need to demonstrate that the
component model can be implemented, that it can handle
appropriate dynamic binding, that it can support a variety of
different types of components, and that it can enable Internet-
scale programming.

To this end we have built a prototype framework called
TAIGA consisting of three main elements: a package that pro-
cesses outerface and implementation files, a peer-to-peer ker-
nel built on top of JXTA [12], and a set of utility routines.

4.1 Outerface and Implementation
Management

TAIGA maps an outerface description into a Java package that
can be used directly by the client. The package is given the
same name as the outerface and the classes, interfaces, and
exceptions defined in the outerface are defined as correspond-
ing classes or interfaces in the package. Portions of the code
generated for theWebClassify class of the outerface in
Figure 2 are shown in Figure 5.

For each class defined in the outerface, we generate an actual
class that uses delegation to provide the appropriate implemen-
tation. We considered several alternatives here. One approach
for an object-oriented framework is to define the remote object
as an interface that is inherited both by the local class and by
the implementation class. This is the approach taken in Java
RMI. This doesn’t work because we want to allow construc-
tors, static methods, and outerface-defined methods which can-
not be part of interfaces, and we want to let the implementation
have different parameters than the outerface. Using an abstract
class instead of an interface gets around some of this but not
all, and raises other problems. A second approach is to use
reflection and dynamic binding. Here the implementation
classes and methods are determined and saved at run time and

method calls use the reflection interface. A local library then
could be bound in directly and standard methods for generating
SOAP calls could be generated for the outerface independent
of the implementation. This gets closer but still does not
address the issue of allowing different calling sequences.
Moreover, it makes it difficult to support different parameter
passing mechanisms.

The solution we finally settled on is to define a subinterface,
_TaigaImplements, of the outerface class to define the imple-
mentation. This can be seen at the bottom of Figure 5. The out-
erface code then uses this interface. For each method, the
outerface manages security, calls the appropriate implementa-
tion method, handles the return type, and traps any exceptions.
An example of this can be seen in thefindCategory method in
the figure.

The code for an outerface class includes several other book-
keeping methods. ThetaigaGet method ensures that there is a
unique outerface object for each implementation object. This
ensures that an outerface object passed multiple ways from a
one application to another yields the same object even when
the applications are independent. The static initializer is used
to force implementation binding before the class is used. The
getBaseObject method is used when an object of this class is
passed remotely.

The generated package includes two additional classes. The
first, TaigaBase, is used to do the binding. It includes a static
initializer invoked the first time any of the classes in the outer-
face are used. This initializer handles finding an implementa-
tion and binding the implementation to the outerface. The
binding is represented by creating objects that implement the
implementation interface for each class. These objects are the
ones that will be used for static calls and constructors. This
class also provides calls to handle dynamic rebinding of the
outerface. In addition, it manages the security and privacy pol-
icies for the particular outerface and class. The second gener-
ated class,TaigaTest, manages testing by invoking all the test
cases defined in the outerface and returning appropriate status.

4.2 Implementation Mappings

The decision to use delegation in the code generated for outer-
faces means that all the real work of binding the outerface to
the implementation has to be done using code generated from
the implementation definition. This code has to manage the
actual binding of outerface calls to local or remote calls; gen-
erate the appropriate local call, SOAP message, or other call
sequence; reorder and add default parameters; map return val-
ues; and map exceptions. For each implementation our
approach generates a new class for each outerface class. This
class implements the corresponding_TaigaImplements inter-
face to manage this binding. It also generates classes to repre-
sent interfaces. If the implementation can be used in multiple
forms (for example a library might be usable either locally or
as a server or grid computation), then TAIGA generates a set
of such classes for each form. This approach has the benefit
that no modifications are needed in the implementation code.

The class generated to do the binding for each outerface class
only has to consider the outerface and the particular implemen-
tation. As such, it is straightforward to generate code to man-
age the mappings and generate the appropriate type of call. For
a local binding, this code takes the initial parameters and uses
them to construct the actual call to the local method. For a
remote binding, it builds and uses a remote call using extended
version of the SOAP protocol. For web services with standard
argument types, this is precisely the call that is needed to
invoke the service. For calls to other servers, the call will be
handled by our own SOAP interpreter which we include as part
of a TAIGA implementation. This interpreter uses the Java
reflection interface to find the actual methods and thus
assumes that the correct names and bindings are generated by
the caller. As an example, the local and server implementa-
tions for findCategory are shown in Figure 6.

Interfaces in the outerface have to be handled as special cases.
These will have implementations in the client, but will not in
general have implementations in the server. Moreover, the
implementation will define its own matching interface and will
expect to receive a class that implements this interface. To
handle this case, our system generates a stub class that imple-
ments the interface defined by the implementation and is avail-
able to and included in the implementation. This stub class is
specialized according to the type of implementation. For a
local implementation we create a bridge class that maps the
calls from the implementation interface to the outerface one. A
remote implementation provides a more sophisticated class
that translates the callbacks into SOAP calls that will be
passed back to the calling object.

package edu.brown.cs.webview.taiga.WebClassify;

public final class Classify implements edu.brown.cs.taiga.base.TaigaObject {

private static java.util.Map object_map = new java.util.HashMap();
private _TaigaImplements base_object;

public static Classify taigaGet(Object o) {
if (o == null) return null;
if (o instanceof Classify) return (Classify) o;
Classify x = (Classify) object_map.get(o);
if (x == null) {

x = new Classify(((_TaigaImplements) o));
object_map.put(o,x);

}
return x;

}

public java.lang.Object taigaGetImplObject() { return base_object; }

private Classify(_TaigaImplements base) { base_object = base; }

public Object getBaseObject() { return base_object; }

static public java.lang.String findCategory(java.lang.String url) {
for (; ;) {

Object s = TaigaBase.setupSecurityPolicy();
if (TaigaBase.static_object_Classify == null)

throw new java.lang.Error("Binding failed for
try {

return TaigaBase.static_object_Classify.findCategory(url);
}
catch (edu.brown.cs.taiga.base.TaigaLostBinding _e) {

TaigaBase.static_object_Classify = null;
TaigaBase.rebind();

}
catch (java.lang.Exception _e) {

throw new java.lang.Error(_e);
}
 finally {

TaigaBase.resetSecurityPolicy(s);
}

}
}

public interface _TaigaImplements {
java.lang.String findCategory(java.lang.String url)

throws edu.brown.cs.taiga.base.TaigaLostBinding;
} //end of subinterface _TaigaImplements

Figure 5. Excerpts from code generated from an outerface

definition.

Thrown exceptions are handled in the mapping functions.
Local mappings trap the implementation exception and throw a
corresponding outerface exception. Remote exceptions are a
bit more complex. These generate aTaigaException object
with additional information about the implementation excep-
tion. The mapping code catches aTaigaException and then
checks for the appropriate implementation exception names
and maps them to outerface exceptions.

Interface classes or structures in the outerface are handled by
having the implementation create an implementation version
of the structure either from a corresponding SOAP parameter
or directly from the client object.

The overhead imposed by this strategy dependent on the type
of binding. When the component is bound as a imported
library, the overhead is two levels of indirection on each call to
the component. The first is to the outerface code and the sec-
ond is to the implementation interface. Neither of these do any
real computation. If the component call does any work at all,
this overhead will not be noticed. If the component is remote,
the overhead is one indirect call and then the cost of packing
and unpacking the arguments in SOAP (or whatever other
transport mechanism is used) format. Since this latter cost
needs to be incurred anyway for a remote component, the addi-
tional cost of using TAIGA is negligible.

4.3 The TAIGA Kernel
The second element of TAIGA is the kernel. The kernel pro-
vides services on the current machine and uses a JXTA-based
peer-to-peer backbone to access and share global services.

The first service that the kernel provides is global lookup and
sharing of outerfaces, implementations, and implementation
binding information. The code for an outerface or implementa-
tion is generated when the user registers that component with
TAIGA. At this point, the kernel also generates an internal
description of the component and assigns the component a ver-
sion number. Where possible, implementations are combined
into jar files or shared libraries that cannot later be changed.

Each kernel maintains a local repository for known outerfaces
and implementations. Information requests for a particular out-
erface or implementation, with or without a specific version
number, can be broadcast and the results cached throughout
the peer-to-peer backbone. Similarly, requests for implementa-
tions of a particular interface can be broadcast. The kernel also

keeps a cache of known acceptable outerface-implementation
bindings to avoid having to rerun the test cases all the time.

Next the kernel provides information about and remote access
to servers that implement particular interfaces which are run-
ning on the local machine. A remote host can query where the
service is running through the backbone This mechanism also
has the ability to run implementations on multiple nodes in a
grid configuration.

The kernel also provides access to global files. Each node can
define a set of directories that will be exported under a global
name. This information is shared across the peer-to-peer back-
bone. If a user attempts to open a global file, the local kernel
will find a node that supports that file system and establish a
connection with its local file manager. This connection can
then be used to support the basic file I/O operations. Finally,
the kernel provides an implementation of Linda-like
tuplespaces across the peer-to-peer backbone. These are imple-
mented as a TAIGA outerface with a standard implementation.

4.4 The TAIGA Core Library and Object
Model

The third element is the TAIGA core library. This is a set of
routines that is automatically bound into any Java application
that uses an outerface or other TAIGA features.

This library serves several functions. First, it provides a simple
Java interface to all the services offered by the kernel. It pro-
vides methods to find outerfaces, implementations, and ser-
vices. It provides implementations ofInputStream and
OutputStream that access global files.

Second, the library handles the dynamic binding and rebinding
of outerfaces to implementations. The first time an outerface is
used, the system queries the kernel bindings to find the most
appropriate implementation. If needed, it asks the kernel to
download the appropriate jar file containing the implementa-
tion bindings. Finally, it uses a class loader to add that jar file
to the application and sets up the internal bindings to use the
loaded classes. If the outerface fails due to a bad connection or
other detectable error and the outerface is marked as rebind-
able, then the library asks the kernel for an alternative imple-
mentation, gets the appropriate jar files, and then replaces the
original binding with the new binding.

Finally, the library provides support for remote objects and
SOAP calls. To provide a consistent programming model and
to achieve our goal of making Internet-scale applications easy
to code, we needed to provide an object and type model that
provides natural support for remote objects. In particular, our
model ensures:

• An object received by process A that originated in process
B is the same regardless of the way that the object was
passed from B to A (even if it goes through another pro-
cess C).

• An object passed from A back to A corresponds to the
original object.

• An object passed to process A will have its proper type if
A knows that type.

• Types for remote objects obey global namespace conven-
tions.

• Objects passed from an outerface to an implementation
through a binding will have the implementation type.

public java.lang.String findCategory(java.lang.String _a_0)
throws edu.brown.cs.taiga.base.TaigaLostBinding {
edu.brown.cs.taiga.base.TaigaMessage m = TAIGA_setupMessage(

"edu.brown.cs.webview.classify.ClassifyXml.findCategory","java.lang.String");
m.addStringParameter("_a_0",_a_0);
try {

Object o = TAIGA_sendMessage(m,java.lang.String.class);
return (java.lang.String) o;

}
catch (edu.brown.cs.taiga.base.TaigaException _e) {

System.err.println("STUB: Error: " + _e.getMessage());
throw new java.lang.Error(_e.getMessage());

}
}

public java.lang.String findCategory(java.lang.String _a_0) {
java.lang.String rslt = edu.brown.cs.webview.classify.

ClassifyXml.findCategory(_a_0);
return rslt;

}

Figure 6. Implementation stubs for remote and local

implementations.

• Collections of objects are supported.

• All types passed remotely act as if they were passed
locally; the application is not be able to determine, using
standard means, whether the implementation is local,
remote, a web service, or a grid node.

There are several cases that the library handles. First, the
implementation can be a web service that uses SOAP calls and
is completely out of our control. Such services use a limited set
of parameter types, all passed by value, which we generate cor-
rectly as part of the implementation mapping. The more inter-
esting case occurs when the implementation is a service
defined as a set of Java classes. Here the implementation is
generated by building a jar file of all the relevant Java files and
including in that jar file our own SOAP-based interface to
receive calls. In this case we let objects be passed by reference
between the client and the implementation. These then become
remote objects.

Objects that are or could be remote are represented by the class
TaigaStub or its subclasses. (All classes generated for remote
bindings inherit from this class.) This class contains four
pieces of information about the object. First, it contains a
remote id. This is a string that uniquely identifies the object
and provides information about the server or process that holds
the original object. Second, it contains a connection structure
containing the communications channel to the original object.
This is needed if calls are made on the object and it is recon-
structed from the remote id if not previously known. Third, it
contains the type name of the original object. Because remote
objects must have types that are defined in a global namespace,
this should uniquely identify the object type. Finally, it con-
tains information about the implementation if the object is
derived from an outerface class. This includes the name of the
implementation type both locally and remotely and the remote
id of the implementation object.

Managing remote objects is done by two different routines.
The first constructs a SOAP parameter for a remote object,
essentially creating the wire representation of the object. This
includes a flag indicating the object is remote, the remote id of
the object, the name of the source type, and information about
the implementation. The second routine is given this informa-
tion and the desired type and creates an appropriate remote
object.

Before creating a wire representation of an object, the binding
routine has to determine which object to send. Normally it just
sends the object passed in. However, if the object being passed
is an outerface object and the receiver expects an object of the
corresponding implementation type, then the routine will actu-
ally send the implementation object associated with the outer-
face object rather than the outerface object itself.

The routine to pass an object to a remote server first checks if
the object is a standard one within the SOAP framework (e.g.
String or Integer). If so, it uses standard SOAP conventions to
pass the object by value. Next it checks if the object is declared
to be passed by value. If so, it creates an appropriate SOAP
structure object and passes it that way. Otherwise, it checks if
the object being passed is derived from aTaigaStub. This can
either indicate that is already a remote object or it is imple-
mentation object for a remote server. In either case, it passes
the information associated with the stub in the SOAP call.

If none of these cases holds, the system next checks if the
object is derived from an outerface class. If so, it find the asso-
ciated implementation object and builds an implementation

string to match it; otherwise the implementation string is left
empty. Next the system finds the existing remote id, or, if this
is the first time the object is used remotely, creates a new
remote id for the object. The resultant information is then
passed in the SOAP call.

This scheme allows any object to be passed remotely, pre-
serves the properties of remote objects even if the receiver
doesn’t know the types involved, and preserves information
about implementations for outerface objects.

Processing also needs to be done to convert the SOAP wire
representation into an object within the receiver. The library
routine uses both the SOAP representation that is being passed
and the expected type of object. The latter is available both for
calls since the binding routine fully identifies the routine being
called and for return values where the binding routine knows
the resultant type.

This routine first checks if the remote id of the object corre-
sponds to a known local object. If so, the local object is used.
Next it checks if the remote id has been used before for a
remote object. If so, it returns the same object.

If neither of these cases holds, then it looks at the type name of
the object being passed and uses reflection to see if this class is
known to the receiver. If so, it looks at the expected type of the
parameter. If this is a Java interface, then it replaces it with the
actual type. If the received type is an instance ofTaigaStub the
routine similarly replaces the expected type with the actual
type. Finally, if the received type is an outerface class and the
object has implementation information and the implementation
matches the implementation associated with the outerface,
then the framework will find the unique outerface object asso-
ciated with the implementation and will return this, building a
new such object if necessary.

In any case, the system next checks whether the passed in type
and the desired type match and are both stub types. If so, it
builds a new instance of the desired type using the stub infor-
mation passed in. Otherwise, it creates a new stub object of a
generic stub type again using the information passed in. In
either case it associates the remote id with the new stub object.

This mechanism is sufficient to ensure that objects passed to
the implementation have the type that the implementation
expects and that objects can be passed through multiple servers
and still be correct.

5. STATUS AND FUTURE WORK
This paper has outlined a component model and its implemen-
tation suitable for Internet-scale programming based on the
merger of web services, grid computing, peer-to-peer comput-
ing, and the open source movement. The underlying frame-
work uses a peer-to-peer backbone to support a global registry
of independent outerfaces and implementations and does
dynamic binding between the two, guaranteeing that an imple-
mentation embodies the intent of the interface.

The component model allows the independent development of
outerfaces and implementations while preserving type consis-
tency, a standard programming model, and the use of existing
components. Its novel contribution is the inclusion of the
semantics required of an implementation as part of the inter-
face. Semantics here is taken broadly to include functionality,
security, privacy, economics, and recovery. The practicality
and usability of this model is demonstrated by the TAIGA
implementation that provides appropriate global services and

defines a suitable type model for remote objects that is consis-
tent with the component model and works for Internet-scale
programming.

We are continuing to work on extending both the component
model and the underlying framework embodied in TAIGA. In
addition we are currently working on additional applications
that illustrate its potential and test its capabilities. We are also
working on some of the additional enhancements that will be
needed to simplify Internet-scale programming such as auto-
matic and invisible transactions.

Acknowledgements. This work was done with support from
the National Science Foundation through grants CCR9988141
and CCR0086057. Margaret Benthall helped with the JXTA
kernel.

6. REFERENCES
1. Sudhir Ahuja, Nicholas Carriero, and David Gelernter, “Linda

and friends,”IEEE Computer Vol. 19(8) pp. 26-34 (August
1986).

2. Mike Barnett and Wolfram Schulte, “Spying on components: a
runtime verification technique,”Workshop on Specification
and Verification of Component-Based Systems, (October
2001).

3. Mike Barnett and Wolfram Schulte, “The ABCs of specifica-
tion: AsmL, behavior, and components,”Informatica Vol.
25(4)(November 2001).

4. Antonia Bertolino and Andrea Polini, “A framework for com-
ponent deployment testing,”Proc 25th ICSE, pp. 221-231
(May 2003).

5. Ana Cavalli, Bruno Defude, Christian Rinderknecht, and
Fatiha Zaidi, “A service-component testing method and a
suitable CORBA architecture,”Proc 6th IEEE Symp. on
Computers and Communications, (2001).

6. Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lan-
ham, and Scott Shenker, “Making Gnutella-like P2P systems
scalable,”Proc. ACM SIGCOMM 2003, (Aug 2003).

7. World Wide Web Consortium, “The platform for privacy pref-
erences (P3P) specification,” http://www.w3c.org/TR/P3P
(2002).

8. Scott Draves, “Electric Sheep,”http://electricsheep.org, ().
9. Eric Freeman, Susanne Hupfer, and Ken Arnold,Javaspaces

Principles, Patterns, and Practice, Addison-Wesley (1999).

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides,Design Patterns, Addison-Wesley (1995).

11. A. Ganek and T. Corbi, “The dawning of the autonomic com-
puting era,”IBM Systems Journal Vol. 42(1) pp. 5-18 (2002).

12. L. Gong, “JXTA: a network programming environment,”
IEEE Internet Computing Vol. 5 pp. 88-95 (2001).

13. J. V. Guttag, J. J. Horning, and J. M. Wing, “The Larch family
of specification languages,”IEEE Software Vol. 2(5) pp. 24-
36 (March 1985).

14. Min-Yen Kan, “Web page classification without the web
page,”Proc 13th WWW Conference, (2004).

15. International Business Machines, Inc., “The enterprise privacy
authorization language (EPAL) specification,”
http://www.zurich.ibm.com/security/enterprise-pri-
vacy/epal/Specification (2003).

16. Nenad Medvidovic, “On the role of middleware in architec-
ture-based software development,”SEKE ’02, pp. 299-306
(July 2002).

17. Bertrand Meyer,Object-Oriented Software Construction,
Prentice-Hall (1988).

18. Bertrand Meyer, “The grand challenge of trusted compo-
nents,”Proc. 25th ICSE, pp. 660-667 (May 2003).

19. Sun Microsystems, “The Jini Architechture Specification,”
http://www.sun.com/software/jini/specs/index.xml, (June
2003).

20. Johann Oberleitner, Thomas Gschwind, and Mehdi Jazayeri,
“The Vienna component framework: enabling composition
across component models,”Proc. 25th ICSE, pp. 25-35 (May
2003).

21. Ran Rinat and Scott Smith, “Modular Internet programming
with cells,” Proc. ECOOP 2002, Springer-Verlag LCNS
2374, (2002).

22. Ashish Shah and Dennis Kafura, “Symphony: a Java-based
composition and maniuplation framework for distributed leg-
acy resources,”Proc. International Symposium on Software
Engineering for Parallel and Distributed Systems, pp. 2-12
(May 1999).

23. Clemens Szyperski, “Component technology - what, where,
and how?,”Proc 25th ICSE, pp. 684-693 (May 2003).

24. J. B. Wordsworth,Software Development with Z, Addison-
Wesley (1992).

25. P. Wyckoff, “T Spaces,”IBM Systems Journal Vol.
37(3)(1998).

