
Design Issues In Java and C++

Scott M. Lewandowski
scl@cs.brown.edu

Abstract

This paper analyzes two of today’s most popular object-oriented languages with an emphasis
on fundamental design differences between them and how these design decisions affect a
programmer. Specific issues addressed include class and function friendliness, operator
overloading, memory management, program documentation, array manipulation, accuracy
of the object model, preprocessing, machine independence and portability. After an analysis
of these issues, the author relates the differences between the languages to the suitability of
each language for various programming tasks, from educational settings to real-time
systems.

2

Design Issues in Java and C++

1. Introduction

Despite the hundreds of programming languages available to programmers on all

platforms, two languages currently dominate the market for serious software development tools.

Although they cannot compete with specialized languages that have been designed from the

ground up to best meet the needs of specialized application programming, they clearly provide the

best general solution language available today. The two languages are C++, Bjarne Stroustrop’s

widely accepted and until recently uncontested object oriented version of C, and Sun

Microsystem’s Java, the hottest trend in the computer industry which has been touted as the

dominant object-oriented language of the future.

1.1 C++: The DeFacto Standard

C++ evolved as a result of the need for a language providing the efficiency and flexibility

of C and the tools for organizing, structuring, and maintaining large programs that Simula

offered.1 In particular, Stroustrop was looking to develop a language providing for classes, class

hierarchies, some degree of concurrency, and static type checking. He also set out to make the

language generate compiled code that could be easily linked to code generated in other languages,

perform similarly to BCPL, and be highly portable.2 In large part due to his upbringing,

Stroustrop designed C++ to solve programming problems in the way in which the programmer

felt most comfortable; that is, C++ inherently supports a myriad of programming styles and does

not lock the programmer into doing things “the right way” as defined by one individual.

1.2 Java: Improving on Success?

The birth of Java reveals a different story. Despite the widespread acceptance, availability,

and use of C++, engineers at Sun Microsystems discovered that despite its strengths, C++ was not

perfect for every programming task. The astounding rate of increase of the availability and use of

the Internet coupled with the “complexities” of C++ indicated a need for a fresh new language.3

With this need recognized, Sun allocated $5 million in additional funding to get Java, touted as an

object-oriented Internet programming language, ready for market. Java emerged just over one

year later with Sun billing it as “...C++ slightly simplified, and with libraries convenient for the

Internet environment” .4 Just as Stroustrop had primary design goals when crafting C++, the

3

engineers at Sun had some goals. Of course, their goals were somewhat more substantial since

many of the basic problems involved in the design of a C-like object-oriented language had already

been solved by Stroustrop. The first of the goals was portability. Since Java was destined for use

on the Internet where a wide variety of platforms are used, this was very important to its success.

Second, it was to be architecture neutral; that is, the binary code that is generated by a Java

compiler will run on any platform, using any microprocessor and any operating system, without

modification of any kind.5 Performance was also viewed as a critical issue, which necessitated the

inclusion of support for threads. Due to the intended marketing strategy for Java (presenting it as

an Internet language), security and robustness was also very important. In addition to these goals,

the engineers also sought to keep the language familiar, simple, and object-oriented.6

1.3 Importance of Design Decisions

Seeing how the designers of Java used C++ as a base on which to build, it is not surprising

that the languages are very similar. At first glance, it is very easy to mistake Java code for C++

code, or vice versa. The syntax is almost identical. However, it is the more fundamental design

decisions that the creators of a language make that truly define a language. It is from these design

issues that a language’s strengths, limitations, and suitability for application to real-world problems

is defined. Most of the basic language primitives from C++ have been retained in Java.* However,

the focus of this paper is to deal with more “philosophical” decisions that affect the languages.

After discussing some of the more significant of such issues, the suitability of each language for a

variety of tasks can be accurately evaluated.

2. Design Decisions

2.1 Friendliness

One significant difference between the two languages is the mechanism through which one

class can gain direct access to another class’ private or protected methods and instance variables.

Although many object-oriented purists feel that the inclusion of any such mechanism breaks down

the object model significantly by allowing access to what has been modeled by the programmer as

private implementational details, many real-world programming situations would be nearly

impossible to effectively implement without this capability. The alternative would be the use of

* Notably absent, however, is the “goto” command.

4

cumbersome and inefficient assessor and mutator functions (the stereotypical “set/get” model).

Furthermore, there are some models that cannot be accurately or realistically structured without

this capability. For example, if an object-oriented model of a computer were to be constructed, it

might contain classes for the microprocessor, floppy drive, memory, and input/output unit. The

only one of these components that can directly interface with the memory is the microprocessor,

so it might make sense (not to mention being more efficient) to allow the microprocessor to be a

“friend” of the memory so that it can directly manipulate memory contents as it can in real life.

Another situation that many programmers feels warrants the use of friendliness is when

performance is critical. An example of such an application might be a vector and matrix math

package which will be used extensively by a graphics manipulation application. The ability of a

matrix to directly read the components of a vector will significantly improve execution speed,

albeit at the expense of rigid object-orientation. Finally, the use of friend concepts can make a

program significantly easier to read, understand, and maintain.

C++ allows for such inter-class interaction via the use of friend functions and friend

classes. A class can include the declaration for a method of another class proceeded by the word

friend. The use of this keyword allows a class to expressly grant permission of access to a single

function of another class. More than one method could be declared “friend” , but for obvious

stylistic reasons, only those methods requiring friend status should be granted it. For situations in

which an entire class should be friendly with another class, the second class could declare itself a

friend of the first with the linefriend class XXX. It is very interesting to note that this latter form

(friend classes) was the only form of friendliness supported by the initial implementation of C++.

Stroustrop later decided to allow friend functions since it was found to be convenient, especially

for global functions (which very often serve as overloaded operator functions), and because it

better maintained the object model.7

5

Java adopts a different approach to providing friendliness. Java classes are written in

packages, which are simply code files that can contain one or more class declarations. Classes in

the same package default to be friendly with each other. There is currently no way for classes in

different packages to be friendly in any way, nor is there a way for a class to only be friendly to an

individual method of another class. This approach leads to several problems. Most importantly is

the inability for classes in different packages to be friendly. For simple application systems this

restriction may not be a significant problem. In a large system, especially one being worked on by

several programmers, this becomes a large problem as classes are artificially contrived to go

together in a single package just to achieve the necessary level of modeling, or more likely,

performance. Packages for complex classes tend to be rather unwieldy to begin with; adding

another class to it compounds the problem.

The designers of both languages acknowledged the need for friendly entities to some

degree or another. The approach taken by Stroustrop in the design of C++ is clearly more flexible

than that offered by Java; as a matter of fact, C++’s handling of the situation is a superset of Java’s

abilities, since it can have friendly classes. The rationale behind Sun’s decision has to be viewed as

questionable, at best. Why should classes included in the same package inherently be friendly? It

is possible to override this behavior, but is this not the very breakdown in the object model that the

class StorageObject {
public:

StorageObject();
~StorageObject();
int getYValue();
void setYValue();

private:
int x_,y_;
friend Manipulator::incrementX(int value);

}

class Manipulator {
public:

Manipulator();
~Manipulator();
void incrementX(int value);
void incrementY(int value);

}

Figure 1: An example of friend functions in C++. The objectStorageObject has declared the
incrementX() method ofManipulator to be a friend function. This means that
Manipulator can directly accessx_ to increment it, butincrementY() must use the
set/get methods ofStorageObject to perform the same function.

6

designers of Java set out to eliminate? It is ironic that the engineers at Sun made the very same

design decision that Stroustrop realized was flawed after his initial implementation. Although this

shortcoming of Java is significant in its own right, since it is possible to work around it the

problem is not large. Similarly, object-oriented purists programming in C++ can simply chose to

ignore the powerful capabilities that properly used friend functions afford a programmer in favor

of more traditional assessor and mutator methods.

2.2 Operator Overloading

When Stroustrop wrote the design specification for C++, he included the capability for

operator overloading despite his initial fears that the drawbacks of this feature would outweigh the

benefits. If it would be difficult to implement and nearly impossible to teach and define precisely

as operator overloading was reputed to be, Stroustrop did not feel that he had the resources to

provide overloading. Other detractors claimed that code using overloaded operators was inherently

inefficient and more difficult to read and understand. If these claims were found to be true, then

C++ would be better off without the feature than with it. On the other hand, if these concerns

could be addressed, the inclusion of a facility for operator overloading could be of great utility to

programmers. Many real-world problems could be elegantly solved. With operator overloading

available, intuitive manipulation of complex numbers, matrixes, multi-dimensional arrays, strings,

and range-checked arrays could occur; without operator overloading, solutions were possible, but

they would be cumbersome and of complex syntax. Although it was certainly acknowledged that

it was possible to write positively horrifying code through the misuse of operator overloading,

Stroustrop preferred to focus on “how a feature can be used well” rather than “how it can be

misused” .8 This will be seen as contrary to the strategy adopted by the designers of Java.

There is very little to say about Java as far as operator overloading: it simply is not

supported in any way, shape, or form. Many reasons for this have been suggested, foremost

amongst them that it can potentially lead to poorly written code and the generation of an inherently

inefficient executable.

Overloading primitive operators so that they work with classes leads to elegant code when

used correctly. There is certainly a “danger” , however, in that programmers can redefine operators

to do whatever they desire. However, this is an argument that can be leveled against almost any

component of a flexible object oriented programming language. It is “dangerous” if a class

designer foolishly names the “multiply” method for their matrix class “add” since it will lead to

confusion, and misapplication of the method. Like method names, operator overloading works,

7

but only if the programmer chooses to follow reasonable and somewhat standardized conventions.

Diehard advocators of Java still maintain that it is preferable and “more intuitive” to use

descriptive method names for operations that manipulate objects, but in practice this is very

tedious.9

The author maintains that operator overloading is an essential part of a robust

programming language. Its importance is actually increased when classes are to be used by

multiple programmers. This is because of the intuitiveness of working with representations of

certain data types in conjunction with standard C++ operators. Since it does not provide this

facility, Java classes will never reach the level of transparency to the programmer that is possible to

achieve with C++ classes. A mathematician will not be able to sit down with a vector math

package in Java and just infer the operators. How can it be argued that it is more convenient or

intuitive to writeA.Add(B) to add two matrices than to writeA + B? On the other hand, there is

some merit to the argument that operator overloading can lead to perverse implementations of

methods. As noted, however, this is inherent with nearly every language technology. More

significant claims can be made in the area of the efficiency and performance of the finished code.

The inclusion of operator overloading in C++ does not mandate its use. If a programmer sees that

performance suffers such that his application is no longer viable when operators are overloaded, he

can structure his class so that all methods are accomplished via traditional method calls. If

robustness and understandability are more important, then overloading may be the perfect solution.

The issue of operator overloading has been widely debated since its first appearance in C++

years ago and it looks like this debate will continue. In retrospect, Stroustrop feels that operator

overloading has indeed been a major asset to the language, providing for consistent interfaces due

to overloaded mathematical operators, simple subscripting via the use of[] , standardized

application through the use of(), predictable assignment accomplished by overloading= , and

standardized input/output using<< and >> .10

2.3 Memory Management

Perhaps the most widely discussed difference between Java and C++ is the divergent

memory management models that each language has adopted. The issue is so vast that it is

suitable for a significant research paper of its very own. Some of the many issues affected by this

one paramount difference between the two languages include array manipulation, garbage

collection, efficiency, accountability, flexibility, speed of execution, and stability.

8

The C++ model of memory management is significantly more flexible than the scheme

offered by Java. It relies on the use of thenew() anddelete() operators to allocate and free

memory. This setup, while leaving quite a bit of control to the user, is not sufficient at all times.

There are instances when a more finely-grained system of memory management is required. A

typical example of such an application is a complex data structure such as a tree or a linked list.

Such data structures create (and potentially delete) hundreds or perhaps even thousands of small

objects throughout their existence. If a general purpose allocator is used, the overhead from the

allocation and deallocation operations becomes a significant factor in the speed of program

execution. Furthermore, memory fragmentation can easily occur, leading to reduced performance

and low-memory situations. Another variety of system that demands fine control over the

allocation of memory are real-time systems. It is frequent in such applications that memory

requirements are predictable, but the acquisition of memory must be likewise predictable to ensure

the appropriate degree of performance can be realized. Although rare, there are also cases where

hardware or other system requirement demanded that an object reside at a specific address in

memory.11

Objects can be placed arbitrarily in memory to accommodate hardware requirements for

specific application. This undoubtedly destroys the portability of some code, but permits such

things as allocating memory in the shared (as opposed to the private) memory of a multi-processor

system. This mechanism allows a rich means of general resource management that provides for

specialized memory handling semantics.12 A programmer using a class providing for speed

optimized memory allocation and deallocation, for example, need not even be aware of the

complex memory handling that is being performed, since operatornew() can be overloaded

transparently.

The most serious limitations of C++’s memory management facilities can be observed

when dealing with deallocation and destructors. C++ does not allow thedelete() operator to be

overloaded. This functionality, while having the potential to be incredibly dangerous and

destructive when used improperly, would make some issues of memory management more

robust and complete. For example, the current revision of C++ does not allow for a container

object to do all of the memory management for all objects that it contains. The standard C++

destruction techniques must be used.

In low memory situations, C++ represents a large improvement over its predecessors. C

requires programmers to check for memory exhaustion after each and every allocation request.

9

Programmers choosing to follow this unenforced “rule” noticed significant drops in the

performance of their applications, while programmers ignoring the advice risked crashing the

entire system due to lack of memory. Stroustrop set out to solve both of these problems in C++.

The user is not expected to check for memory exhaustion, so a performance drop is not incurred.

Yet, control is returned to the user should memory allocation fail during a library call. This is

accomplished by having the constructor not execute if operatornew() returns zero (indicating

failure). C++ programmer also have the option of including anew_handler for their application.

This is a function which is guaranteed to be called whennew() can’ t find enough memory to

complete. Typically, programmers will use this function to either find more resources or to report

an error to the user and exit the program gracefully.13

With all of these memory issues addressed, one of the most fundamental questions

remains: what should be done about garbage collection? Stroustrop “deliberately designed C++

not to rely on automatic garbage collection” because he feared “very significant space and time

overheads” .14 He also cited that garbage collection would make C++ unsuitable for many of the

low-level tasks that it was intended to be able to handle with ease. Stroustrop did leave the option

of some form of automated memory management tool available to the user. A programmer could

implement his own automatic memory management scheme. It is also possible (and some would

say likely) that C++ will receive a comprehensive yet optional automatic garbage collection scheme

within the next few years. Several implementations of C++ already offer this extended

functionality.

Failed
Allocation
Request

Exception
Handler

Can I Free
Some

Memory?

Do It, and Try
Allocating

Memory Again

Do Housekeeping
and Inform User
of the Problem

Yes

No

Figure 2: A typical sequence of events when appropriate memory cannot be allocated by C++.
The example shows return being passed to an exception handler, which frees
memory if possible, then returns control so the allocation can be tried again. When
no more memory can be freed, the exception handler does the necessary
housekeeping to prevent data loss and informs the user of any effects of the memory
shortage.

10

Java’s approach to memory management is very different from that offered by C++.

While C++’s operatornew() exists in Java, operatordelete() is no longer present. When a

programmer is done with an object and wants to delete it, he does nothing. Java has an automatic

garbage collector that handles the reclamation of memory for the user.15

The implementation ofnew found in Java is a true operator, as it is in C++. In Java, this

has a very serious implication: since operators cannot be overloaded,new cannot be redefined. To

the application programmer this means one less thing to potentially worry about, but it also

represents a total loss of control and flexibility. Obviously, the lack of adelete operator altogether

severely limits any possibilities for more efficient or elegant deallocation schemes.

Java can respond to low memory situations as well, if not better, than C++ can. When

memory is found to be unavailable, Java checks to see if any objects have zero references. If such

objects exist, they are deleted immediately. If a complete pruning of all eligible objects does not

free up enough memory for the task at hand, an exception is thrown like in C++. At this point,

however, the programmer’s only recourse is to give an error message and exit gracefully; the extra

options available to a C++ programmer have already been exhausted by the Java run-time system

at this point.

As mentioned, Java has an automatic garbage collection scheme. The system can be

turned off, but there is no alternative method of reclaiming memory if this is done. Although it

does alleviate some of the performance concerns associated with automatic garbage collection, it is

not a viable solution for a large system that will create and release many objects since memory will

soon be exhausted. Java garbage collection is accomplished via a “mark and sweep” algorithm.

This algorithm calls for following all known links recursively and “marking” all found objects.

All non-marked objects can then be disposed of, and memory can be compacted. This algorithm

comes with potentially large costs. In particular, it means that at unpredictable times, a very large

amount of processing will suddenly start-up. This effect in Java is somewhat minimized by multi-

Failed
Allocation
Request

Exception
Handler

Can I Free
Some

Memory?

Do Housekeeping
and Inform User
of the Problem

Figure 3: A typical sequence of events when appropriate memory cannot be allocated by Java.
The garbage collector has already attempted to free memory, so the only course of
action for the exception handler is to perform housekeeping and alert the user to the
problem.

11

threading, but some run-time cost is still carried.16 Since traditional memory management

schemes also mandate the eventual disposal of memory, one may wonder why automatic garbage

collection is slower since it is performing the same basic operation. The answer lies in the fact that

the Java garbage collector must actively seek out reclaimable memory, whereas a C++ forces the

programmer to specify where it can be found. This mandate of C++ also leads to predictable

delays when objects are deallocated.

If Java is to stay with automatic garbage collection, the only other viable technology would

be a reference counting scheme. In this scenario, the run-time engine maintains a list of the

number of references that have been requested for a given object in memory. When this count

falls to zero, the object is no longer in use. This has the distinct advantage of imposing a constant

overhead rather than plaguing the program with “random” bursts of CPU use. The need to deal

with circular references, however, adds great complexity to the system and can potentially slow it

down to an unacceptable level. With this important consideration in mind, it can be argued quite

easily that the engineers at Sun made a good decision to implement the mark and sweep algorithm.

Obviously such different memory management schemes have their advantages and

disadvantages. Thenew() operators provided in C++ and Java are nearly identical as far as

functionality in the basic case. The power and flexibility of C++ is clear though when it is realized

that Java does not allownew to be overridden, precluding sophisticated memory management

techniques critical to some applications. A nice feature of Java is automatic memory compression.

Although possible in C++, this would require a custom memory management scheme. The

algorithm used to do this in Java is of questionable efficiency, unfortunately. Although C++ does

not afford a programmer great flexibility in regard to deallocating memory, the mere fact that the

programmer can manually specify when to deallocate has many advantages, particularly in the

domains of real-time and high-performance systems. Java’s handling of out of memory

requirements is decidedly more robust than C++’s since it handles some of what a C++

programmer would need to manually implement. Once again, however, it is not as flexible. The

programmer could not create new resources with as much latitude as in C++ due to the restricted

new operator.

It is widely agreed on that automatic garbage collection reduces programming errors.

Although Stroustrop does appreciate the fact that garbage collection simplifies design and

minimizes programming errors, he remains convinced that if C++ featured automatic garbage

collection it would have been a failure.17 Java has a clear advantage over C++ as far as providing a

12

programming environment conducive to rapid prototyping and reliable code. Garbage collection

makes programming easier for programmers of all levels of ability, and has the potential to be

more reliable than user-supplied memory management systems. It removes the confusion as to

which object is responsible for the deletion of an object created by one object but passed as by

reference to another object. On the other hand, it creates many run-time problems in the form of

increased space and time requirements. Automatic garbage collection, particularly those systems

relying on a mark and sweep algorithm, also has the potential for interruptions that can disrupt

time-sensitive systems, such as complex GUIs , device drivers, operating system kernels, and

real-time systems. The unpredictability arising from automatic garbage collection makes

programming these tasks difficult. A great degree of freedom is also lost with automatic garbage

collection. An example might be a function call that creates a large data set, uses it, but then wants

to perform other activities. Since the function still has a reference to the data set, it cannot be

destroyed. This may not be a problem, but the situation could arise such that the function had

significant memory requirements and the data set might preclude the availability of the necessary

resources.

Even Sun Microsystem’s official literature denigrates automatic garbage collection to some

degree. They even go so far as to recommend that “You should design systems to be judicious in

the number of objects that they create.” It is also emphasized that memory leaks can occur if a

programmer is not careful to free up references when they are no longer truly needed.18

C++ is a capable receptor for an appropriate mechanism of automatic garbage collection.

Care must be taken that the selected algorithm does not interfere with primitive C++ functions.

Having optional garbage collection available would allow the programmer to make a decision

based on the needs of the application at hand. It should be noted, however, that Java has no viable

mechanism through which automatic garbage collection can be turned off for anything besides the

most basic and short-lived programs. Many applications use their own form of automatic garbage

collection. A substantial number of libraries offering this functionality already exist. The issue has

received so much attention as of late it can be expected that a rich set of garbage collection routines

will become publicly available, and it is also likely that an optional automatic garbage collection

scheme will be incorporated into the evolving C++ standard.

2.4 Pointers and Object References

Related to the issues of memory management just examined is the inclusion of pointers in

C++ but their notable absence in Java. All objects in Java are accessed by the programmer via

13

object references.19 C++ gains added functionality and flexibility over Java in many ways, two of

which are perhaps more significant than the rest. First, Java has no real mechanism through which

pass by reference can be accomplished. Objects are passed by value result, meaning that a local

copy is made in the called function, removing the distinction between call by value and call by

reference. Second, Java has no support for function pointers. Although much of the functionality

of function pointers can be derived through the clever use of virtual function and inheritance, some

applications, notably callbacks involving GUIs and parsing functions, are much more difficult to

program in Java because of this.20 Obviously, the need for Java to make a copy of the object that

has been passed has an associated performance penalty. Although it could be argued (as with

almost every other performance difference between Java and C++) that this penalty is small, the

sum of the small penalties incurred, particularly when repeated operations are encountered, can be

quite significant. The elegance and expressiveness of pointers unfortunately comes with a very

high price. This price is the numerous pointer-related bugs found in C and C++ code generated by

programmers of all levels. The risk of dangling pointers, memory leaks, array under and over-

runs, and failure to perform appropriate dereferencing has plagued programmers for years. Java’s

removal of pointers solves these problems.

2.5 Arrays

The handling of arrays in the two languages is very different. C++ does not include a built-

in array object as Java does. When memory for an array is allocated in C++, the starting location

of the first element in memory is remembered, and contiguous space sufficient to store all

elements of the array is reserved. When a specific array element is requested, the value is just

taken to be the number of bytes required to represent the object starting from the memory location

corresponding to the first memory location in the array plus the number of bytes required to hold

the intermediate elements. Because of the nature of this system, it is very possible to read beyond

the end of an array, or to read memory preceding the array. Even more dangerous is the potential

to write to this unreserved memory, which could contain other program data, the executing

program itself, or even the operating system. This scheme is very fast and is quite flexible in that

it allows a programmer to setup a pointer to an element in an array and then set the pointer by

element relative to this initial element. For example, if a pointer P points to the third element in the

array, P++ will cause P to point to the beginning of the fourth element, regardless of the size of the

object that is pointed to by P.

14

Java treats arrays as first-class objects.21 The most significant ramification of this is run-

time bounds checking, which prevents programmers from reading or writing memory above or

below the allocated memory for the array. If such an error occurs, an exception is thrown and the

program can deal with the situation as appropriate. This also would allow for “fragmented”

arrays, although the current implementations of Java do not support them. The use of fragmented

arrays could potentially make better use of available memory by inserting individual elements into

small bits of free memory. C++ arrays could not support this due to the dependency of much of

the existing C++ code on physical memory layout. The fact that Java arrays are objects also leads

to the inclusion of such convenient features as a means to check the number of elements in an

array. In Java, multi-dimensional arrays are truly arrays of arrays, although after declaration, this

is transparent to the programmer.

The designers of Java missed a good opportunity to fix some one of the proverbial

shortcomings of C++ arrays. They did catch the major error (bounds checking), but they did not

“fix ” the indexing mechanism. All array indexes still start with zero, and end with size minus one.

A scheme more similar to Pascal, where the start and end identifiers could be anything (even

characters and negative numbers) would have introduced some degree of inefficiency, but would

have made programming much easier; a programmer could use array indexes that suited the task

at hand. Java’s mechanism for managing arrays is much more refined and safe. The flexibility

lost from C++ can be easily regained by creating wrapper classes around the standard Java array

object. The same could be said about C++, though. A programmer could (as many have already

done) write an array class that supports bounds checking in the same manner that Java does,

“fixes” the indexing problem, and for that matter do anything else seen fit. One thing that Java

could never regain, no matter how the wrapper was designed, is the speed advantage. The

overhead for bounds checking in Java is always present. A C++ the programmer has the option of

using a simple pre-written library function to derive all of the functionality of Java arrays if it is

desired, but a Java programmer has no way of gaining the advantage that C++ arrays clearly claim,

that of speed of execution.

2.6 Preprocessing and Header Files

Having made an educated choice as to which programming language to use, a programmer

is left to deal with several other language elements. One which certainly affects a programmer,

particularly in today’s group programming paradigm, is the presence or absence of a

preprocessing unit. C++ implementations contain preprocessing units that provide services such

15

as conditional compilation, inclusion of named files, and macro substitution.22 The least

commonly used of these is the macro expansion capability. This allows a programmer to make a

declaration in the form#define identifier token-string and have every subsequent instance of

identifier replaced bytoken-string. Although widely used, it is not the preferable way to

accomplish most programming goals, and is consequently not considered good style. Any

numeric substitutions would be better represented by constants, and any short functions should be

inlined functions, global in scope if absolutely necessary. The most common use for preprocessor

directives is to#include files. Nearly every C++ program keeps its class declarations in a file

separate from its method declarations. The preprocessor replaces the line containing the include

statement with the complete file contents. An advantage of this setup is the ability to completely

separate a class’ interface and its implementation. This is especially useful for commercial

libraries, where developers may want to ship header files that users can reference for

documentation and structural information, but that keeps the code itself secret. Programmers can

also split code into more manageable pieces. For example, each of several very long methods

could be its own file, which are then included in one “master file” . The use of the#include

directive to reference a class’ declaration is so much a part of C++ coding practice that many

newcomers to the language think that it is a requirement. Conditional compilation, a little used

feature of the language, is perhaps the most interesting of all preprocessor directives. In addition to

its typical use at the beginning of a header file to prevent multiple inclusion, conditional

compilation allows a programmer to maintain separate versions of software within the same file.

For example, a programmer writing a program for distribution on the Internet may wish to give

users a save-disabled demo version. He could enclose all blocks of code related to saving and

loading files with#ifndef demo_version ...#endif. With this done, a full version of the program

could be compiled per usual. If he wanted a demo version generated, he need only specify#define

demo_version at the beginning of the first file that the compiler is scheduled to examine. There are

other uses for the preprocessor in C++, but these are the primary applications.

16

Java has completely done away with the notion of preprocessing, and subsequently header

files. Macros are no longer possible, nor is conditional compilation. Sun’s Java whitepaper

suggests constants as an alternative to some macros and to#define, but offers no suggestion as to

how to replace the lost feature of conditional compilation. Inclusion of files is convenient for large

projects, but its absence does not limit possibilities. It does introduce one question, however: how

is one class to know of the existence of another class? In Java, this is accomplished with the

import command, which is essentially a way to tell the compiler to go examine the referenced class

so its methods are known.

With one exception, Java’s break from the preprocessor paradigm is wonderful. The

exception is the inability to keep an interface completely separate from code. This issue is

addressed to some degree through Java’s primitive (yet existent) documentation features. The

benefits of removing the preprocessor are many, though. No real functionality is lost by not

having macros, since as discussed above they can be replaced by constants or functions. In regard

to preprocessor macros, even Stroustrop warns “Don’ t use them if you don’ t have to” . He goes

on to cite that most macros demonstrate a flaw in the programmer, his program, or the

programming language and that many programming tools will lose functionality when subjected

to code laden with preprocessing directives.23 Conditional compilation, while sometimes useful, is

rarely implemented correctly, except in the case of preventing multiple inclusion of a header file.

Most usage of the conditional compilation capabilities of C++ was to account for different versions

of code necessary for different machines, a problem solved far more elegantly by Java. By

removing preprocessing, Java is made more context-free. With preprocessing removed, Java code

is considerably more readily read and understood, and consequently more readily re-used in a

/***
XFMath.H

Header File Declaring Matrix and Vector Operations
***/
#ifndef XFMATH_H
#define XFMATH_H

< HEADER FILE CONTENTS HERE >

#endif /* XFMATH_H */

Figure 4: Using preprocessor directives to prevent multiple inclusion of a header file.

17

faster and more simple manner.24 A programmer attempting to understand a large program in

Java has no need to sift through all of the header files that would be “required reading” in C++.

2.7 Automated Program Documentation

As mentioned, Java’s lack of header files means no documentation for classes in the form

of header files. Java does offer a dedicated language mechanism for program documentation,

whereas C++ has no such facility.

Java comments beginning with/** instead of the more traditional// or /* inherited from

C++ are picked up by javadoc, an automatic documentation generator. Based on the idea of literate

programming introduced by Donald Knuth, the javadoc utility parses the specially marked

comments, and formats the text contained within into a special set of HTML tags. A programmer

should include the version number, author, and necessary cross-references to other code, a

description of what is being commented (the class, instance variable, etc.) and any other pertinent

comments. HTML tags can be used within comments, which theoretically allows program

documentation to link to world-wide web sites and contain diagrams. The documentation

generated will show a chain of class inheritance and all of the public fields in a class. Although

many people consider this form of documentation difficult to work with since it requires a web

browser to read, this mechanism does always generate accurate and complete documentation.25

This automatic documentation tool is wonderful if used by the programmer. It can be

somewhat cumbersome, especially since everything must be formatted and tokenized very

carefully for readable documentation to be generated. But the features far outweigh the drawbacks.

Linking to other web pages is useful, and diagrams of data structures is a potentially useful tool.

Automatic generation of class hierarchies is also a nice feature. Perhaps most important is the fact

/**
 * A button which sets the message of a Text to "Bye!" when clicked on.
 *
 * @version Wed Aug 14 22:40:08 1996
 * @author dpm
 */

public class ByeButton extends GP.Components.Buttons.Push {

Figure 5: An example of a comment set-up for parsing by javadoc. This simple comment just
gives a description of the classByeButton and its author and version information. It
should be noted that the javadoc parser will automatically match the comment
describing the class with the class declaration.

18

that only public fields are displayed in the documentation; this is something that is impossible in

C++. Private fields can be documented by the simple addition of the meta-HTML tags defined by

Sun. The inclusion of this mechanism eclipses almost all of the lost functionality from not having

header files.

2.8 Portability and Machine Independence

When Stroustrop to designed C++, he had portability in mind as a fairly significant goal.26

However, Stroustrop’s notion of portability (which was certainly influenced by the time) was that

code that compiled on one system could be copied to another system and recompiled without

incident. This notion is almost taken for granted today. C++ meets this goal, except in cases

where hardware specific code is used, or when libraries available for one platform are not available

for another. For the most part, however, one version of a C++ program can be easily prepared for

distribution on multiple platforms.

One of the major design goals of the Java team was to provide a machine-independent and

portable language. The definition of portable suggested by Sun’s design team is much more

ambitious than Stroustrop’s was. To the Java design team, portability implied heterogeneous

systems, different window libraries, and different network features. Java not only provides

traditional portability, but it also offers identical functionality on multiple platforms. This is in

large part due to the fact that decisions normally left to a compiler designer are mandated by the

Java specification. Some of these issues include the number of bits dedicated to various data

types, the order of evaluation of expressions, and the inclusion of support for Unicode characters

permitting world-wide text storage. This notion of portability mandates that the same set of library

calls be available on all platforms.27 This idea is even more interesting when it is considered that

all of this can be done without recompiling any code. That is because the Java compiler generates

architecture neutral bytecodes that can be executed on any machine. This is currently accomplished

via a Java virtual machine implemented on various platforms, but microprocessors capable of

natively executing Java code are in design phases. The virtual machine, which is custom designed

to meet the specifications of the specific microprocessor at hand, translates the Java bytecodes and

then executes them.

19

C++’s level of portability is dwarfed by Java’s comprehensive treatment of the issue. Java

programs can be written and debugged once, and a single version can be shipped that will run on

any computer supporting a Java virtual machine. This is quite an advantage for a software

developer. Unfortunately, these benefits come with some tradeoff. In this case, speed is a major

area affected. By not allowing the compiler to take advantage of architectural design

characteristics, full speed of execution may never be realized on some platform. In addition, the

translation that must be performed by the virtual machine is not without performance penalty.

Although not as pronounced as more traditional interpreted languages, Java does suffer from the

same performance problems that plague languages such as BASIC. The need to keep all code

portable also precludes the use of machine-specific features and capabilities; all machines must

support something for it to become part of Java.

C++ will likely become more portable as the standard evolves, but not in the sense that

Java is portable. It will essentially be a more complete realization of Stroustrop’s original goal.

Machine independence will never be realized by a C++ standard even closely resembling the

currently evolving standard; so much of the standard is based on the fact that code need not be

machine independent that this would be a completely unrealistic goal.

2.9 Accuracy of the Object Model

A final issue for analysis is the degree of object-orientation achievable through each

language. Both support the standard object-oriented features such as classes, inheritance, virtual

functions, polymorphism, encapsulation, abstraction, etc. With this being the case, it is smaller

differences between the languages which set them apart in this domain. As a matter of fact, aside

from the issues raised in the discussion comparing the handling of friendship in the two languages,

their support for object-orientation is nearly identical. One could argue that Java better provides for

object-orientation by removing header files, allowing the programmer’s representation of an object

Java Code
Compiled Into

Bytecodes

Interpreted by
Virtual

Machine

Execution Using
the Processor’s
Instruction Set

Figure 6: The Java model of program execution. After a Java program is written by a
programmer, a compiler compiles it into machine-independent bytecodes. When
the program is executed, the virtual machine interprets these bytecodes and converts
them to instructions native to the processor being used at the time. These native
instructions are then executed.

20

to be one physical code unit, as a logical representation of an object would be. Java certainly

enforces a more strict adherence to object-oriented design principles by removing some of the

“loopholes” present in C++, but one could argue that the loopholes in C++ are minor and serve to

provide more accurate (although not necessarily more object-oriented) models than are possible in

Java. In this domain, the author would suggest that the two languages are equally capable.

3. Applications

Thus far, this paper has examined several of the most significant design decisions made by

Stroustrop and the team at Sun Microsystems. Since a programmer cannot choose bits and pieces

of each language to form the “ultimate” language, a decision must be made as to which language

to choose. This decision depends on the task at hand.

3.1 Internet Programming

Of little debate is that Java is the clear language of choice for writing Internet applications.

When developing for the Internet, a programmer has no idea what platform a user will be using;

yet there is the desire to make an application equally available to all users, with identical

functionality. Furthermore, the more transparent that this is, the more likely it is that an application

will survive. Java quite nicely fulfills these goals through its rich form of portability and its

machine independent code. The convenience and expressiveness of a language is irrelevant if the

product generated by the compiler is not available to users. As the only language meeting these

paramount goals, Java must be designated the language of choice. Inherent restrictions in C++

will prevent it from ever meeting these criteria.

3.2 Real-Time and Performance Critical Applications

Developers working on real-time and performance critical applications need a language that

makes as few sacrifices to speed as possible and gives them as much control as possible over all

phases of execution. C++ best meets these goals. The availability of a full suite of options for

inter-class friendliness serve to improve performance, albeit at the expense of program design.

Some performance penalty would be incurred by the programmer choosing to use overloaded

operators, but their presence in C++ does not mandate their use, and the performance when

handling a non-overloaded operator does not suffer. One of the most significant areas

differentiating the performance of the two systems is memory management. The fine level of

control afforded to a C++ programmer may well be necessary for a successful real-time or

21

performance critical application. In performance and real-time applications it is sometimes

required that objects be located in certain blocks of memory for maximum speed of execution to

be attained. This is possible in C++, but Java provides no facility for this since it would have

sacrificed the overriding goals of portability and neutrality. The option to delete objects no longer

needed when desired is also important. A C++ programmer can designate the optimal time for

objects to be destroyed, such as while waiting for a server response, or between time-critical tasks.

Because of this, predictable levels of code execution can be constructed. When programming in

Java, a programmer must account for the fact that garbage collection could start up in the middle of

a time-sensitive task. In applications truly striving for the ultimate in performance, the mere fact

that Java does automatic garbage collection, and hence relies on an algorithm to identify unused

memory instead of getting this information from the user, is a drawback, even if the

unpredictability of the operation is not of great significance. The automated mode of memory

management that is used by Java does reduce programming bugs and is certainly more

convenient. However, just as in a high performance automobile in which ride comfort is sacrificed

for speed, C++ sacrifices some of the convenience for sheer power. On a similar note, the option

to quickly pass a pointer to an object instead of generating a copy of the object has performance

advantages; in this way too, C++ has a clear speed advantage. Accessing arrays in Java has

already been shown to be more robust but less efficient. The added overhead from bounds

checking may be unacceptable for many performance-critical applications. The issue of

predictability also arises here, since the delay in bounds checking is not directly proportional to

array size. The availability, or lack thereof, of a preprocessing mechanism is of no real

performance concern. The few speed optimizing things that can be done through the use of the

preprocessor (namely inlined functions) can be done in other ways in both languages.

Java’s largest asset, its portability and architecture neutrality, turns out to be its biggest flaw

when looking at its suitability for performance-critical applications. C++ affords a programmer

many means through which to exploit the full power of the hardware available. The compiler

designer also has many ways of taking full advantage of the design attributes of the hardware at

hand to get maximum performance. In addition to removing much of the freedom and flexibility

from the programmer, Java also removes the freedom from the compiler designer by mandating

that standardized bytecodes are generated. The very means by which Java programs are run is

inefficient; the fact that the bytecodes need be translated at run-time is clearly not acceptable when

performance is the number criterion for evaluation. The minimized safety net provided by C++

22

and the option to deal with hardware specific details put C++ far ahead of Java for programming

real-time and performance-critical applications in which raw speed and predictability are the most

important factors.

3.3 Large Systems and Team Programming

Programmers working on large systems need a language that offers the best blend of

expressiveness, maintainability, and convenience for multiple-programmer teams. As a system

gets larger and more complex, bugs become more difficult to find and fix, so the role of the

language in keeping the number of bugs low to begin with it very important. The handling of

friendship should not be a true issue here. There are ways to circumvent the traditional friendship

paradigms in Java, and C++ provides them all natively. In a large system, it may well be better to

use assessor and mutator functions for cleanliness and to ensure maximum compatibility between

program components. Although operator overloading can certainly enhance the programming

experience of a programmer working with a library, the complexities of code maintenance

introduced by the use of operator overloading are significant. Because of this, operator

overloading must be looked upon as a pitfall, since most time spent with code is understanding

and maintaining it. The time saved learning the class library is minimal compared to the time

spent tracking down bugs and code dependencies later on in the software life cycle.

For large and complex systems, Java’s automatic memory management features are most

welcome. They eliminate the need for programmers to coordinate who is responsible to dispose

of “shared” objects and can quickly eliminate many of the programming bugs that make their way

into projects of all size, most notably large ones. In a large system there are many things that can

go wrong; a simplified memory management model removes many of these from the immediate

concern of the application programmer. Although time lost to garbage collection increases faster

than the increase in program size, this should still not be an issue, particularly due to the fact that

large system will likely have several threads executing simultaneously, minimizing the apparent

speed loss to the user. On a similar note, the absence of pointers in Java eliminate an entire class

of programming flaws and lead to more stable and easily maintained code. The inherent protection

that Java offers when dealing with arrays is also very nice for large application development, when

once again, the goal is minimizing room for programmer error. This benefit is minor, however, in

light of the number of array classes available for C++ providing the same degree of safety that

Java offers.

23

The absence of a preprocessor puts Java at a large advantage to C++ for large systems

development, especially in the maintenance phase of the life cycle. By removing context

sensitivity from as many parts of the program as possible, a programmer can sit down with a

given block of code and confidently analyze its methodology without worrying about declarations

in header files, or about any macro expansion that may be occurring. Programming tools are also

likely to be more widely used for large system development, so the elimination of the risk of

having preprocessor directives undermine these utilities is good. Java’s method of program

documentation generation is certainly more robust than the use of C++ header files. It allows the

programmer the full flexibility that is allowed in C++ header files, while providing consistency and

being automatically updated (for most features). Up to date and standardized documentation is

clearly important, and Java allows it to be written as the program is written in a relatively

unobtrusive manner. For large systems, object modeling may also be considered essential for the

program to be understandable. Both languages do an equally good job in that area.

In all of the areas discussed, Java is as good as C++, and in most areas it surpasses C++.

Java eliminates may sources of bugs in C++ programs without adding any Java-specific bugs.

This robustness speeds development and makes maintenance easier.

3.4 Educational Environments

As computers become prevalent in society, the need to teach programming continues to

rise. It is difficult to precisely define what makes a programming language good for educational

purposes. This is largely due to divergent pedagogical theories. Some theories would advocate

that learning by experience (or by failure) is preferred because it forces a student to become

intimate with the problems inherent in solving the problem at hand. Others would argue that this

technique discourages students and that starting out at whatever the task at hand is should be

simple and rewarding. Depending on which of these schools of thought is followed, either C++ or

Java could be given the nod as being the preferred introductory language. Both appropriately teach

the use of object-oriented language fundamentals, which is perhaps the most significant concern.

The fact that Java classes in the same package default to be friendly could be a problem in

an introductory programming setting. Care must be taken that each class be in its own package so

that students do not unknowingly violate the object model. C++ friendship will not be realized by

a student accidentally, so need not be accounted for. Although it is unlikely that it would directly

affect a student, students could be affected by the use, or lack thereof, of overloaded operators in

libraries that they use. Once again, it is an issue of ease of learning or learning by trial and error.

24

Overloaded operators found in C++ have the potential to make libraries much more intuitive to

use, whereas the need for dedicated methods in Java could push a student to read and understand

program documentation. In regard to memory management, once again the pedagogical model

adopted is of paramount importance. If the instructor wants students to get off to a quick start

programming, Java’s memory management is the tool of choice. Students need not worry about

“low level” implementational details; they can focus their efforts at high-level design and coding

fundamentals. In contrast, learning memory management is a skill that could certainly be valuable

for later programming. Understand the complexities of how and when memory is allocated and

deallocated, and its effect on your code is important. Some would even argue that an appreciation

of automatic memory management can not be acquired without having experienced manually

managed memory environments. Likewise with arrays and pointers. Java protects the student

from potentially difficult to find and frustrating errors, but enduring these things in C++ perhaps

better teaches a student to be cognizant of array bounds. It is certainly more detrimental to witness

a system crash in C++ due to neglecting array bounds than to see an exception warning in Java.

In this author’s opinion, the absence of preprocessor files from Java is of no true

educational benefit. The only use that preprocessing would get in an introductory programming

course is for header files, and for the programs written in most introductory classes, the use of a

separate header file is of questionable utility. The automatic documentation features in Java are not

unlike the other features mentioned. It forces a student to do things the right way and makes

programming somewhat more efficient, but having to manually comment C++ code can be a good

way of learning what the salient features of a particular implementation or design are. Java’s

machine independence and portability could never be seen as a drawback to Java in an educational

forum, and in many cases it is a welcome feature since most universities have mix of computers,

ranging from workstations to Macintosh and IBM compatible computers owned by students and

maintained in smaller computer clusters.

As stated, either Java or C++ could be chosen as the programming language of choice for

beginners. The “hand-holding” that Java does is nice and certainly will save students much

frustration by preventing errors that even experienced C++ programmers make. However, this

author is of the opinion than negotiating these pitfalls is of great educational value, and would

therefore advocate the use of C++.

25

3.5 General Programming

The general question is finally reached: which language should be chosen for “ordinary,

everyday programming”? This author would find it necessary to recommend the use of Java.

With the advancing speed of hardware the added performance that it is possible to squeeze out of

C++ is becoming more and more negligible. The advent of Java bytecode microprocessors should

close the performance gap even more by eliminating the virtual machine; they may even reverse

the results of the current performance benchmarks. Today’s most prominent computing

environment is the network environment, particularly the Internet. Java has already been seen to

be the only language reasonable for development of application to be executed on such a diverse

range of systems. Although C++ can be “patched” through the use of libraries to provide most of

what Java offers, it is preferable to use Java in its almost native form. Java speeds program

development, reduces bugs, and increases code maintainability and reusability. Most applications

do not require the flexibility that C++ offers, so why should the robustness of Java be ignored?

For normal programming, this author would offer that the biggest shortcoming of Java is the lack

of operator overloading. Although this issue can be worked around, the resulting system will not

offer the robustness that a corresponding implementation in C++ could offer. Many features in

Java, such as automatic program documentation, serve to make the task of the programmer more

simple and enjoyable. There really is not a great deal of explanation needed here. Java is a more

“safe” language, and the benefits of C++ over Java as outlined in this paper are in the areas of

performance and flexibility, something demanded by few programming tasks.

4. Conclusion

The Java language has improved on C++ in a variety of ways. It has sacrificed speed and

flexibility for stability, ease of use, and optimal performance in a networked computing

environment. Although not suitable for all programming tasks, these changes make Java more

suitable for general programming than C++. The forthcoming class libraries to be released by Sun

will further extend the options that Java affords a programmer and provide for even more robust

applications than are possible right now. Java Bytecode CPUs also lie ahead. When they become

commercially available, the speed of execution of Java will increase tremendously as the overhead

of the interpreter will be eliminated, and most of the advantages of C++ over Java will be

drastically reduced, if not eliminated. In the author’s opinion, the most significant shortcoming of

Java is the absence of a facility for overloading operators; this limitation will likely exist forever.

26

For “obvious reasons” Sun Microsystems suggests that Java has “leapfrogged” C++ and

provides a simple language that “will undoubtedly replace it [C++]” .28 This author agrees

wholeheartedly.

27

Works Cited

Arnold, Ken and James Gosling.The Java Programming Language. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1996.

Daconta, Michael C.Java for C/C++ Programmers.New York: John Wiley & Sons, Inc., 1996.

Gosling, James and Henry McGilton.The Java Language Environment: A White Paper.
Mountain View, California: Sun Microsystems, Inc., 1995.

Stroustrop, Bjarne.The C++ Programming Language. Reading, Massachusetts: Addison
Wesley Publishing Company, 1991.

Stroustrop, Bjarne.The Design and Evolution of C++. Reading, Massachusetts: Addison Wesley
Publishing Company, 1994.

van der Linder, Peter.Just Java. Mountain View, California: Sunsoft Press, 1996.

28

Reference Notes

1Bjarne Stroustrop,The Design and Evolution of C++ (Reading, Massachusetts: Addison-Wesley

Publishing Company, 1994), 1.
2Ibid., 21.
3Peter van der Linder,Just Java (Mountain View, California: Sunsoft Press, 1996), xviii.
4Ibid., 21.
5Ibid., 22.
6Michael C. Daconta,Java for C/C++ Programmers (New York: John Wiley & Sons, Inc., 1996), 2-4.
7Stroustrop,Design, 53.
8Ibid., 78.
9Daconta, 137.
10Stroustrop,Design, 79.
11Ibid., 212.
12Ibid., 215.
13Bjarne Stroustrop,The C++ Programming Language (Reading, Massachusetts: Addison-Wesley

Publishing Company, 1991), 308-314; Stroustrop,Design, 218-219.
14Stroustrop,Design, 219.
15Ken Arnold and James Gosling,The Java Programming Language (Reading, Massachusetts: Addison-

Wesley Publishing Company, 1996), 11.
16van der Linder, 181.
17Stroustrop,Design, 219.
18Arnold and Gosling, 46.
19Ibid., 9.
20Daconta, 63-65.
21James Gosling and Henry McGilton,The Java Language Environment: A White Paper (Mountain

View, California: Sun Microsystems, Inc., 1995), 17.
22Stroustrop, C++ Language, 606.
23Ibid., 138.
24Gosling and McGilton, 29.
25van der Linden, 80-81.
26Stroustrop,Design, 26.
27van der Linder, 22.
28Ibid., 77.

