
Evaluating the Tracing of Recursion in the
Substitution Notional Machine

Preston Tunnell Wilson
Brown University, USA
ptwilson@brown.edu

Kathi Fisler
Brown University, USA
kfisler@cs.brown.edu

Shriram Krishnamurthi
Brown University, USA

sk@cs.brown.edu

ABSTRACT
We evaluate a notional machine for recursion based on algebraic
substitution. To do this, we decompose recursion into a progression
of function call patterns, parameter name reuse, and data struc-
ture complexity. At each stage, we test students’ ability to trace
programs using substitution. We evaluate the correctness of their
traces along multiple dimensions, finding that students generally
do well, and also observe shortcuts and identify misconceptions.
For comparison, we also have students trace two problems using a
traditional, imperative notional machine. Even though the substitu-
tion model is unwieldy to use with compound data, students still
perform better with it than with the traditional notional machine.

KEYWORDS
recursion; substitution; tracing; pedagogy

1 INTRODUCTION
Many authors (e.g., [6, 7]) have discussed student difficulties with
recursion. This paper focuses on students’ ability to trace recursive
programs using a notional machine [2]. Most computing pedagogy
uses an imperative, stack-based notional machine. We instead study
a rarely-used model, based on algebraic substitution (section 3), from
How to Design Programs [4] (htdp). Though this model has been
realized as a tool [1], it has not been evaluated before.

When tracing recursion, a student must track both where func-
tions return and what different values are bound to the same vari-
able name. Thus, instead of viewing recursion as an atomic activity,
we observe that it can follow a learning progression: a student
must understand what happens when (a) one function calls another
function and control returns; (b) variable names are reused across
functions; and (c) putting these together, when a function calls and
returns from itself (in which case, variable names are necessarily
reused). We use this progression to structure our study, observing
which skill causes problems. We also have students use tree-shaped
data, which are not covered in many prior recursion studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159479

2 RELATEDWORK
There is an extensive body of literature on recursion in computing
education. We focus just on the most relevant papers. Though
Settle [12] has a bibliography on recursion, it does not discuss the
substitution model at all, which is the focus of this paper.

Lewis [8] conducts talk-alouds on two recursive problems from
the 1988 AP CS A exam. She presents students’ traces and highlights
four mental models of how substitution in recursive problems work.
We include her questions in our study. We do not observe the same
four mental models as she does, but this may be due to differences
in format (her talk-alouds versus our written quizzes). Unlike Lewis,
we discuss difficulties weaker students had with tracing rather than
focusing solely on successful traces.

McCauley et al. [9] test students’ ability to comprehend recursive
and iterative programs. There are many differences between our
efforts. They do not ask for traces; they include compound data
but only linked lists, not trees; their programs contain imperative
updates; and in general, we do not compare recursion and iteration
(which is anyway not straightforward on trees).

Tessler et al. [13] use a game to contextualize recursive oper-
ations, lecturing students on recursion either before or after the
game. They compare students’ traces and solutions between these
two conditions. All of our students are in the same condition, but
they use two different notional machines during the study.

Kurland et al. [7] ask students to think aloud about what recur-
sive graphical Logo programs would do, then draw out what they
think the program would do. This is more of a comprehension task
than one on tracing—these drawings are only loosely tracings.

Wiedenbeck [15] studies how students learn iteration and re-
cursion and how learning one impacts the other. She focuses on
using examples as the main pedagogic tool. Our focus is instead
on tracing, the substitution notional machine, and includes tree
recursion, which is not easily done with iteration.

Nelson et al. [10] use a combination of notional machines and
tracing to teach programming and compare their tutorial to Codea-
cademy. However, their notional machine is much lower level than
ours, with explicit stack manipulation, a program counter, and set-
ting values in a namespace, all of which are absent or attenuated
in substitution. Also, rather than analyzing students’ traces, they
provide traces to students through example programs.

Kahney [6] experiments on how novices’ understanding of re-
cursion differs from that of experts. His focus is on comprehension
rather than on tracing, giving students multiple purported solutions
and asking which ones would work. We also do not ask students
for their formal reasoning, nor did we compare against experts.

Sanders et al. [11] observe students’ mental models on recursion
and make changes to their pedagogy to improve their models. We
propose an alternative pedagogy based on the substitution model.

https://doi.org/10.1145/3159450.3159479

SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi

fun f(x):

(2 * x) + 15

end

1 f(3 + 2)

2 f(5)

3 (2 * 5) + 15

4 10 + 15

5 25

Figure 1: Sample function definition and trace through it

fun f(x):

3 + g(5)

end

fun g(y):

x + y

end

1 f(2)

2 3 + g(5)

3 3 + (x + 5)

Figure 2: How substitution prevents dynamic scope

3 BACKGROUND: SUBSTITUTION MODEL
The substitution model is familiar from algebra classes: when a
function is applied to arguments (the “actual parameters”), first the
arguments are evaluated, then all instances of the function’s formal
parameters are replaced with their argument values. The resulting
program is then evaluated using these concrete values.

Figure 1 shows an example of substitution in Pyret [pyret.org],
a Python-inspired, student-friendly programming language used
predominantly in the studies in this paper. The left shows the
definition of a function f, and the right a trace using substitution.
Line 1 shows the initial call. In line 2, the actual parameter is reduced
to a value, 5. Line 3 is the crucial substitution step: the body of f is
rewritten with all instances of the formal parameter, x, substituted
with the value 5. In lines 4 and 5, evaluation proceeds as expected
using the rules of arithmetic.

When a student traces through a function call using substitution,
they write a new line each time a new expression is evaluated. In
the process they copy the pending computations, or accumulated
context, from the previous line. Thus, in the transition from lines 3
to 4, while the expression 2 * 5 evaluates to 10, the context of +
15 is copied. Note that this copied context corresponds to a stack,
but without having to introduce it as a new concept. This notional
machine is explained in complete detail in htdp.

For programs without mutation, substitution is a viable notional
machine that avoids the need for stacks, stores, and other repre-
sentations of memory. We hypothesize that the substitution model
offers students a mechanical, consistent, and simple way of tracing
recursion. An expert can see that substitution encodes the “copies”
model and other concepts explored in earlier literature [6, 11].

One consequence of substitution is that it is easy to see whether
or not a variable is bound. Consider fig. 2. On the left, the function
g has an unbound variable (x). This is an error in all languages that
obey static scope (which is most modern languages), though prior
studies have shown that both novices [5] and professionals [14]
can be confused by this, thinking the x of f is still “visible” in g. On
the right, we show a trace with substitution. Because, on function

application, substitution replaces all parameters with their actual
values, any remaining variables must not be bound. In contrast, in
a traditional notional machine with an explicit stack and store, if
the student forgets to “drop” x on exit from f, they would assume
x were bound.

However, the substitution model, as we have described it, re-
quires a significant extension to model mutation [3]. For the Python
3 program on the left, consider the trace (right) of the call g(10):

1 def g(y):

2 y = y + 2

3 z = y + 1

4 return z

1 y = 10 + 2

2 z = 10 + 1

3 return 10 + 1

The trace result is clearly wrong. The error is because we assumed y
would not change, but the assignment (y =) changes it. Thus, stu-
dents must deal with time, looking up the current values of variables.
Therefore, many textbooks and authors explicitly or implicitly use
a mutable model, one where names are held in dictionaries that
can be updated as the program progresses. Note that in this model,
students must remember to explicitly drop variables as they exit
scopes, to avoid the dynamic scope problem described above.

4 STUDY DESIGN
4.1 A Learning Progression for Recursion
Webreak down the tracing of a recursive program into a progression
of separate concerns that a student must understand:
• function calls (dealing with parameters),
• function returns (dealing with the context),
• parameter name reuse across different functions,
• calling the same function more than once nonrecursively,
and
• a function calling itself (which combines the above two).

We conjecture that teaching these concerns one-by-one might make
recursion easier to follow. (Note that the first four concerns have
nothing to do with recursion per se, and hence are independently
useful.) Our formal research questions assess students’ ability to
trace programs through the lens of this progression (as reflected
concretely in the study problems (section 4.2)), and how students
use the substitution model within each stage:
RQ1: Where in the progression do students struggle?
RQ2: As students use the model, what misconceptions appear?
RQ3: What aspects of the model do students avoid with shortcuts?

4.2 Evaluation Programs
The above progression translates into a set of programs that stu-
dents are asked to trace. Representatives are shown in fig. 3. In
(a) we see just a function that uses its parameter. In (b) we have
f calling g, with both having the same parameter name. (Observe
that in substitution there should not be any confusion between
the two x’s, because the first x has “disappeared”—due to having
been substituted—at the point of calling g.) In (c) we use a function
twice, to see whether this new concept creates any problems. In (d)
we show recursion over recursive data (rather than over numbers).
This function computes the product of all the numbers in the list. In
(e) we introduce a tree data structure and write a recursive function
that computes the height of the tree. Observe that in both (d) and (e)

pyret.org

Evaluating the Tracing of Recursion in the
Substitution Notional Machine SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA

1 # a: Simple function call

2 fun f(a):

3 a + (5 * a)

4 end

1 # b: Parameter name reuse

2 fun f(x):

3 x + g(x * 2)

4 end

5
6 fun g(x):

7 x - 3

8 end

1 # c: Function call reuse

2 fun f(x):

3 g(g(x - 5)) - 2

4 end

5
6 fun g(y):

7 3 * y

8 end

1 # d: Recursion over list

2 fun h(lst):

3 cases(List) lst:

4 | empty => 1

5 | link(f, r) =>

6 f * h(r)

7 end

8 end

1 # e: Recursion over tree

2 data BinTree:

3 | leaf()

4 | node(value , left , right)

5 end

6
7 fun f(t):

8 cases(BinTree) t:

9 | leaf() => 1

10 | node(v, l, r) =>

11 num -max(f(l), f(r)) + 1

12 end

13 end

Figure 3: Sample programs

the recursion is non-trivial, i.e., it is not tail-recursion (equivalent
to a loop).

In addition to these types of problems, we use three more. Two
are from an AP CS test and were used in a prior paper [8]. The third
is a purely numeric recursion implementing the Collatz function,
a.k.a., “3n + 1” (halt at n = 1; for even positive n, divide by two and
recur; for odd positive n, recur on 3n + 1).

4.3 Logistics: From Problems to Quizzes
To evaluate student understanding, we converted these problems
into quizzes/homeworks to administer in a class.

Class Context and Participants. The quizzes were administered
in a summer course (equivalent in content and credit to a regular
semester-long course) at a selective, private US university. The
course, an introduction to programming with no prerequisites,
covered basic expressions, functions, recursion over lists and trees,
variables, mutation (of both variables and fields within objects),
and conventional loops. The 19 students ranged from high-school
students to adult learners embarking on a professional master’s
degree in data science. One of the authors taught the course.

Quiz Logistics. All quizzes were given on paper. The first three
were given in class; students had 15–20 minutes to complete each
one. The last two were unlimited-time take-home exercises. The
students knew that the quizzes were part of an ongoing course
diagnostic, and had little to no impact on overall course grades. All
quizzes were reviewed in class immediately after submission, so
students received feedback on their work. The quizzes were given
roughly once every 5-7 calendar days.

We administered a total of five quizzes, summarized below. The
first four were in Pyret, while the fifth was in Python 3 (matching
the course structure, which began in Pyret and ended in Python).1

(1) Substitution into functions performing arithmetic on num-
bers (fig. 3(a)) and concatenation on strings; calling two

1The details are on the Web at cs.brown.edu/research/plt/dl/sigcse2018-recursion/.

functions (like fig. 3(b), but without parameter name reuse—
the functions had different parameter names); and a dynamic
scope question (akin to fig. 2). For this quiz only, students
were given the result to a function call and asked to ex-
plain (through tracing) how that answer ensued, to focus on
tracing rather than on correctness. In subsequent quizzes,
students had to also determine the answer. The dynamic
scope question was phrased as “Explain what happens if we
evaluate f(2): what outcome do we get and why?”

(2) Shared parameter names between functions (fig. 3(b)); mul-
tiple calls to the same function (fig. 3(c)); another dynamic
scope question; and the Collatz function as a pre-test, be-
cause recursion had not yet been taught in class. Questions
were phrased as “Show how the program f(7) evaluates to
an answer.”

(3) Linear structural [4] recursion (fig. 3(d)). A sample question is
“Show how h([list: 5, 0, -2]) evaluates to an answer.”

(4) Structural recursion over trees (fig. 3(e)); a tweak on the
Fibonacci function; and the two AP CS test questions [8]. A
sample question is “What does calling g(4) produce? List
the sequence of function calls that get made, with the actual
arguments to g, showing how the program arrives at its
answer.”

(5) Recursion over trees and lists of tuples, done in Python.
By the last quiz the class had transitioned to Python, where they
were introduced to mutable variables as well as tuples. They were
also taught a dictionary-based traditional notional machine. The
“stack”was represented by a process of adding to and removing from
the dictionary. Thus, they were effectively repeating the previous
two quizzes, but in a different language and, more importantly,
using a different notional machine.

In the quiz instructions, students were initially asked to “write
out the computations showing how [the question] evaluates.” We
expected students to write out every step, as illustrated in section 3.
As the programs became more complex (involving conditionals and
data structures), we relaxed the steps that the students had to show:

cs.brown.edu/research/plt/dl/sigcse2018-recursion/

SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi

the revised instructions added “You only need to show steps with
function calls or the results of computations on numbers/strings/etc.
Don’t write out if or cases steps.”

5 RESULTS
Given our goal to study whether students could effectively trace
recursive programs, our analysis examined the traces that students
provided as quiz answers. We defined multiple ways to compare
their traces against a ground-truth trace written by an expert. (The
substitution model has a long history, so there is widespread agree-
ment on what the ground-truth trace ought to be.) In performing
these comparisons, we noted shortcuts taken by students, as well
as errors.

We defined the following measures for traces:
Soundness Whether every step in the trace is in the ground-

truth trace. Individual steps of a trace could be unsound in
several ways: (a) miscopying either the body of a function
or a part of the previous line that was not being expanded
in this step (we called these transcription errors); (b) sim-
ple arithmetic mistakes when reducing expressions; or, (c)
expanding function calls within recursive parts of a data
structure, rather than substituting the function body.

Completeness Whether the student listed all the steps in the
ground-truth trace.

Correctness Whether the student determined the correct final
result of evaluating the program. (Relevant after the first
quiz.) Note that this is in principle subsumed by Soundness,
but is still useful to call out explicitly.

In addition, we also recorded:
Accumulated Context Whether the student copied the accu-

mulated context (section 3) from line to line. When students
omitted context in a step, we recorded whether the omitted
part was simple arithmetic or a function call.

Order of Evaluation Whether the student expanded expres-
sions “depth-first” (the left-most and inner-most expres-
sion first), or “breadth-first” (expanding multiple expressions
from the same level at the same time). If this order was not
clear from the answer (such as when students use arrows
to show how multiple parts of an expression expand), we
coded the order as “unknown”.

Granularity of Tracing Steps Whether students explicitly in-
cluded steps to evaluate arithmetic expressions or just used
the results of such expressions in the next step.

The authors coded the responses together, so we do not report on
inter-coder reliability.

Per-Quiz Results. Figure 4 shows students’ average correctness
scores (ignoring soundness and completeness) across all tracing
problems on each of the four quizzes. The dip in performance in
quiz 3 is due to the number of students who ran out of time. The
students who did not do well in quiz 4 generally suffered from
transcription errors. Besides these two issues, students generally
did well. The two students who did not get any questions right on
the fourth quiz were two of the weaker students: they also struggled
with issues outside of the substitution model. We explain specific
issues encountered in each quiz in the following sections.

0.00

0.25

0.50

0.75

1.00

q1 q2 q3 q4
Quiz

P
er

ce
nt

 S
co

re

Figure 4: Student correctness over the four quizzes (lines are
jittered to make individual student performance clearer)

Figure 5: Tracing a program with multiple function calls

Quiz 1: Function Calls. Students were generally correct, sound,
and complete across these simple substitution programs. Twelve of
the 18 students who took this quiz achieved perfect scores on these
metrics across the questions, with the exception of the question
on dynamic scope. The following figure shows the dynamic scope
question and a correct trace of it:

Nine students correctly determined that this program would yield
an error, although two thought the error was that function д was
undefined (despite not making this mistake on other questions).
The other 9 incorrectly used the previous binding of x .

Shortcuts. Figure 5 shows a trace involving multiple function
calls. This student skipped some arithmetic steps, including replac-
ing the call g(0) directly with its result (without explicitly substi-
tuting into the body of g). Five students omitted copying simple
arithmetic when evaluating g(0). Some students put the evaluation
of g(0) elsewhere on the page, inserting the result into the context
when finished (akin to a simulating execution model [8]).

Evaluating the Tracing of Recursion in the
Substitution Notional Machine SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA

Misconceptions. Several students failed to substitute arguments
for all instances of a function parameter: for example, four students
turned f(1) into 2 * g(1 - 1) + x on the problem traced previ-
ously, failing to substitute the last x (though they substituted later
in the trace). This seems related to missing the dynamic scope ques-
tion, although one of these four students answered that question
correctly. On the dynamic scope question, one student thought that
the value bound to x was stored for later access, even though this
is not how the substitution model works (the course had taught
that value of constants were stored for later retrieval; this student
appeared to conflate this with storing parameter values). Three
students substituted the expanded expression for the body of g (x
+ 3) back into f, thus accidentally changing the scope of x. The
dynamic scope question thus proved particularly useful for uncov-
ering misunderstandings about the substitution notional machine.

One student thought that the call g(0) in fig. 5 would return 0
(its argument), a pattern we see repeated on later quizzes as well.

Quiz 2: Reusing both Functions and Parameter Names. All but
1–2 students had sound and correct traces for these questions,
suggesting that parameter-name reuse does not cause problems
within the substitutionmodel. Errors on these included two students
who (incorrectly) reduced h(5) + h(4) to h(9). Expressions such
as h(5) + h(4) let us see whether students expand breadth-first
or depth-first: 8 students chose the former (a form of shortcut in
the substitution model).

This quiz also included the Collatz function, which was interest-
ing because the course had not yet shown or discussed recursive
calls. Thirteen (of the 18) students answered the question correctly
and had sound traces. In the in-class review of the quiz after stu-
dents turned it in, several asked about the new recursive pattern,
though they had traced it correctly—suggesting that they noticed
this new feature but, armed with substitution, were not put off by
it. Among the students who did not answer correctly, three stopped
evaluating on the recursive call and two simply returned the argu-
ment to the function as its result (a misconception we also saw on
quiz 1, arising here with different students).

Misconceptions. The main misconceptions arose from students
applying incorrect algebraic manipulations to code expressions.
Two students reduced h(5) + h(4) to h(9). Another student
produced the following trace for f(3) (where f is shown in fig. 3(b)):

1 x + g(x * 2)

2 x + (2x - 3)

3 3x - 3

Rather than substitute f’s x, the student replaces the body of g in
the body of f, then uses algebra—which produces the same result,
but is not at all how actual evaluation works—to result in 3x - 3.2

Quiz 3: Linear Structural Recursion. Most students traced re-
cursive functions over lists correctly, for both tail- and non-tail-
recursive functions. Seventeen (of 18) students correctly traced the
list recursion in fig. 3(d). Ten answered the tail-recursion question
(not shown) correctly; however, seven students did not finish all
of the questions. We have reason to believe this is due to lack of

2Note that terms like 3x, in place of 3 * x, are not even syntactically valid.

time rather than not knowing the subject. Errors were mainly in
transcription (e.g., copying the wrong variable into the next step).

Shortcuts. The introduction of lists, which are more complex data
than numbers (and thus take more time to write down), inspired
new shortcuts. One student mentally tracked the list bound to a
variable separately rather than copy its value into the body of the
function. Some students changed the written notation for a list
to drop the list: tag required in the language; others dropped
list notation entirely for single-element lists. This suggests (as we
might expect) that the substitution model starts to get cumbersome
with structured data.

Two students simply skipped steps that wouldn’t impact the
result (for a function that added zero in some cases). One student
evaluated the context at the same time as evaluating the function
call. It is hard to tell whether the student is using breadth-first
evaluation, or whether they are simply reducing the amount of text
they copy from line to line. Two students skipped substitution for
the base case (the empty list as input) when it did something simple
like return 0 or 1. This is similar to shortcuts seen on earlier quizzes
for functions that performed simple arithmetic computations.

Misconceptions. One student misunderstood list destructuring,
thinking it provided the first and last elements of a list, rather
than the first and rest. Another student also had trouble with list
structures, wrapping intermediate function results in lists.

Quiz 4: Tree Recursion. Most students used breadth-first eval-
uation on these programs. Eleven (of 15) students answered the
Fibonnaci-like question correctly; three of the others had transcrip-
tion errors, while one only expanded the left recursive branch.

In contrast, while 10 (of 15) students predicted the correct answer
for the problem in fig. 3(e), only one produced a sound and complete
trace. Most of the others suffered transcription errors (unsound)
or relied on intuition about what the function would compute on
subtrees (incomplete). Many who answered incorrectly dropped a
“+ 1” term from the context, resulting in the wrong answer.

Shortcuts. Shortcuts were similar to those on quiz 3; however,
three more students skipped the base case function-call on the
tree-recursion question. One student who skipped the base case
in quiz 3 did not skip the base cases in quiz 4. Some questions
used longer function names, which students truncated to be shorter
while writing out traces.

6 SUPPORTING MUTATION
After the course switched to Python 3, it covered variables, for- and
while-loops, assignment statements, and mutation of fields. As we
discussed in section 3, we cannot use substitution with mutation.
In the case of mutable variables (as opposed to fields), we can use a
simpler mutable notional machine, where the names are mapped to
values by mutable dictionaries. (With mutable fields we must also
record the structure of the heap.) We refer to this as the mutable
environment notional machine.

In the Python segment, the instructor taught students this new
notional machine, then asked students (in the fifth quiz) to trace
two programs: one a loop through a list of words that concatenated

SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi

student loop/list recursion/tree
7 correct (mostly) correct
2 (mostly) correct initial call only
4 (partly) correct no answer
2 initial call only initial call only
3 mix environment, evaluation,

substitution, and some prose
same as loop

1 no answer no answer
Table 1: Environment evolution for loop and tree-based re-
cursion in Python

those words longer than 3 characters, and the other a recursive
tree-traversal program.

Directly comparing these results to those on substitution is com-
plicated because this was the first task where students had used
the new notional machine. Nonetheless, we note that students per-
formed less well on recursion with this notional machine than with
substitution. More usefully, observations from this quiz provide
useful feedback to affect future versions of these studies.

Table 1 summarizes students’ performance on the two tracing
problems with mutable environments. For the students who did not
get both problems correct (all but the first row), the tree-recursion
problem caused more difficulty than the loop-based one. The 6
students across the second and third rows showed a basic under-
standing of the mutable environment model on the list problem,
but couldn’t apply it to the tree-recursion problem. Three students
(penultimate row) tried to integrate showing how the program eval-
uated (à la the first four quizzes) with showing the environment
evolution asked for here. We see elements of substitution in each
of these students’ answers, rather than an effective switch to the
new notional machine.

7 CONTRIBUTIONS, RESULTS, DISCUSSION
Our study shows that substitution is a very promising model for
understanding recursion. Students were able to handle a variety of
problems—including tree recursion, which is rarely considered in
prior research—without much difficulty. Perhaps even more surpris-
ingly, with substitution they were able to trace non-trivial problems
like the Collatz function even before being introduced to recursion.
While these studies have to be reproduced on different student
populations, this does suggest that the difficulty at least of tracing
recursion needs to be reconsidered.

As we have noted, substitution does not easily work with muta-
ble state. Most curricula have taken state for granted, and hence
cannot consider this notional machine. However, many curricula in
widespread use (such as htdp and Bootstrap [bootstrapworld.org])
are “functional first”, and can and do use substitution. We even
have preliminary evidence (section 6) that an imperative notional
machine may not be easy. Thus, we need a broader discussion about
the style of programming used in introductory curricula.

More subtly, our observations highlight an interesting difference
between substitution and mutable environments: substitution re-
quires only one notation (a program in the syntax of the language)
to capture execution and the current state of the evaluation. The
mutable environment notional machine not only has more notation,

it also fails to directly capture return values from functions and
must be expanded to handle them. Students must then learn to
navigate all these components when tracing programs.

We have also identified weaknesses with the substitution model.
It can require too much copying of context, causing students to take
shortcuts, which can in turn get them into trouble. It also becomes
unwieldy when dealing with large data structures, further inducing
shortcuts. This suggests a need for a better model that enjoys the
benefits of substitution while avoiding these problems.

We have found the use of programs with unbound variables
useful at unearthing student misconceptions and hence evaluation
models. This fits the general pattern of giving students erroneous
programs to better probe their understanding. However, we are not
aware of prior recursion research using this particular idea.

We believe there are also several concrete takeaways for in-
structors. First, consider the use of substitution (in a mutation-free
setting) for teaching function application leading up to recursion.
Second, use erroneous programs—e.g., with unbound identifiers—to
probe student understanding. Finally, consider using our learning
progression for teaching recursion.

ACKNOWLEDGMENTS
We thank Natasha Danas, Matthias Felleisen, and our reviewers. We
also thank Colleen Lewis for answering questions on the design of
her study [8]. This work is partially supported by the US National
Science Foundation. First author’s last name is “Tunnell Wilson”
(index under “T”).

REFERENCES
[1] John Clements, Matthew Flatt, and Matthias Felleisen. 2001. Modeling an alge-

braic stepper. In European Symposium on Programming.
[2] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of

Educational Computing Research (1986), 57–73.
[3] Matthias Felleisen. 1987. The Calculi of Lambda-nu-CS Conversion: A Syntactic

Theory of Control and State in Imperative Higher-order Programming Languages.
Ph.D. Dissertation. Bloomington, IN, USA.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press.

[5] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
ACM Symposium on Computer Science Education. ACM, New York, NY, USA.

[6] Hank Kahney. 1983. What Do Novice Programmers Know About Recursion. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 235–239.

[7] D Midian Kurland and Roy D Pea. 1985. Children’s mental models of recursive
LOGO programs. Journal of Educational Computing Research (1985), 235–243.

[8] Colleen M. Lewis. 2014. Exploring Variation in Students’ Correct Traces of Linear
Recursion. In ACM International Conference on Computing Education Research.
ACM, New York, NY, USA, 67–74.

[9] Renee McCauley, Brian Hanks, Sue Fitzgerald, and Laurie Murphy. 2015. Re-
cursion vs. iteration: An empirical study of comprehension revisited. In ACM
Symposium on Computer Science Education. ACM, 350–355.

[10] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In ACM International Conference on Computing Education Research. 2–11.

[11] Ian Sanders, Vashti Galpin, and Tina Götschi. 2006. Mental models of recursion
revisited. In ACM SIGCSE Bulletin. ACM, 138–142.

[12] Amber Settle. 2014. What’s motivation got to do with it? A survey of recursion
in the computing education literature. Technical Reports (2014).

[13] Joe Tessler, Bradley Beth, and Calvin Lin. 2013. Using cargo-bot to provide con-
textualized learning of recursion. In ACM International Conference on Computing
Education Research. ACM, 161–168.

[14] Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. 2017. Can
we Crowdsource Language Design?. In Onward!’17. ACM, New York, NY, USA.

[15] Susan Wiedenbeck. 1989. Learning iteration and recursion from examples. Inter-
national Journal of Man-Machine Studies (1989), 1–22.

bootstrapworld.org

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Substitution Model
	4 Study Design
	4.1 A Learning Progression for Recursion
	4.2 Evaluation Programs
	4.3 Logistics: From Problems to Quizzes

	5 Results
	6 Supporting Mutation
	7 Contributions, Results, Discussion
	Acknowledgments
	References

