
Assessing Bootstrap:Algebra Students on
Scaffolded and Unscaffolded Word Problems

Emmanuel Schanzer
Bootstrap/Brown University
schanzer@bootstrapworld.org

Kathi Fisler
Brown University/WPI/Bootstrap

kfisler@cs.brown.edu

Shriram Krishnamurthi
Brown University/Bootstrap

sk@cs.brown.edu

ABSTRACT
Bootstrap:Algebra is a curricular module designed to integrate in-
troductory computing into an algebra class; the module aims to help
students improve on various essential learning outcomes from state
and national algebra standards. In prior work, we published initial
findings about student performance gains on algebra problems after
taking Bootstrap. While the results were promising, the dataset was
not large, and had students working on algebra problems that had
been scaffolded with Bootstrap’s pedagogy. This paper reports on
a more detailed study with (a) data from more than three times as
many students, (b) analysis of performance changes in incorrect
answers, (c) some problems in which the Bootstrap scaffolds have
been removed, and (d) an IRT analysis across the elements of Boot-
strap’s program-design pedagogy. Our results confirm that students
improve on algebraic word problems after completing the module,
even on unscaffolded problems. The nature of incorrect answers to
symbolic-form questions also appears to improve after Bootstrap.

KEYWORDS
Integrating Math and CS; Skills Transfer; K-12 Education

1 INTRODUCTION
Integrating CS education with existing disciplines is appealing for
both intellectual and logistical reasons (the latter particularly in K-
12 contexts). Effective integration helps advance student learning in
both computing and the host discipline. However, given the known
challenges of transferring skills between disciplines [2, 5], claims
that computing curricula foster learning in other disciplines require
validation through research.

Bootstrap:Algebra (henceforth BS:A) is a curriculum that has
been designed to integrate introductory computing intomath classes.
Roughly, the curriculum has students build a videogame, where
each game feature requires both a newmathematics concept (which
already needs to be taught in the (pre)-algebra class) and a corre-
sponding programming construct. Given that math is a high-stakes
subject (which is heavily tested in the USA), math teachers are un-
der pressure to use curricula that positively impact students’ math

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159498

scores. Understanding the impact of programs like BS:A on student
performance is essential for their long-term adoption.

In 2015, we published a preliminary study showing statistically-
significant impacts of BS:A on student performance on function
composition and word problems [7]. This paper confirms and ex-
tends those results in several ways: we remove some of the problem
scaffolds (while retaining performance gains), show that students of-
ten make progress even while getting wrong answers, demonstrate
performance gains in BS:A skills beyond symbolic form questions,
and apply IRT-based analysis to get a richer picture of what is going
on across the different elements of the BS:A pedagogy.

2 RELATEDWORK
Our work attempts to confirm and extend our initial assessment of
student performance gains from BS:A [7]. Our original paper looked
at both function-composition and word problems, using paired t-
tests to compare performance deltas from pre- to post-tests. The
current paper focuses on word problems, adding unscaffolded ver-
sions of these questions. Our analyses are now also more nuanced:
we explore deltas in students’ incorrect answers, compare perfor-
mance across different parts of the BS:A pedagogy, and include
an IRT analysis. Wright, Rich, and Lee [8] studied the impact of
BS:A on students’ understanding of variables, finding some positive
effects. Variables are beyond the scope of this study.

BS:A’s curricular design builds on theories about how to achieve
transfer of skills from one discipline to another. Both explicit in-
struction and alignment of problem-solving processes are currently
believed to be essential for transfer [2, 5, 6]. BS:A embraces both of
these issues, as described in section 3. NCTM (the USA’s National
Council of Teachers of Mathematics) has raised concerns about
casual claims that learning CS enhances learning of math [4]. Our
studies leverage questions from state math exams to ground our
analysis in performance measures designed for mathematics.

While other projects use computing or software tools to teach
algebra concepts, we are not aware of ones that deeply align the
problem-solving process across math and computing as Bootstrap
does (see section 3). Space precludes a review of these other projects.

3 AN OVERVIEW OF BS:A
BS:A is a 20–25 hour curricular module designed to integrate in-
troductory computing and specific learning objective from middle-
and high-school algebra [1]. The module is designed to embed into
a pre-algebra or algebra 1 class; such courses tend to be offered
within the age range 12–15 (in the USA). The module has students
design and build a video-game featuring three characters, each
of which moves in a single dimension. There is a user-controlled
player moving in the y-axis (in response to key-presses), a target
that the player is trying to catch, and a danger that the player is

https://doi.org/10.1145/3159450.3159498

trying to avoid. Both the target and the danger move left-to-right
across the screen (in the x-axis, at a fixed y coordinate that changes
each time the character wraps around to restart from the left edge
of the game). Students customize their games by selecting images
for the three characters as well as a background image. This leads
to wide variety in the game themes, from chasing credit cards in
the mall to avoiding spiders in the desert.

BS:A views animations and games as filmstrips consisting of a
sequence of frames. Each frame captures one instant of the ani-
mation, just as in the filmstrips used to create movies. For each
character in a game, students write a function describing how that
character’s position changes from one frame to the next. A function
such as f (x) = x + 5, for example, captures moving a character 5
pixels to the right in each successive frame. Unlike in many popular
early programming platforms (such as Scratch or Alice), students
do not write loops to generate movement: they focus on the al-
gebraic functions that describe how movement changes between
frames. BS:A has students solve a series of word problems, each
corresponding to some game feature (moving different characters,
wrapping characters around after they leave the screen, responding
to key presses, and detecting collisions to compute scores). This
alignment in style of problems is a key component underlying the
integration of computing and algebra in BS:A.

Why Might BS:A Impact Algebra? Reducing game programming
to developing algebraic functions is one aspect of how BS:A inte-
grates computing and algebra, but it is not the only one. The connec-
tion with algebra also lies in a step-by-step process for solving word
problems that leverages multiple representations of functions. Both
of these topics feature in state mathematics standards, the NCTM’s
(National Council of Teachers of Mathematics) guidelines for math
outcomes, and the (USA) Common Core. Algebra standards typi-
cally emphasize four representations of functions: symbolic form
(like f (x) = x + 2), domain and range, input/output tables, and
graphs; the standards ask students to relate all four representations
across the same conceptual function. BS:A exercises the first three
(presently omitting graphs).

The way in which BS:A connects these representations is em-
bodied in the Design Recipe Worksheet, as shown in fig. 1. Given
a word problem, students are taught to first articulate the domain
and range of the problem, to write at least two examples of the
input/output relationship described in the problem, and only then
to write the symbolic form of a function to solve the word problem.
The curricular materials explain how to leverage each step when
attempting the next step, thus modeling ways in which the different
representations depend on one another.

The curriculum teaches a specific way to approach input/output
tables, which is designed to help students abstract over examples
to derive the symbolic form. Consider the word problem in fig. 1,
which asks students to produce a function that computes a new x-
coordinate 50 pixels to the right of the input x-coordinate. Students
could either write the expected output of examples as the final
result of the function or as an expression that computes the final
result. The difference is illustrated in the table below:

10 60 final result only
5 5 + 50 expression that computes result
8 8 + 50 another expression that computes result

Figure 1: A design-recipe worksheet, showing the process
for solving word problems.

The second two examples show the computation that would result
in the answer. To create a function that solves the word problem,
the student needs to abstract over the two expressions, replacing
the varying (input) value by a parameter name. The curriculum
explicitly teaches this practice: students circle differences between
expressions, label the circles with names, then use the names when
writing the symbolic form:

update_tarдet (xpos) = xpos + 50

This practice of writing output expressions and labeling their dif-
ferences is not part of conventional mathematics instruction for
developing symbolic forms of functions.

The curricular materials provide teachers with several design-
recipe worksheets for conventional algebra word problems, in addi-
tion to those for the word problems that yield code for creating the
videogame. Thus, students are explicitly taught how to transfer the
design process from computing to algebra. The transfer literature
(section 2) establishes that explicit instruction is generally required
before students will transfer skills from one domain to another.

4 STUDY DESIGN
In our original study [7], students solved both function composition
and word problems. This new study focuses on word problems
alone, with an intent to study them more deeply. (We also lacked a
control group; see section 6 for more discussion on this.)

All of the word problems in the original study were scaffolded by
the design recipe. This meant that students were asked to explicitly
give the domain/range, examples of use, and symbolic form for
each word problem. This scaffolding is useful for testing whether
students are able to apply the BS:A design steps to algebra prob-
lems (rather than game-design problems). It also provides insight
into where students might have gone wrong if their symbolic form
answer is incorrect. However, typical standardized mathematics

Figure 2: Sample questions from our pre and post tests of al-
gebra word problems. The top question includes the BS:A
scaffolds, while the bottom question does not. The scaf-
folded example shown here uses multiple-choice format for
the symbolic form; roughly half of our scaffolded questions
instead provide a blank link as in the unscaffolded version.

exams (at least in the USA) ask students to provide only the sym-
bolic form. Understanding how BS:A students perform without the
scaffolds is therefore critical.

Rather than remove all of the scaffolds, however, we chose to
remove the scaffolds on half of the post-test questions (leaving the
pre-test fully scaffolded). This design allows us to check whether
the same students perform differently on scaffolded vs unscaffolded
questions. Naturally, students could be looking at the scaffolded
problems for help in solving the unscaffolded ones. This ability
adds value to this design: if students perform worse on the unscaf-
folded problems despite the scaffolding hints being on the same
assessment (which was given on paper, so students could see the
scaffolded questions alongside the unscaffolded ones), it would sug-
gest that students have not understood the design steps as a process
to approaching word problems. Figure 2 gives an example of each
of a scaffolded and an unscaffolded question.

Study Logistics. We recruited teachers to participate through a
message on the BS:A mailing list. In most cases, we gave teachers
PDFs for the pre- and post-tests; the teachers printed the tests,
matched the pre- and post-tests by student, and de-identified the
tests with unique numbers. This past year, we offered to provide
pre-numbered bundles of tests (to save teachers the overhead of
matching them). In both cases, teachers mailed the hard/paper
copies back to us. We graded all of the tests ourselves to ensure
consistency. We asked teachers to allow the students 30 minutes for
each test. Teachers gave the pre-test before they started teaching
BS:A (or in some cases, within the first week before they got into any
of the content on the test); teachers gave the post-test sometime
after finishing BS:A (we did not stipulate how close or far the
post-test should be given relative to the end of the BS:A unit).
Participating teachers received a choice of incentives (Amazon gift
cards, BS:A t-shirts for students, or BS:A teaching workbooks for a
subsequent school year).

Figure 3: Histogram of Pre and Post Test scores [N=468]. Pre-
test scores are the left bar; post-test scores are the right bar.

Participants. Twenty-two distinct teachers provided data. We
gathered data between 2014 and 2017. Teachers came from multiple
states across the USA and represent several school types and district-
level demographics. From across the 22 teachers, we received a total
of 468 matched pre- and post-tests. Students who submitted only
one of the two tests were dropped (and are not counted in the
468). Most students were in grades 7 through 10 (ages 12 through
15), though at least one teacher provided matched data from eight
upper-level high school students (12th grade/age 17). All students
(regardless of grade level) did the same problems. Not all teachers
provided grade-level data, so we do not include that in our analyses.
We did not collect student gender, race, or socio-economic data.

5 ANALYSIS AND RESULTS
In our analyses, we report students’ scores on each test as the per-
centage of questions that a student answered correctly. We use
percentages rather than question counts because different tests
contained different numbers of word problems in different years
(sometimes 6, sometimes 9). Questions were weighted equally. We
did not give partial credit. Unless noted otherwise, our analyses
treat blank answers as incorrect (rather than separate blank answers
from incorrect ones).

5.1 Performance on Symbolic Form Questions
Figure 3 shows the distributions of pre and post-test scores on the
symbolic form questions across the entire dataset. For scaffolded
problems, the symbolic-form questions were part (c) as shown in
the top sample in fig. 2; for unscaffolded problems, the symbolic
form was the entire question (the blank line in the bottom sample
in fig. 2). There is one data point per student (the percentage-based
score across all symbolic form questions on the corresponding test).

Using a paired t-test, the differences between pre- and post-
test scores are significant (p < .0001), with an effect size of .888
(by Cohen’s d) and a 95% confidence interval of -0.32 to -0.26. This
supports the findings of our original paper [7] showing performance
gains on standard algebra assessments.

Figure 4: Distribution of types of incorrect free-response an-
swer to symbolic form questions [N=113].

Changes in Incorrect Answers. Even students who answer incor-
rectly on both the pre- and post-tests could be making progress,
depending on the kinds of wrong answers that they provide. Fig-
ure 4 shows the distribution across categories of wrong answers for
questions that asked students to write the symbolic form free-hand
(as in the lower problem in fig. 2, though some of these problems
were scaffolded with parts (a) and (b) of the upper problem). The
categories of mistakes we found were leaving the question BLANK,
writing a text DESCRiption of the answer, writing just a constant
NUMber, writing a variable-free numeric expression (NUM-Expr,
such as “5 + 4”), writing a number and units but not using vari-
ables (NUM-Units, such as “3 cans”), writing an expression with
a variable other than the given parameter (EXPR-FreeVar), writ-
ing an incorrect arithmetic expression over the correct parameter
(EXPR-Wrong), writing a call to a function that wasn’t named in
the problem (FUNCALL, such as “f(10)” for an unknown “f”), and
writing unrelated comments (MISC).

Students who used incorrect variables (EXPR-FreeVar) typically
fell into two broad camps: those who used the intended function
name as a variable, and those who used x or n as a variable (when
these were not the given parameter name—these are typical vari-
ables used in writing equations and formulas). Typical answers in
the EXPR-Wrong category used the wrong operation (+ instead
of *), or combined the problem constants and parameter with the
wrong operation (such as 5s + 10 instead of 5 + 10s).

Figure 4 shows a significant drop in the number of blank answers;
the number of students simply entering single numeric answers
drops to close to zero. Students make headway on putting only the
correct parameter in formulas (EXPR-FreeVar), a discipline which
one could expect that writing code would reinforce. The persistence
of NUM-Expr errors, in which the symbolic form doesn’t reference
any variables, points to students who lack a fundamental under-
standing of functions as a concept. It would be interesting to see
whether such students understand this concept in the programming
context and haven’t transferred it to algebra, or whether they fail
to understand the concept in either domain. This is an important
topic for future study.

Figure 5: Histogram of scores on scaffolded (left bar) and un-
scaffolded (right bar) post-test questions [N=109].

Figure 6: Pre and Post scores on writing examples [N=222].

5.2 Scaffolded Versus Unscaffolded Problems
Figure 5 compares student performance on scaffolded and unscaf-
folded word problems on the post-test, based on data from 109
students (we only collected data on unscaffolded problems in the
last year of our study, after confirming that we were seeing per-
formance gains on the fully scaffolded problems from the first two
years). The graph actually shows students having a stronger perfor-
mance on the unscaffolded problems, a result we didn’t expect. A
paired t-test of scaffolded and unscaffolded problems yields signifi-
cance of p < .0001, but only at an effect size of .39. This result does
not appear due to students leaving more scaffolded answers blank:
there are 20 instances of a scaffolded symbolic-form question being
left blank compared to 35 unscaffolded questions being left blank. It
may be related to Heffernan and Koedinger’s results that students
struggle with expressing word problems in algebraic language more
than with figuring out what computation a problem requires [3].
In future work, we need to gather more data and conduct different
analysis to confirm and explain these data.

5.3 Performance on Writing of Examples
Writing examples of computations is a key component of the BS:A
pedagogy, and aligns with students writing input/output tables
in an algebra context. Part (b) of scaffolded word problems asked
students to provide two examples for each word problem they were
asked to solve (see fig. 2). We are interested in how students evolve

Figure 7: Relationship between examples and symbolic form
scores on the post-test [N=222].

in this task, in part because we feel the ability to articulate examples
is a valuable skill in both programming and in mathematics.

Figure 6 plots students’ scores on writing examples in the pre-
test versus the post-test (one data point per student). (We report this
data only for students from the last two years of our study (N=222)
because we had not tracked data at this detail in the first year of
the study.) The graph shows that students are stronger on writing
examples in the post-test. A paired t-test shows the differences are
significant at p < .0001 (with a Cohen’s d of .575). These computa-
tions, however, do not distinguish wrong answers from examples
that are left blank. In 2016-17, we began distinguishing blank and
incorrect answers in our grading; for the 140 students in that cohort,
the percentage of blank answers does generally decrease from pre
to post, but the number of blanks rises for 42 students. No particular
variables (such as teacher or grade level) characterize the students
in this group; they could have run out of time or not taken the test
as seriously. We lack information to unpack this issue further.

Figure 7 plots the relationships between each student’s scores
on writing examples and answering symbolic form questions on
the post test. Spearman’s rho shows that writing examples and
answering symbolic form are correlated (p < .0001, rho = .457). The
graph illustrates that some students perform well on each of these
two tasks while performing poorly on the other.

5.4 IRT Analysis Across Recipe Elements
For another perspective on how student performance evolves across
the different design-recipe elements, we ran an Item Response
Theory (IRT) analysis. IRT measures a population’s performance on
each question as a function of a latent trait θ (e.g., understanding of
functions). For each item, IRT provides a measure of the question’s
difficulty (β) and discrimination (α). A larger α suggests that a
particular item was a highly-discriminating measure of θ for that
population. A β of 0.25 means that a student who is one quarter of
a standard deviation above the mean is expected to have an even
chance of generating a correct response, and a higher β implies that
a correct answer on a particular item is associated with a higher
level of θ (relative to the population).

Figure 8: IRT graphs from each step of the design recipe,
looking at similar problem from each of the pre- and post-
tests. Each IRT plot shows curves for domain, range, two ex-
amples, and determining the symbolic form.

For each of the pre- and post-tests, we captured the correctness
of students’ answers on the domain, range, two examples in the
input/output table (each example as a separate score), and the sym-
bolic form of the function. This yields a total of 5 answers for each
scaffolded problem and 1 answer for each unscaffolded problem.
We ran a separate IRT analysis across all of the answers on each of
the pre- and post-test data. Figure 8 shows the characteristic curves
for each subpart of one question from each of the pre-test and
the post-test (the analysis was done by constructing a latent-trait
model using the ltm package and function in R). The questions from
which these curves arise ask students to produce similar symbolic
formulas, but the word problems use different contexts.

The symbolic form curve in the pre-test (SYM, α=2.732, β=0.704)
has a gentler slope and is shifted slightly left of the curves for
domain (α=3.976, β=1.005), range (α=6.173, β=1.085), and examples
(α= 0.891, β=4.938 for both). This suggests that on the pre-test,
students were more likely to correctly answer the symbolic form
questions than others, regardless of their ability (θ). This is not
necessarily surprising: most math classes spend considerable time
on this form, but far less (if any) time on the terminology of domain
and range, or the practice of writing examples. The higher difficulty
and discrimination of these items merely shows that they evaluate
specialized knowledge that few students possess during the pre-test.

Given that domain and range play a central role in BS:A’s problem-
solving strategy, we expect students’ understanding to shift from
being specialized knowledge (harder, more discriminating) in the
pre-test to more general knowledge (easier, less discriminating) in
the post-test. Indeed, this expectation in born out in the analysis,
as the domain and range curves have a gentler slope and shift left

(β drops from 1.005 and 1.085 to -0.032 and 0.048), indicating that
the relative proportion of the students who were able to correctly
answer these questions increased from pre to post. α also decreases
from pre- to post-test (from 3.976 and 6.173 to 2.139 and 1.619), sug-
gesting that domain and range play a smaller role in discriminating
students’ level of θ in the post-test than they do in the pre-test.

Interestingly, the α values on the examples curves increase rela-
tive to the pre-test (from 4.938 on both to 5.85 and 40.690), suggest-
ing that having students provide examples improved as an indicator
of their understanding of functions on the post-test. The sharp dif-
ference in α between the two post-test example curves may indicate
that asking for a second example is a more useful measurement of θ
than asking for just one, a question worthy of future study.

This effect was even more pronounced for the distribution of
correct answers to the symbolic form question. The measure of
difficulty dropped from pre (β=0.704) to post (β=0.101), meaning
that the likelihood of a correct response required that students be
only 0.101 SD above the mean in the post-test, compared to nearly
seven times that amount above the mean in the pre-test. The shift
in difficulty implies that the portion of students who possessed
sufficient θ also increased relative to the pre-test. Meanwhile, the
usefulness of this type of question as a discriminator also improved
from α=2.732 to α=5.909.

The trends from these particular two problems are similar to
what we see across other problems on the pre- and post-tests.

6 THREATS TO VALIDITY
In general, we do not have information on what courses or lessons
students were taking in parallel with BS:A. It is possible, for example,
that some students were taking another math class in parallel to
their BS:A course, and that some of the content tested on our post-
test had been covered in the math class. We guard against this in
part through having a large number of teachers participating in
data collection. In addition, many (though not all) of the teachers
who provided data are math teachers who were using BS:A in a
math class, so students would not have been taking a math class in
parallel. However, teachers use BS:A in different models: some do
the curriculum in a concentrated chunk, some spread it over several
weeks, and so on. Thus, there are almost certainly variations across
the math teachers in how their BS:A curriculum interacted with
other aspects of their courses. This paper again relies on a larger
teacher population to ameliorate this issue in our analysis.

Unlike in our initial study, we did not have control groups. Our
ideal control group would be another section of the same math
course taught by a participating BS:A teacher. None of the teachers
who provided data were able to provide a control group (for varying
reasons). The lack of control groups mainly affects comparisons
between pre- and post-test performance. It is not relevant, however,
to comparisons of performance on scaffolded versus unscaffolded
problems by the same student, or for the IRT analysis. Thus, key
parts of our study are not affected by the lack of controls.

7 CONCLUSION AND FUTUREWORK
Our analysis goes beyond our initial paper in several ways. We
confirm their findings that students improve significantly on alge-
bra word problems after BS:A, but also go farther: based on the

wrong answers to symbolic-form questions, we find students make
certain (arguably more serious) errors less often on the post-test.
This suggests that the impact of BS:A goes beyond what simply
grading indicates, while also pointing to underlying skills that BS:A
teachers and curriculum designers should drill more explicitly.

Our study also removes design-recipe scaffolds from half of the
post-test questions. Students perform just as well (if not better) on
the unscaffolded problems. Since some problems on the post-test
were scaffolded, one should wonder whether students were copying
scaffolding steps to solve unscaffolded problems. A sample of the
actual test papers didn’t reveal this behavior, but a future study
should contain only unscaffolded problems.

Going forward, we want to explore whether errors that arose
on the symbolic form questions manifest similarly in both the
programming and mathematical contexts. We want to analyze our
error data on domain and range questions (an analysis which did
not fit into this paper). Overall, we want to continue to explore
finer-grained impacts of the components of the BS:A design recipe,
so that we might understand effective ways to integrate math and
CS for the benefit of both disciplines.

To this point, our main instructional takeaway is that working
with and relating multiple representations of functions—whether
in math or computing—seems to positively impact students’ abili-
ties to express word problems in code and formulas. Articulating
domain/range (types), writing examples (tests), and writing sym-
bolic form (code functions) are important skills for programmers
as well as algebra students. While we do not yet know the relative
impacts of these skills on understanding and using functions, a
multi-representational approach such as the BS:A design recipe
seems a useful and lightweight method for developing them.

ACKNOWLEDGMENTS
We thank all the teachers who provided us data. We are deeply
grateful to Leigh Ann DeLyser for suggesting and helping us set up
the IRT. We are grateful to Peter Hahn for his outstanding work on
the data analysis. This work is partially supported by the US NSF.

REFERENCES
[1] Bootstrap:Algebra [n. d.]. The Bootstrap:Algebra Curriculum. http://www.

bootstrapworld.org/materials/courses/algebra. ([n. d.]).
[2] J.D. Bransford and D Schwartz. 1999. Rethinking transfer: A simple proposal

with multiple implications. In Review of Research in Education. Vol. 24. American
Educational Research Association, 61–100.

[3] N. T. Heffernan and K. R. Koedinger. 1998. A developmental model for algebra
symbolization: The results of a difficulty factors assessment. In Proceedings of the
Twentieth Annual Conference of the Cognitive Science Society. 484–489.

[4] National Council of Teachers of Mathematics. 2016. Should mathematics course
requirements for high school graduation be satisfied by computer science
courses? (an NCTM Position Statement). Available online, last accessed Feb
22, 2017 at http://www.nctm.org/Standards-and-Positions/Position-Statements/
Computer-Science-and-Mathematics-Education/. (Feb. 2016).

[5] D Perkins. 2009. Making Learning Whole. Jossey-Bass, San Francisco.
[6] Peter J. Rich, Keith R. Leatham, and Geoffrey A. Wright. 2013. Convergent

cognition. Instructional Science 41, 2 (March 2013), 431–453.
[7] E Schanzer, K Fisler, S Krishnamurthi, and M. Felleisen. 2015. Transferring

skills at solving word problems from computing to algebra through Bootstrap. In
Symposium on Computer Science Education (SIGCSE). 616–621.

[8] Geoff Wright, Peter Rich, and Robert Lee. 2013. The Influence of Teaching
Programming on Learning Mathematics. In Society for Information Technology &
Teacher Education International Conference.

http://www.bootstrapworld.org/materials/courses/algebra
http://www.bootstrapworld.org/materials/courses/algebra
http://www.nctm.org/Standards-and-Positions/Position-Statements/Computer-Science-and-Mathematics-Education/
http://www.nctm.org/Standards-and-Positions/Position-Statements/Computer-Science-and-Mathematics-Education/

	Abstract
	1 Introduction
	2 Related Work
	3 An Overview of BS:A
	4 Study Design
	5 Analysis and Results
	5.1 Performance on Symbolic Form Questions
	5.2 Scaffolded Versus Unscaffolded Problems
	5.3 Performance on Writing of Examples
	5.4 IRT Analysis Across Recipe Elements

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

