
Building an Accessible Block Environment
Multi-Language, Fully-Accessible AST-based Editing in the Browser

Emmanuel Schanzer
Bootstrap

Brown University
Providence, RI USA

schanzer@bootstrapworld.org

Sina Bahram
Prime Access Consulting

New York, NY USA
sina@sinabahram.com

Shriram Krishnamurthi
Department of Computer Science

Brown University
Providence, RI USA

sk@cs.brown.edu

ABSTRACT
UncleGoose is a toolkit that provides a fully-accessible block
environment, for multiple languages. The toolkit generates (1) a
block editor that uses standard drag-and-drop conventions familiar
to sighted users while also (2) using keyboard navigation and
spoken feedback that is familiar to visually-impaired users. The
mechanism used creates unique opportunities for (3) separating
the description of a block from the visual or textual syntax of that
block. This effectively provides a third representation (beyond
text and blocks), which is spoken aloud and can be tailored to a
specific audience. The toolkit lives entirely in the browser and
relies on web standards, needing no plugins or server support.

Finally, UnceGoose is implemented as a wrapper for the widely-
used CodeMirror library, which is used to display source code
using syntax highlighting, bracket matching, and indentation. Any
project that already uses CodeMirror can use our toolkit with
minimal effort. By providing a parser that implements our API,
these projects can quickly implement a block editor on top of their
text editor, while also getting a fully accessible programming
environment that goes far beyond the reading of code.

KEYWORDS
Accessibility, Visually Impaired/Blind Programmers;
Screenreader; Navigation; Code Structure, Blocks

ACM Reference format:

Emmanuel Schanzer and Shriram Krishnamurthi. 2019. Building an
Accessible Block Environment. In BLOCKS+, ACM SPLASH BLOCKS+
2018 Workshop. ACM, New York, NY, USA.

1 The Promise of Block Environments
From the perspective of most compilers, well-formed programs
are trees: the Abstract Syntax Tree (AST) describes the
underlying structure of a program. This AST is typically
represented as textual syntax, due to the ease of rendering and the
density of information it affords. However, not all valid text-edits
correspond to tree-edits. Deleting a word makes perfect sense
when thinking of a program as a long list of words, but doing so
can make it impossible to create the AST. This forces
programmers to effectively keep track of the tree – in their heads
– while working with the text in front of their eyes. This is a

challenge even for sighted programmers, who use an array of
visual cues such as syntax highlighting, bracket matching, and
auto-indenting to help keep track of the AST.

But for visually-impaired (VI) users, these cues are of little help.
They are hit particularly hard by the loss of structure [5, 8], and
prior work has shown improved comprehension when they are
able to navigate the structure of the program rather than the
syntax [2]. Block environments would seem to be a solution, as
they also represent a tree structure. Ironically, blocks rely even
more heavily on visual metaphors, making many block tools a
step backwards for the 65,000 VI students in the US alone [6].

2 The Challenge of Accessible Block Environments
Many of the metaphors on which block programming
environments rely are inaccessible or directly in conflict with
metaphors for navigating trees with a screen reader. In this
section, we discuss a small collection of these metaphors.

2.1 Shifting Focus
When navigating, VI users should always have access to certain
information: the label (“what am I looking at?”), the level (“how
deep am I?”), the size of the set (“how many are there at this
depth?”) and the position within the set (“which one am I on?”).
Blind users have well-established conventions for navigating tree
views, with well-known keyboard shortcuts, vocalizations, and
behaviors that provide this information [4]. Unfortunately, the few
block environments that attempt to be accessible often implement
their own, incompatible conventions for navigation.

2.2 Moving Code
Most block environments rely exclusively on drag-and-drop,
where a block is moved from one parent to another. This is
completely inaccessible to VI users who cannot see the screen.

2.3 Selection v. Focusing
Blind users must distinguish between what they have selected and
the location of their focus. In text editors, this is accomplished via
a distinction between “selection” and “cursor”. However, due to
the concrete metaphor of grabbing a block, this distinction simply
does not exist in block editors. A node is only selected when it is
grabbed, and attempts to implement “grabbing” for VI users fail
to provide a separate metaphor for selection.

BLOCK+ 2018, November, 2018, Boston, Massachusetts USA E. Schanzer et al.

2.4 Search is Expensive
Few block editors provide search tools, instead assuming the user
will scan the screen to find what they’re looking for. This is a
reasonable assumption for most sighted users, but not for VI users
who must manually search through potentially hundreds of blocks
to find what they are looking for.

3. Implementing an accessible block environment
Our approach begins with an accessible tree view, rendered using
the browser DOM. When a change is made to the tree, we make
that change to the underlying text, re-parse the program into an
AST, and redraw the tree.

3.1 Web Standards
By using on W3C ARIA conventions [1], we communicate the
label, level, size and position to the installed screen reader, and
UncleGoose behaves just like any other tree view. Users will even
hear their custom vocalization settings when using UncleGoose!
We also make ample use of other ARIA and CSS attributes,
providing a distinction between focused (:focus) and selected
(aria-selected=true), and even a robust form of code-
folding (aria-expanded=false). This allows users to
collapse whole ranges of code, and quickly “skim” without having
to navigate through every block or line of code.

One block collapsed and selected, with focus on another

 3.2 Describing Nodes with Plain Language
function foo(x,y) { return x + y; }

How should this be read? Reading every symbol on the line – the
status quo for most VI users – seems cumbersome. Our toolkit
allows for plain-language labels that put important information
first: “foo, a function definition with two inputs”. The user can
navigate inside foo to explore, or move to a sibling. The label is
up to the parser, and could be worded instead in Spanish, or using
different vocabulary selected for a target age group. Prior work
has shown that this form of “semantic prioritization” results in
better comprehension for screen-reader users [8], allowing
UncleGoose to be a pedagogical support, rather than a constraint.

3.3 Search
The AST editor provides a robust search tool, which allows users
to search for strings, regular expressions, and even node types
(e.g.: “find me all the class definitions”).

3.4 But What About Sighted Users?
Our AST nodes exist in the browser DOM, and can be styled
using CSS to appear similar to blocks in Scratch or Snap!. More

importantly, we support the drag-and-drop modality. Sighted
users who have used other block editors will feel right at home.

3.5 Performance
CodeMirror [3] already provides high performance when working
with large documents, by ensuring that only nodes that are visible
are rendered to the DOM. By rendering the AST root nodes inside
of CodeMirror, we have been able to provide good performance
and memory use even for large programs.

4. User Studies
Alpha testing began with an April 2016 pilot with blind students
in Alabama. We then partnered with AccessCSforAll to conduct a
formal user study, in which users were given a set of tasks to
complete both with and without the editor. Participants had better
accuracy when completing the tasks, were better able to orient
when reading through code, and felt better about completing the
tasks when using the tool instead navigating plain text.
Importantly, these improvements came with no significant change
in completion time over plain text, even for experienced
programmers who use screen readers set to more than 900 wpm.

5 Future Work
This toolkit is available now in a beta version of the Racket IDE
used by Bootstrap, and the source code is available on GitHub.
We are currently building a language mode for the Pyret
programming language, and talking to other teams about doing the
same. While editing is already supported, we have also received
valuable feedback from VI users about additional features that
would support the process. For example, we could use the static
analyzer from the compiler to allow a variable to quickly point to
its definition. This and other features are all slated for future
work, as well as research into how the language of node
description can better support learners.

ACKNOWLEDGMENTS
We are grateful to AccessCSforAll for collaborating and helping
to fund the user studies. We also wish to thank the ESA
Foundation, US National Science Foundation, and Vint Cerf for
their financial support, without which this project would not exist.

REFERENCES
[1] World Wide Web Consortium. Accessible Rich Internet Applications (WAI-

ARIA) 1.1 W3C Recommendation 14 December 2017. Retrieved August 29th,
2018 from https://www.w3.org/TR/wai-aria-1.1/

[2] Catherine M. Baker., Lauren R. Milne., and Richard E. Ladner. 2015.
Structjumper: A tool to help blind programmers navigate and understand the
structure of code. In Conference on Human Factors in Computing Systems.

[3] CodeMirror. Retrieved August 29th, 2018 from https://codemirror.net/
[4] Becky Gibson. 2007. Enabling an accessible web 2.0. In International Cross-

Disciplinary Conference on Web Accessibility.
[5] Sean Mealin, Emerson Murphy-Hill. 2012. An exploratory study of blind

software developers. In Visual Languages and Human-Centric Computing.
[6] National Federation for the Blind, Retrieved August 29th, 2018 from

https://nfb.org/blindness-statistics
[8] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and

Daniel Garcia. 2009. "Sodbeans." In International Conference on Program
Comprehension. pp. 293-294.

