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ABSTRACT

Background and Context. Program planning has been a long-
standing and important problem in computing education. Finding
useful primitives for planning and assessing whether students are
able to understand and use these primitives remain open problems.
We make progress on this problem by using higher-order functions
(uOFs) as planning operations. Not only are HOFs increasingly preva-
lent in computing broadly, some data science programming sources
also recommend their use in planning solutions to data-processing
pipelines, giving our task additional applicability.

Objectives. We first wish to confirm that students can under-
stand the behavior of individual HOFs. We also seek to understand
which behavioral features of these HOFs are reflected in their under-
standing. We then investigate their ability to plan solutions as the
composition of HOFs. We examine this from two perspectives: rec-
ognizing compositions from examples, and describing compositions
to solve problems.

Method. Our work is situated in early-stage tertiary education.
To investigate student understanding of individual HOFs, we present
them with both input-output examples and open-ended questions.
To investigate the composition of HOFs, we use two formats. First,
we use the same input-output format as for individual HOFs. We
then ask students to construct concrete plans for programming
problems defined using text. These plans were constructed using a
tool that was custom-built for this work. Students were then asked
to write programs to solve the same problems. We perform both
quantitative and qualitative analysis of the responses.

Findings. We find students are proficient at recognizing individ-
ual HOFs through input-output examples. They use a variety of
features to identify HOFs, with the most prominent features being
type-based. While they do have difficulty recognizing compositions
of HOFs presented in the same input-output example format, there
may be simple explanations for this. Either way, students are able
to produce correct plans that require composing HOFs, and can
successfully translate these plans into correct code.

Implications. We believe work in this vein has many useful con-
sequences for programming education. Explicit planning atop a
vocabulary of primitive operations has not received much attention
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in computing; our work suggests that HOFs provide a useful initial
set of planning primitives. (These are, however, generic and not
problem-specific, so there is much room for growth.) However, stu-
dents’ possible difficulties in recognizing HOF compositions from
examples warrants further attention.
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1 INTRODUCTION

Programming is a complex activity that requires significant atten-
tion to detail. These details can vary greatly in levels of abstraction,
from the very low (e.g., primitive datatype coercions) to the very
high (e.g., algorithmic and heuristic choices). Maintaining all this
detail can be onerous, with significant amounts of extraneous cog-
nitive load.

For these and other reasons, there is a long history of trying to
teach students to plan solutions. In principle, plans can focus on
high-level solution strategies and avoid some low-level implemen-
tation details. By abstracting solutions to these strategies, it should
also become easier to identify similarities between solutions and
perhaps also transfer knowledge from one problem to another.

Unfortunately, the literature on planning and plan composition
has not made much progress over the decades. Studies that began
with the Rainfall problem [34] found students unable to solve the
problem, and the focus shifted to student difficulties rather than
student plans. Only in recent years have we seen students success-
fully able to solve this problem [10, 33] and other problems like
it [1, 12].

These recent successes largely ask students to write programs
and retroactively study the structures that students used. In contrast,
we explicitly return to the roots of this problem by asking students
to plan solutions up front. In particular, we give them a toolkit of
planning primitives and ask them to compose these into solution
structures.

What primitives can we provide? As a starting point, we choose
to use built-in higher-order functions (HOFs). There is nothing canon-
ical about this choice—one could just as well choose a different
origin. We nevertheless choose them for several reasons:
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e While they are programming language constructs, they also
represent a useful vocabulary for data manipulation. As re-
cent work [23] shows, students can understand them from a
behavioral perspective, not just as patterns of code.

o Influential data science educators like Hadley Wickham en-
courage their use for data processing [39, 40].

e They are increasingly built into most programming lan-
guages (including most recently Java 8). Thus, if students
acquire facility with them, that knowledge may be portable
(up to the limits of transfer).

Of course, our work is implicitly an experiment: to see whether HOFs
work for this purpose. For the style of problems we analyze, they
seem to do the job well. This may not generalize to other problems
(section 11), and we surely still need a much richer vocabulary of
planning primitives (section 13.2). Still, they provide a convenient,
concrete, operational starting point.

In this work we first establish students’ understanding of primi-
tive HOFs. Then we examine their comfort with HOF composition
and with planning. Finally, we examine the transition from plans
to code. Concretely, we ask the following research questions:

(1) How well do students understand individual HOFs? Con-
cretely:
(a) To what extent can students recognize example uses of
individual HOFs?
(b) What behavioral features of the individual HOFs do stu-
dents focus on when identifying these examples?
(2) To what extent can students recognize examples of composi-
tions of HOFs?
(3) How well are students able to plan out a solution to a problem
that requires a composition of HOFs?
(4) How well do students do at implementing these plans in
code?

2 THEORETICAL BASIS

Our work is fundamentally founded on the theory that students
are capable of forming meaningful abstract conceptualizations of
HOFs and using these abstractions together in composition to solve
problems. This belief is based in prior work from both cognitive
science and computing education research. Prior work in abstrac-
tion formation in cognitive science shows that the presentation of
multiple, perceptually disparate instances of the same abstraction
(which in our case would be a particular HOF) enables learners to
focus on and understand its deep common core [16]. Our recog-
nition instrument (section 6.1) is designed around this principle,
using multiple distinct examples to present a single HOF not only
to assess student recognition but to aid students in this abstraction
formation process.

Our work also builds extensively upon the work done by Kr-
ishnamurthi and Fisler [23] (subsequently referred to as KF21).
Their work suggests that HOFs can be treated as behavioral building
blocks, not only as (say) abstractions over code. Their perspective is
essential for our work: it would not make sense to use templates-of-
code as primitives for planning in a pre-programming phase. Thus,
our work critically depends on students being able to view HOFs as
atomic units of high-level behavior.
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This in turn means that we are not focused on schema forma-
tion [30, 38]. While these theories may apply, we believe abstraction
formation to be more relevant. Schema formation would primarily
apply if we wanted students to recognize the templates-of-code
underpinning each HOFs and to be able to use or adapt that tem-
plate in other similar scenarios, effectively creating their own HOF.
Instead, we go the opposite direction, hoping to treat each HOF as a
black-box abstraction which can then be used in planning.

We also hold (and in fact this work seeks to test) the core be-
lief that planning is useful for solving computational problems.
Specifically, we look at the planning process known in cognitive
science as subgoal decomposition. In this process, a problem is bro-
ken down into small goals, whose solutions are composed together
to solve the original problem [6]. For example, the goal of driving
one’s daughter to school is broken down into subgoals (e.g. get-
ting daughter and self into car, and driving car to school), each of
which is broken down into further subgoals (e.g. backing out of
driveway, driving on Main Street for 2 miles, taking a right on Elm).
Catrambone [4] demonstrated that when learners organize their
problem-solving process by subgoal, they are more successful in
solving the problem.

Computing problems which involve compositions of HOFs nat-
urally lend themselves to this subgoal decomposition model, and
the act of planning is then the act of decomposing a problem into
constituent function calls, and then chaining these calls together
to create a final program which matches the original specification.
Critically, in our work all of this planning is done before any imple-
mentation, which forces students to focus on the act of creating and
organizing subgoals, and noticing similarities and differences in
this organization between problems, all before they have to interact
with the syntax of a specific programming language.

3 OTHER RELATED WORK

The field of plan composition was originally started by Soloway’s
study of the Rainfall Problem [34], and has been revitalized recently
by progress made by Fisler [10]. The work in this space seeks to
understand the process by which students generate code. All of
these works attempt to infer a plan or a planning strategy from
student-produced code [31], either during [11, 36] or after [8, 21]
the coding process. We are not aware of any prior work in the
planning space which explicitly discusses planning as a separate
step undertaken before the act of programming.

Some recent work in plan composition has included information
about student use of HOFs [1, 10, 12, 33]. We are, however, not
aware of literature which directly studies students’ understanding
of compositions of HOFs.

Subgoal decomposition is related to subgoal labeling. In subgoal
labeling, labels are assigned to different parts of a worked example,
which describe the purpose of that individual part to the learner.
This process and its benefit to learners in certain contexts has been
studied extensively, perhaps most notably by Morrison et al. [26, 27]
and Margulieux et al. [24, 25]. However, all of the previous subgoal
labeling work has been at a very low level, working with individual
syntactic elements of an imperative programming language. None
of this work addresses constructs like higher-order functions, which
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have a more rich semantic behavioral interpretation, or the func-
tional programming space, where the subgoals are not necessarily
arranged linearly as they might be in imperative programming.
Our work does not involve explicit subgoal labeling, but one could
potentially view our planning activities as conceptually asking stu-
dents to come up with their own (unlabeled) subgoals for different
parts of the problem.

In a similar vein, one may find commonalities between our work
and work done by Muller et al. [29] on pattern-oriented instruction
(POI), where students are taught to attach labels to specific program-
ming patterns, and to look for these patterns when approaching
new problems. De Raadt built on this idea in his dissertation on
explicitly teaching programming strategies [7]. But as with sub-
goal labeling, this previous work has all been at very low level and
only in imperative programming languages. Additionally, this work
still does not explicitly describe any concrete student plans, and
must resort to inferring a plan or strategy from submitted code
and/or prose descriptions of the submitted code submitted after the
programming was completed.

Another line of work to which we could be compared is the
Prolog Tutor [19]. This work builds upon the idea established by
Gegg-Harrison [14] that most programs in a domain (e.g., logic
programming) can be identified and classified by shared high-level
“schemata”, or even compositions of these schemata. There is a clear
analogy between the Prolog schemata and our HOF abstractions,
but like plan composition, this is a line of work in which students
are not asked to plan with these schemata before programming.
All of the systems in this line of work use the schemata to provide
feedback to a student once that student has already started engaging
with the programming language.

Our work also builds on and goes beyond KF21 in several ways.
First, we confirm (section 7.1) their basic experimental results. (In
the process, we also extend their results to recognition of compo-
sitions (section 8).) Second, whereas they provide students with a
behavioral understanding (which is not subsequently tested), we
check whether students have generated one for themselves (sec-
tion 7.2). The rest of this paper (on composition) is entirely new
relative to their work.

4 SCOPE

In this work we limit ourselves to discussions of HOFs that oper-
ate on lists. We focus specifically on map, filter, andmap, ormap,
sort, and take-while. Except for take-while, all of these HOFs
exist in most common programming languages, though sometimes
by different names. We use Racket’s [13] names, following our
study setting. The documentation (both definition and examples)
for take-while were created in the same style as the documenta-
tion for the other HOFs in Racket, and was presented to students at
the beginning of our first instrument (section 6.1). Table 1 contains
a brief description of each of the allowed HOFs. All operations are
functional, i.e., they create new outputs rather than modify the
input.

All of these HOFs have the form HOF (f, L) where L (the listarg)
isalist and f (the funarg) is a function that consumes elements from
L as input. (Applying these ideas to other datatypes is interesting
future work but outside the scope of this paper.)
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When we refer to HOF composition, we specifically mean the
nesting of different HOF calls to solve a particular problem. The
inner HOF may be called in either the funarg or listarg of the outer
HOF, and may be nested an arbitrary number of levels deep.

We intentionally left fold and its variants out of this study. fold
is a universal function among the HOFs, that is, all of the other HOFs
can be written as instances of fold. As KF21 report, this makes
student responses much more ambiguous and hence difficult to
interpret. We do still see some number of students referencing
or using fold in their responses, even in places where we made
effort to exclude it for the purposes of our study, and we view
understanding student conceptions of this universal function as
important follow-up in this line of work.

5 SETTING

This work is situated at a highly selective private university (ter-
tiary) in the United States. All studies were within the context of
an accelerated introductory CS course, which is primarily taken
by incoming first-year students. About two-thirds were first-year
students (typically 18 years old); the rest had already had at least
a semester of tertiary study. About 10% had no prior computing
experience, with the rest having taken some (secondary school)
computer science, up to the AP CS A course, with a handful having
gone farther. Nearly all were new to functional programming.

In order to place into the course, students had to satisfacto-
rily complete a month-long module (over Summer 2021) which
teaches beginning functional programming using How to Design
Programs [9] (HTDP), with graded exercises approximately every
ten days. The material of this module roughly compares to the first
month of a conventional introductory course at the same university.
The module is taught entirely in Racket. The studies are specifically
set within this placement process.

The book uses types but as comments (rather than statically
checked). This includes parameteric types. Every function presented
includes its corresponding type signature, including the functions
students are asked to write in the module exercises.

The last graded exercise in the module asks students to redo
the same problems from the previous exercise, but using only the
provided HOFs and no explicit recursion. All of the problems require
a composition of HOFs.

This exercise came with a required pre-reading (Part III of HTDP),
in which students were first introduced to HOFs. Our first instru-
ment (section 6.1) was included at the end of the reading as a “check
your understanding” activity. This activity was not mandatory and
not graded, and there were 56 students who completed the activity.

Students were asked to plan out their solutions to this exercise
before coding, using a custom variant of Snap! [18] (section 6.3).
Submitting Snap! plans was considered a mandatory part of the
exercise, but the plans were not graded. 109 students submitted
code for this exercise. Of these students, only 105 students sub-
mitted Snap! plans. Four of the students who submitted plans did
not follow the given instructions, and so we exclude them from
analysis to allow for a consistent coding scheme. One student did
not submit plans for the first two problems, but we do analyze their
plans for the last two problems. One student dropped the class
between planning and finalizing their code submission, and so we
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Table 1: Higher-order Function Descriptions

HOF Description
map Transforms the input list point-wise by applying the funarg.
filter Retains those elements of the input list that satisfy the funarg predicate.

andmap Determines whether all elements satisfy the provided funarg.
ormap Determines whether any elements satisfy the provided funarg.
sort Sorts the input list using the funarg as the ordering comparator.

take-while Retains all elements of the input list that satisfy the funarg predicate until the first to fail it.

did not analyze their code, which left some functions unfinished
and others unimplemented. One more student submitted code with
unimplemented functions, but stayed in the class. We include the
functions they did implement in our analysis. In total we have: 101
students who submitted 402 analyzable plans, and of those we have
100 students who submitted 398 analyzable code implementations.

Another instrument (section 6.2) was sent out in the weeks be-
tween the end of the placement course and the start of the semester.
This instrument was optional and was not considered a part of the
required module. 55 students completed this instrument.

We recognize that we may have been able to get more detailed
data with closer monitoring of individual students, by assessing
their detailed recognition or planning processes. In the pursuit of an
inclusive classroom environment for all, we intentionally chose to
not implement any such system. Surveillance systems can produce
significant anxiety in the students being watched [17], which may
have altered either the process they used or even their overall
performance. Students are particularly likely to feel this anxiety,
and show resulting performance decrements, when they perceive
themselves to be at risk of conforming to negative stereotypes about
their social group [35]. By avoiding imposing these anxieties, we
are in fact able to get a more accurate and reliable reading than we
might otherwise.

6 INSTRUMENTS

In this section we present an overview of the instruments used in
this study. Some instruments may consist of multiple parts that
help to answer more than one research question.

6.1 Classifying Examples by HOFs

Before we ask students to plan using HOFs, we want to ensure
that students have a grasp of the HOFs we are asking them to
use. We use the following instrument to confirm that students are
capable of recognizing uses of HOFs. This instrument is inspired
by, but significantly extends, KF21, which first studied student
understanding of HOFs.

We provide students with 25 questions. Each question consists of
a set of three input-output examples (written in Racket syntax), and
asks them to identify the (a) single HOF(s) or (b) composition of HOFs
that could be used to produce the examples, or to (c) indicate that
it is impossible with the HOFs given. Students could only choose
from the following five HOFs: map, filter, take-while, ormap, and
sort.

Table 2 shows the breakdown of the tasks. Each single HOF
was given in three forms (e.g., Filter1, Filter2, and Filter3) with a

consistent structure. We illustrate this through an example first.
(The full set of questions is available in appendix A.) Here are the
three pairs for Filter1:

(list 2 3 6) — (list 2 3)
(list 523627) — (list 52 3 2)
(list 2396 91 4) — (list 0 3 1 4)

All three can be solved by using the same funarg (e.g., one that
removes all elements > 6). Here is Filter2:

non

(list "property" "logic" "testing
— (list "property" "logic" "code")

code")

(list "friend" "boyfriend" "girlfriend" "weekend" "coffee")

— (list "coffee")
(list "many" "plethora" "few" "dearth" "solitary
— (list "many" "few" "one")

"non

one")

Here, each one (can) require(s) a different predicate as a funarg, but
they are all of the same type (String -> Boolean). In case this
problem seems rather hard, recall that students are not being asked
to guess what the predicates are; rather, they are only being asked
to identify which of the five given HOFs could produce this output.
Therefore, they only need to know whether this is a “map kind of
transformation”, “filter kind of transformation”, and so on.

Finally, Filter3 goes even further, varying even the type signature
of the funarg:

(list "lion" "bear" "tiger")

— (list "lion" "tiger")

(list (list 1 3 4) (list 2 5) (list 3 7 9 8) empty)
— (list (list 1 3 4) (list 3 7 9 8))

(list true false true true false false)

— (list true true true)

In general, the HOF1 triples are all produced by the same funarg,
the HOF?2 triples by different funargs but with the same type, and
the HOF3 triples by different funargs with different type signatures.

We refer to these questions as the Single questions, of which
there are fifteen in all: five HOFs presented in three ways each. The
instrument also includes:

Multi Two questions that are intentionally ambiguous and
could be solved by either filter or take-while.

Identity Two questions where the output is the same as the
input, and hence can be solved by most given HOFs.

Comp Three questions that can only be solved by a composi-
tion of HOFs.

Impossible Three questions that cannot be solved by the HOFs
given, even in composition.
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Table 2: Classification Instrument: Summary of Questions

Question Correct Answer Correct HOF(s) Notes

Map1 SINGLE map Same funarg

Map2 SINGLE map Different funarg with same type signature
Map3 SINGLE map Different funarg with different type signature
Filter1 SINGLE filter Same funarg

Filter2 SINGLE filter Different funarg with same type signature
Filter3 SINGLE filter Different funarg with different type signature
TakeWhile1l SINGLE take-while Same funarg

TakeWhile2 SINGLE take-while Different funarg with same type signature
TakeWhile3 SINGLE take-while Different funarg with different type signature
Ormap1 SINGLE ormap Same funarg

Ormap?2 SINGLE ormap Different funarg with same type signature
Ormap3 SINGLE ormap Different funarg with different type signature
Sort1 SINGLE sort Same funarg

Sort2 SINGLE sort Different funarg with same type signature
Sort3 SINGLE sort Different funarg with different type signature
Multil SINGLE filter, take-while Different funarg with same type signature
Multi2 SINGLE filter, take-while Different funarg with different type signature
Identity1 SINGLE map, filter, take-while, sort | Identity function, same type signature
Identity2 SINGLE map, filter, take-while, sort | Identity function, different type signature
Compl COMP map(filter) -

Comp?2 COMP map (take-while) -

Comp3 COMP map(filter), map(take-while) | -

Impossiblel NOT POSS N/A Computing average

Impossible2 NOT POSS N/A Complicated math

Impossible3 NOT POSS N/A Duplicate list

In the process of designing the Comp problems, we realized that
there are major differences between different kinds of compositional
problems. Discussing this is outside the scope of this paper; instead,
it is the subject of a separate paper [32]. Following the terminology
of that paper, the Comp problems used for this instrument only
involved structural composition.

When answering, students could select from the following op-
tions:

SINGLE ‘I see how to produce each of these examples with
the same (single) higher-order function”
comp “I only see how to produce each of these examples
using a combination of higher-order functions”
NoT Poss ‘T don’t think these examples are possible to produce
with the given higher-order functions”
DK “I don’t know”

Students that selected sSINGLE were further prompted to multi-
select all possible HOFs they could use from the list above. Those
who chose comp were asked to indicate (text field) how they would
combine the available HOFs. Those choosing NOT PoOss were given
a text field to justify why they thought it was impossible. Students
that selected IDK received no further prompting.

These questions were presented in a random order, except for
the first question, which was always Map1l. We chose to fix the
first question to avoid presenting either a Comp or Impossible

question first, which might have confused students’ understanding
of the task.

Assessment. The authors carefully designed and studied the prob-
lems to have the answers indicated in table 2.

The correctness of any of the Single, Multi and Identity ques-
tions can all be checked automatically, by checking how many
students selected SINGLE and then, of them, how many selected
the correct HOF(s) from the multi-select. For these questions, any
student who selected comp or NOT Poss must also be incorrect,
regardless of their textual response, since either selection would
exclude a single HOF solution (“I only see..”).

The Comp and Impossible answers both have textual responses.
Therefore, the authors prepared codebooks, shown in tables 3 and 4,
to code these. The codebooks were arrived at by two of the authors
after three rounds of coding to obtain a Cohen’s k [5] of 1 for the
comp answers and 0.83 for the NOT POSs answers.

6.2 Behavioral Features of HOFs

Closed-set responses have the advantage of being (mostly) automati-
cally codeable. However, they are insensitive to subtle mental model
differences that would not change the response category. Following
best practices in educational assessment, we combined the closed-
set responses in section 6.1 with additional free-response questions,
to build an instrument which is both sensitive and systematic. To do
this, at the end of the placement process we include an open-ended
question asking students to describe high-level characteristics (what
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Table 3: Classification Instrument: comp codes

Label Definition

VALID-HOF-GROUP

Student proposes a solution which contains a group of Hors which can be composed into a valid
solution for all of the examples

VALID-HOF-INVALID-ORDER  VALID-HOF-GROUP + the student explicitly says how to compose the HOFs, but the composition is

DIFF-INVALID

INVALID

invalid for one or more examples because the HOFs are composed incorrectly

Student proposes a single solution, and the proposed HOFs cannot be composed into a valid solution
for all of the examples

DIFF Student proposes different solutions for different examples

DIFF + at least one of the proposed solutions is invalid

VAGUE = Student answer is too short or vague to be labeled with any other label
Table 4: Classification Instrument: NOT pPoss codes
Label Definition
DIFF  Student cites the need for different solutions for different examples
TYPE-VALID Student makes a valid argument based on the type signatures of the available HOFs
TYPE-INVALID  Student makes an invalid argument based on the type signatures of the available HOFs
HOF-PROP  Student makes an argument based on a property of one or more of the available HOFs, where that property is NOT

HOF-PROP-CANON

part of the type signature
HOF-PROP + the property is one of the ones included in KF21
Student cites a different function (which may or may not be a HOF) which would enable a solution to the problem

Student claims either that they don’t see a relationship between the input and the output, or claims that such a

Student does not actually present any reason (valid or invalid) for the question being impossible

ALTERNATIVE
if made available
NO-PATTERN
relationship does not exist
NO-REASON
VAGUE

Student answer is too short or vague to be labeled with any other label
Table 5: Behavioral Feature Instrument: Codes

Label Definition
FT Funarg type signature
IT Listarg type (saying "List" is sufficient)
OT Output type (saying "List" is sufficient)
WHE/I Which/how many elements of input determine an output element
OET/I For list outputs, output element type relative to input
OO/1 For list outputs, output order relative to input
OL/I For list outputs, output length relative to input

IODIFF Can output list elements be different from input elements?
OTHER Other property we didn’t account for
OPERATE  Operational description of the HOF
SPEC Hand-wavy “specification” of the HOF
IDK “Idon’t know”

KF21 called “behavioral features”) of these functions. The full text
of this prompt is as follows:

In the exercise we asked you to do before Placement 4,
we had you classify input-output examples represent-
ing uses of different higher-order functions (HOFs).
Now that you’ve had a bit more practice using HOFs,
we’d like you to reflect on what specific characteris-
tics of each HOF would help identify examples of that
function.

Below we have provided text boxes for some of the
HOFs you’ve worked with so far. Fill in each of them
with as many characteristics as you can think of for
that function.

For example:

e “map always produces a list”

e “the output elements of sort may not be in the same
order as the input elements”
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If you can’t think of anything, it’s okay to write “I
don’t know”.

Assessment. Because students were allowed to write free-form
textual answers, the authors prepared another codebook for the
responses. This codebook is shown in table 5. Because each label
can be applied independently of any other label, we compute a
Cohen « for each label after three total rounds of coding between
two authors, with a minimum « of 0.744. The codebook was seeded
by the table in figure 1 from KF21.

6.3 Planning with Snap!

The final exercise in the summer placement module asked students
to complete the same problems as solved in the previous exercise,
but using compositions of the allowed HOFs (map, filter, andmap,
ormap, foldl, foldr) , with explicit recursion forbidden. Given
difficulties we had seen students face in previous years, we de-
cided to ask students to plan their solutions before committing to
code. This required students to have a more forgiving medium for
planning, and in particular a medium that was different from the
programming language (because students are often reluctant to
change work once they have started doing it [28]).

To this end, we created a custom version of Snap!. We deleted
all the standard blocks, and created custom blocks for each of the
allowed HOFs for this exercise. Our custom blocks do not run or
produce output in the interface, since we want students to plan in
Snap! and not to program in it. Figure 1 shows the resulting Snap!
palette.

Note that both variants of fold are included in the interface,
because the interface was used for all of the problems in the exercise,
not just the ones we analyze in this work. We still exclude fold from
our analysis (section 4). take-while was introduced specifically for
the recognition activity, but was not necessary for the assignment
for which students would be planning, and so was excluded from
the interface. sort was similarly excluded as unnecessary.

Each of the blocks has input slots corresponding to the arguments
the HOF takes. andmap and ormap are Boolean-producing functions,
for which Snap! offers a special visual distinction, resulting in those
two functions having a different shape than the rest. In hindsight,
we should not have introduced this additional distinction in our
custom version of Snap/, given that our version Snap! does not
enforce this distinction in any way. All of the input slots have the
same initial shape (the text box), and will change shape to match
any other block that is dragged into the slot.

Students were asked to complete and upload a plan using Snap!
before they proceeded to coding. They were asked to fill in each
input slot with either another HoF block, or with text describing
what should go in that input (e.g., a description of a funarg). The
ability to write free-form text without running into syntactic diffi-
culties was a particular powerful benefit of Snap!. Students were
explicitly told to not write Racket code in the input slots (though
this did not prevent it from happening).

The exercise contained six problems. Two required fold, which
we are excluding (section 4). The other four problems are briefly
described in table 6, with full problem text in appendix B. All four are
string manipulation problems, and are designed to have solutions
that require nesting a HOF within the funarg of another HOF.
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Figure 1: Snap! Planning Activity: Palette

Assessment. The nature of the problems means we can divide the
analysis into two parts: “do they have the right outer HOF” (OUTER)
and “do they have the right inner Hor” (INNER). We also consider
the level of detail of the overall plan (COMPLETE).

Because students were explicitly permitted to write their plans
partly in prose, we created a codebook to evaluate their responses.
To avoid abstracting excessively and losing important detail, we
first created a separate codebook for each problem. After three to
five rounds for each problem, each of these separate codebooks
attained a Cohen « of 0.821 or greater for each category within
the codebook. We then observed that the codebooks were suffi-
ciently similar that we could map them to a single set of codes.
To avoid burdening readers with excessive problem-specific detail,
we present the combined codes; we believe this does not lose any
essential information.

The resulting combined codebook is shown in table 7. In our anal-
ysis, we ignore any type-conversions wrappers (e.g., string->list)
the student may have included, in order to better evaluate the high-
level structure of the student plan.

7 UNDERSTANDING INDIVIDUAL HOFS (RQ1)

As discussed in section 1, before we can study whether HOFs are use-
ful primitives for plan composition, we must confirm that students
understand and are able to work with HOFs individually. Otherwise
we cannot distinguish between failures of general HOF understand-
ing, and failures specifically related to composition.

7.1 Recognizing Individual HOFSs (RQ1a)

We confirm student understanding of HOFs using the Single ques-
tions from section 6.1. A total of 56 students completed this instru-
ment. One of the authors applied the codebook to their responses.
The results are summarized in table 8.

We see that students were able to solve most of these with high
accuracy (nearly 80%), with a few exceptions worth noting.

Map3 and Sort3 both have lower accuracy, with a high amount
of uncertainty (9 and 19 DK answers respectively). These questions
both also had contrived examples with different types and funargs,
where at least some of the funargs performed an operation not
commonly associated with the respective HOF. Sort2 is contrived
to a lesser extent, and we see performance somewhere in between.
Based on this, and the otherwise high performance, we suspect that
students are simply more proficient at recognizing natural uses of
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Problem Name

Table 6: Snap! Planning Activity: Problem Descriptions

Abbr.

Description

elim-contains-char ecc

valid-words vw

133t 133t

strip-vowels sv

Given a character and a list of words, produce a list of words excluding words that
contain the given character.

Given a list of words and a list of characters, produce a list of only those words that
consist of the characters in the provided list.

Given a list of words, produce a list of words where each word has had vowels
replaced by a numeric lookalike (e.g., "example" becomes "3x4mpl3").

Given a list of words, produce a list of words where each word has had its vowels
removed.

Table 7: Snap! Planning Activity: Codes

Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone

Level Label Definition
COMPLETE CORRECT  Plan specifies the full structure of a valid solution, even if some low-level details are
incorrect (e.g., improper Boolean negation)
HOLES Plan specifies a solution with some pieces left blank which could be filled in to
become a valid solution
IMPOSSIBLE ~ There is not a readily visible way to transform the structure of the plan into a valid
solution
OUTER CORRECT  Plan uses the same outer HOF as one of the checked common solutions
OTHER Plan uses a different HOF from any of the instructor solutions, but one which can
plausibly produce a valid solution
MISSING Plan appears to be missing an outer HOF and is plausibly correct when placed within
a valid outer HOF
WRONG Plan uses a different outer HOF from any of the instructor solutions, and from which
a solution is not readily visible (this disallows any INNER label)
INNER CORRECT  Plan explicitly uses the same inner function (member, andmap, ormap, etc.) as one of
the checked common solutions
OTHER Plan can plausibly produce a valid solution and is not covered by another INNER
code
DECL Plan declaratively specifies how the inner function is performed, without implemen-
tation details, and is plausibly correct
NO-DET Plan does not provide details on how the inner function is performed, but depends
on it being performed and is plausibly correct
WRONG Plan uses a funarg from which a solution is not readily visible

HOFs (a finding that would be in line with related cognitive science
literature [22]).

Map1 also showed slightly lower accuracy, but for a different rea-
son. Map1 can only be solved by using a nested call to build-list
(a HOF that doesn’t take in a list but rather a single number) inside
of an outer call to map. 8 different students cited this fact in their
answers, which when added to those who identified the map brings
the accuracy for this question back up to match the rest.

Table 8 also contains the results for the Multi and Identity
questions. For these questions, most students selected some but not
all of the correct HOFs, confirming the statement in KF21: students
display “[a] failure to appreciate that multiple operators can produce
the same results.” This result is not too germane to our focus on
planning, so we do not investigate this phenomenon further.

7.2 Recognizing Behavioral Features (RQ1b)

55 students completed this activity. All coding was done by one of
the authors. The results are shown grouped both by code (table 9)
and by HOF (table 10).

With the exception of OET/I, there appears to be broad overall
coverage of the features listed by KF21. The input and output types
were the most commonly cited, which is also in line with the NoT
POss answers received on the classification instrument, where the
most common argument for a problem being impossible was a
type-based argument. This suggests that students have been able
to form good behavioral models of these HOFs through reading and
practice.

We also saw that students did not always decompose their an-
swer into clean-cut properties. 45 students included either opera-
tional definitions (OPERATE) or “hand-wavy” overall specification
(SPEC) of some of the functions. For these students, their behav-
ioral conception of the HOFs was presented as a single unit, often
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Table 8: Classification Instrument: Single, Multi, and Identity Results

Question # Correct (/56) Incorrect IDK

Map1
Map2
Map3

Filter1
Filter2
Filter3

TakeWhilel
TakeWhile2
TakeWhile3

Ormap1
Ormap2
Ormap3

Sort1
Sort2
Sort3

Multil
Multi2

Identity1
Identity2

41 13 2
47 6 3
31 16 9
51 3 2
47 1 8
46 6 4
48 6 2
44 9 3
45 8 3
51 3 2
46 2 8
46 4 6
54 1 1
42 6 8
30 7 19
18 33 5
17 35 4

6 50 0
10 46 0

Table 9: Behavioral Features Instrument: Results - Grouped by code

Label | # of students who mentioned at least once

FT

IT

oT
WHE/I
OET/1
00/1
OL/1
IODIFF

42
54
55
49

7
48
42
35

OTHER
OPERATE
SPEC

IDK

21
35
34
10

Table 10: Behavioral Features Instrument: Results - Grouped by HOF

"HoF | FT IT OT WHE/I OET/I 00/

map | 10 43 49 42 7 9

filter | 32 46 52 21 2 19
take-while | 24 36 43 30 2 17
sort | 12 40 45 0 0 45

ormap | 33 45 55 44 - -
andmap | 34 45 55 43 - -

OL/I IODIFF | OTHER OPERATE SPEC IDK
34 12 4 32 8 0
36 24 5 10 18 0
28 17 12 15 11 9
35 21 12 3 12 3

- - 7 19 18 0
- - 6 19 17 0

accompanied by the type signature (especially the output type) of
the given HoF. However, this could also be an attribute of students
not knowing what we were looking for. Had we presented them the
rubric (or the table from KF21), they might have done even better.
Thus, the above data represent a baseline (for this population and
preparation): they get at least this far.

At this point we do not go further into analyzing these data.
The demonstrated behavioral models of HOFs are sufficient for use
when planning, which is the core focus of the rest of this paper. We
simply note in passing that even the low score on OET/I is a little
misleading, because an understanding of it is implicit in some of
their OPERATE or SPEC answers.
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7.3 Summary

Students appear to be very capable of recognizing HOFs from ex-
amples, and also of coming up with high-level behavioral features.
Students often use types to narrow the space of applicable HOFs,
even using them to argue impossibility. Furthermore, students are
able to do this with just about a week of exposure to HOFs (in
this course; some may have had prior exposure), suggesting that
the topic—with its potential use as a planning activity—may be
amenable to earlier introduction in the curriculum than is tradi-
tional. Offsetting this, students seem to struggle with “unnatural”
uses of HOFs, at least in this artificial setting (where they have to
guess the HOF from just three examples).

8 RECOGNIZING COMPOSITIONS OF HOFS
(RQ2)

Satisfied that our students generally understand the individual HOFs,

we proceed to understanding how well they were able to recognize

these HOFs in composition.

We see lower performance on the Comp questions from the
classification instrument (table 11). The most common error across
all three composition questions was a failure to recognize a need for
an outer map function, or perhaps a belief that said map is simply a
formality. The set of three input-output pairs (which all were nested
lists, by necessity), were instead treated as a flattened list of nine
input-output pairs. If this single error were ignored, accuracy would
be comparable to the Single questions. What causes this apparent
drop in performance: is it cognitive load, something inherent about
function composition, the way in which we stated the problem, or
something else? This would be interesting to investigate further.

Our code for correct answers to Comp questions (VALID-HOF-
GROUP) does not require that students specify a particular order
when they specify HOFs. We do flag responses that explicitly provide
the wrong order with VALID-HOF-INVALID-ORDER, but believe
that students who had the correct HOFs in the wrong order would
immediately realize their mistake in a medium where they could
test (or maybe even type-check) programs.

We tested students not only on their ability to classify compo-
sition questions, but on their ability to recognize when problems
were impossible to solve with composition (table 12).

We see lower performance on the Impossible questions than
we saw for the Single questions, and higher uncertainty as well.
Note that we did not ask those who answered 1DK to explain their
uncertainty, while we did ask those who answered NOT POSs to
justify their reasoning. It is possible that some students were less
confident in claiming that something was truly impossible, despite
having a reasonable justification.

It is worth noting that there was no student who said that any of
the Comp questions were impossible (NOT POss), nor was there any
student who claimed that the Impossible questions were solvable
with composition (comp). Any of the confusions with either set
of questions was always either uncertainty (IDK) or a claim that it
could be done with a single HOF (SINGLE).

Summary. Once we correct for the “implicit outer map” error, we
find students are able to recognize composition problems fairly well.
It is difficult to tell how to judge their performance on Impossible

Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone

problems: we believe students are rarely given truly impossible
problems in secondary school work, so they may simply not believe
that NOT Poss is a legitimate answer. Once we also consider the
very abstract nature of the task, we feel the students performed
quite well.

9 PLANNING WITH HOFS (RQ3)

The heart of this paper addresses planning with HOFs as the prim-
itive vocabulary. The earlier sections confirm that students can
recognize individual HOFs, understand them from a high-level, be-
havioral perspective, and can also recognize them in compositions.
With this established, we can now meaningfully evaluate the qual-
ity of their plans. Concretely, we examine the plans they produced
using Snap!. We present three representative examples in fig. 2.

We use the three-level structure (COMPLETE, OUTER, and IN-
NER) from section 6.3 and the corresponding codes from table 7 to
evaluate student plans. We see how students performed on these
three levels in the individual problems in table 13.

We could write at length about these data, but the overarching
message seems to be clear: these students, with their background,
on these problems, are able to plan very well. The vast majority of
their solutions are either correct and concrete, or correct assuming
some liberty in writing declaratively using the freedom they were
given.

There are a few cases where student solutions are not sufficiently
informative (e.g., the NO-DET cases). Further analysis shows that
these are not so much indicative of student difficulties as they are of
weaknesses of our Snap! interface. Concretely, we did not provide
a lambda block, and students who wanted to describe a procedure
were often unclear on what to write in the absence of one. These
give us ideas for how to improve our tooling.

Overall, we note that only 10 plans out of 402 were explicitly
wrong. While of course some “correct” plans could hide misunder-
standings, lucky guesses, etc., the overall verdict from this planning
activity is a very positive one.

10 TRANSITIONING FROM PLAN TO CODE
(RQ4)

The positive outcome of our planning activity can only truly be
considered a success if students are also able to translate their cor-
rect plans into correct programs. Fortunately for us, this ability
was demonstrated in the programs that students submitted. Stu-
dents are clearly able to implement their correct solutions as correct
programs.

Of the 100 submissions for elim-contains-char, 99 submis-
sions for 133t, and 99 submissions for strip-vowels, all of the
submissions passed all of the instructor-defined test cases. Of the
100 submissions valid-words, only seven failed any of the test
cases. Two of these seven demonstrated a clear misunderstanding
of the problem statement. The students’ submitted code and cor-
responding test cases show that they were checking if all of the
characters in the input list of characters are present in a given word,
as opposed to checking if all of the characters in a given word are
present in the input list: i.e., they swapped the order of the subset
relation. The other five failing submissions were all due to a misun-
derstanding of how valid-words should behave in the presence
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Table 11: Classification Instrument: Comp Results

Question # Correct # Correct but missing map Incorrect IDK

Compl 24
Comp?2 23
Comp3 32

20 10 2
18 10 5
19 4 1

Table 12: Classification Instrument: Impossible Results

Question  NOT PoOss (good reason)
Impossible1 33
Impossible2 28
Impossible3 19

( valid-words

report
filter

andmap |(Helper-functio
{ words

NOT POSs (wrong reason) Incorrect IDK

6 8 9
2 2 24
7 21 9

is-valid-char?*Use*"member"-tordetermine-if-aschari

*(Each-word,deconstructed-intoralist-using-string->list

valid-words

i BHEETE andmap |issacchar-asvalid-letter? |letters-of-word

‘words

(b) This student used nested Snap! blocks with less detailed input descriptions.

report
filter

(‘strings

(c) This student didn’t take advantage of nested Snap! blocks.

Figure 2: Three different examples of student plans for valid-words

of an "empty” word. The correct behavior was not specified in the
problem statement, though it was clarified both in lecture and in
a post on the online class forum. Note that the plans that arise
from these misunderstandings look nearly identical to plans for
correct programs, and the misunderstanding doesn’t surface until
the implementation step.

Ideally, issues in problem statement understanding are addressed

before a student attempts to either plan or implement a solution.

Thus we don’t consider these issues to be a failure of the planning or
implementation steps. Ensuring that students understand a problem

statement before attempting a solution is tackled extensively in
Wrenn’s work [41, 42].

Excluding these few failures to understand the problem state-
ment, every other code submission was correct. The overwhelming
correctness from both section 9 and these code submissions was
excellent to see as instructors, but arguably unfortunate from a
research perspective. When designing this research question, we
assumed that students might make various mistakes in their plans.
If they did, the question would become: would they fixate on these
mistakes, or would they be able to recover?
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Table 13: Planning Activity: Results

COMPLETE OUTER INNER ecc vw 133t sv
CORRECT  CORRECT CORRECT | 39 66 56 70
CORRECT  CORRECT DECL 49 17 19 10
CORRECT CORRECT  OTHER 0 0 2 1
CORRECT OTHER  CORRECT 0 0 1 0
CORRECT OTHER DECL 0 0 1 1

HOLES CORRECT CORRECT 1 3 5 4
HOLES CORRECT  NO-DET 6 8 9 9
HOLES CORRECT  OTHER 1 0 2 0
HOLES MISSING  CORRECT 0 0 5 5
HOLES OTHER  CORRECT 0 0 1 1
IMPOSSIBLE CORRECT WRONG 3 3 0 0
IMPOSSIBLE ~ WRONG - 1 3 0 0

However, the good results from section 9 create a ceiling effect,
not giving us room to examine this question to the extent we would
prefer. Most students provided correct plans (in varying degrees
of completeness), and all students (with few exceptions as noted
above) in some way transformed their plan into a correct program.

We do note that even students who submitted plans with errors
were able to submit correct solutions. However, we do not have
enough insight into their process to identify what enabled them to
fix their plan during code construction. At least, it suggests that
an incorrect plan is not always an obstacle. We do believe it would
be very interesting to examine whether an incorrect plan is any
more or less of a hindrance than an incorrect (partial) program as a
starting point.

In principle, a student could start with a correct plan, but run
into difficulty with implementation details and end up altering the
program to be incorrect. In particular, the transition process is not
completely trivial: e.g., students need to insert type-conversion
functions like ones to turn strings into lists of characters. We did
not see these problems arise with our population of students, and
so we choose not to speculate as to what impact these difficulties
would have. We instead encourage follow-up studies, potentially
with more challenging problems, to see if/when these challenges
arise and what impact they have.

11 THREATS TO VALIDITY

We now discuss threats to the validity of our findings. Before going
into the details, we note that we view this as a formative study—one
of many needed—to make progress on the task of planning.

Internal Validity. We chose problems that were amenable to a
two-level HOF composition format, which clearly is not a very
general structure. While it enabled us to construct precise codes
for evaluating student work, these results may not carry over to
other kinds of problem structures. Next, our use of the classification
instruments for Single, Multi, and Identity questions is clearly
somewhat artificial, and different framings may lead to very differ-
ent baseline measures (though our findings confirm that at least
through this measure, students do have a clear understanding of
the individual HOFs). Finally, the fact that students were familiar
with the problems may have improved their planning ability. All

these are factors that can be addressed in follow-up studies, and
may affect the findings of this one.

External Validity. Naturally, it is very difficult to generalize from
the very particular setting in which we have conducted our study.
Everything from our student body to our use of functional pro-
gramming and the How to Design Programs text may be factors.
That said, it is quite possible that many of our students are not too
different from many students with about a year of tertiary-level
computer science. As such, we believe it would be interesting to
perform similar studies broadly on students at that stage, across a
variety of curricula to identify which factors matter.

Ecological Validity. Some of our activities, like classification,
clearly have limited generalizability to the real world. Indeed, they
may be sufficiently artificial as to provide only a lower bound on
how students would behave when confronted with similar problems
in practice. However, we used these activities only for establishing
a baseline of student knowledge of the primitive HOFs.

The idea of planning with a tool designed for that purpose is not
unreasonable (indeed, various project planning tools, visual designs,
etc. are widely used). Furthermore, by embedding the planning
activity in a task students were already going to do, we increase its
ecological validity. We do not have more insight into their transition
from plan to program (section 10) precisely because we did not wish
to interfere too much in the way they solved problems during the
course, in addition to the reasons described in section 5. (For this
reason, students were also not graded on their plans—but took the
process seriously and produced quality plans nonetheless!)

12 RESEARCH ETHICS

Per Brown’s Institutional Review Board guidelines, our work does
not require review. Nevertheless, we have applied standard research
protections to protect our students.

13 DISCUSSION

In this work we show that HOFs serve as a viable vocabulary for
students to use to plan out solutions to certain kinds of data pro-
cessing problems. We show that students are able to recognize uses
of different HOFs after very little time working with them, and can
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recognize them both individually and in composition. Students are
also able to effectively uses these HOFs to create high-level plans
to solve programming problems, and can in-turn create correct
implementations from these plans.

We conclude by discussing other lessons learned while doing
this study.

13.1 Utility of Snap!

As researchers, we found our customized Snap! environment to be
very useful for both the classroom and our study. Snap! provided
the right level of abstraction for this study, turning our vocabulary
of HOFs into building blocks (so to speak), but leaving space for
conveniently writing free-form textual responses. Unlike a pure text
solution, Snap! provides “structure on the outside” (and indeed as far
in as a student chooses to use blocks). This means one can provide
reliable, partial, automated feedback: e.g., telling a student that their
plan is or isn’t on the right track before they start to commit to
an implementation. One could even imagine assignments where
planning is the entire activity, and students are not required to turn
the plan into working code (a process that invariably involves a lot
of detail that may not be linked to certain learning objectives).

13.2 A Broader Vocabulary for Planning

We believe that as a community, we do not yet have a good enough
sense of the vocabulary of planning operations that students might
employ. We have chosen HOFs because they are reasonably high-
level while not being too abstract; they describe a behavioral frame-
work of operation (KF21) while providing freedom (through their
funarg) for non-trivial customization. We also hope that learning
about planning through HOFs on some problems may transfer to
others.

However, HOFs, as with any generic library or language construct,
are by definition domain-independent. As students plan programs,
they presumably use notions from whatever real-world domain they
are processing as well, which might employ in a domain-specific
vocabulary. Determining how to support these in a planning process
that also demonstrates meaningful transfer is an important and
wide open problem. What parts are truly still the same in this
process, and can be abstracted over? We don’t yet have a good
enough way to express this abstraction, and while we believe HOFs
are a good start, the community would benefit from increasing our
vocabulary for planning.

13.3 Forward and Backward Planning

The literature on planning shows that programmers often plan in
different directions: from the problem statement “forward”, or from
the desired solution “backward”. Though some studies have ascribed
this to different levels of expertise, later research has shown that
there is no such sharp line of separation (as Rist [31] summarizes).

Our approach may appear to be agnostic to the direction, but it
is not in two subtle ways:

(1) Our students were studying from How to Design Programs,
which heavily emphasizes a program design “recipe”. That
recipe drives forward from the structure of the given datatypes,
which makes it a forward-planning approach. More recently,
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other authors [3, 15] have suggested systematic program de-
sign methods that drive backward from the desired datatypes.
There is currently no analysis of how these two directions
compare in a recipe-based program design setting. Whatever
design method students have been taught almost certainly
impacts the nature of their planning.

(2) Our tool provides a set of planning operations. These opera-
tions were based on the input datatype: hence the list-based
HOFs (section 4). One could imagine operator palettes that are
indexed not only by input type but also by output type. This
would enable a more fluid planning process by students—in
particular, allowing them to freely switch between the two.

Building the latter form of design tool potentially holds a lot of
promise. In particular, when combined with telemetry, it would
enable us to study student planning as they are doing it, and gain
insight into the directionality of their thinking. Furthermore, we
suspect that planning with our blocks promotes a beneficial blend
of cognitive loads. The overall cognitive load that makes learning
difficult has been decomposed into unavoidable intrinsic cognitive
load which is related to the inherent complexity of information
to be learned, extrinsic cognitive load which is imposed by the
specific instructional procedures employed, and germane cognitive
load related to the cognitive resources a learner devotes to the
task elements that comprise the intrinsic cognitive load [37]. By
isolating planning from coding, Snap! reduces the extraneous load
associated with superficial programming language details during
the planning phase, allowing learners to focus on the combined
[20] intrinsic/germane load. Our planning tool could also support
an effort to better quantify the cognitive loads [2] associated with
planning and coding phases by providing a relatively pure measure
of the cognitive load associated exclusively with planning process
itself.
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A CLASSIFICATION INSTRUMENT QUESTIONS
Map1
(list 1 3 6)

-

(115t (115t nan) (llst nan nan nan> (llst nau nan nan nan nan nan))

(list 2 1 3)

—
(list (list "x" "x") (list "x") (list "x" "x" "x"))

(list 4 0 2 1)
5

(list (list "hi" "hi" "hi" "hi") empty (list "hi" "hi") (list "hi"))

Map2
(list "Alice" "Bob" "Eve")
—
(list "Hello Alice" "Hello Bob" "Hello Eve")
(list "eggs" "milk" "cheese" "
—

(list "eggseggseggs" "milkmilkmilk" "cheesecheesecheese

pan")

non

panpanpan)

(list "hello" "bonjour" "hola" "aloha")
—

(list 57 4 5)

Map3
(list (list "lawful" "evil" "rogue")
(list "neutral" "evil" "mage")
(list "chaotic" "good" "bard")
(list "lawful" "good" "paladin"))
—
(list true true false false)

(list "some" "random" "words")
—
(list 3 3 3)

(list true false false true true)
N

(list empty (list "x") (list "x") empty empty)

Filter1
(list 2 3 6)

-
(list 2 3)

(list 5236 27)
5

(list 5 2 3 2)

(list 396 91 4)

-

(list @ 3 1 4)
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Filter2
(list "property" "logic" "testing" "code")
—
(list "property" "logic" "code")

(list "friend" "boyfriend" "girlfriend" "weekend
-

(list "coffee")

(list "many" "plethora" "few" "dearth" "solitary
—
(list "many" "few" "one")
Filter3
(list "lion" "bear" "tiger")
N

(list "lion" "tiger")

" "coffee")

"non

one")

(list (list 1 3 4) (list 2 5) (list 3 7 9 8) empty)

—

(list (list 1 3 4) (list 37 9 8))

(list true false true true false false)
—

(list true true true)

TakeWhile1
(list 2 3 6)

-

(list 2 3)

(list 52362 7)

N
(list 5 2 3)

(list @396 9 1 4)
5

(list 0 3 9)

TakeWhile2
(list "child" "mother" "father" "uncle" "child")
N

(list "child" "mother" "father")

(list "duck" "duck" "goose" "duck" "goose")
N

(list "duck" "duck")

(list "the" "end" "is" "never" "the" "end")
—

(list "the" "end" "is")

TakeWhile3
(list 1723 -1-427 8 -5
N

(list 17 2 3)

Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone
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(list "you" "fool" "you" "absolute" "cabbage")
—
(list "you")

(list (list true false) (list false) empty (list false) (list true))

-

(list (list true false) (list false))

Ormap1
(list 2 3 6)
N
false

(list 523 4 1)

-

true

(list 0 3 1 4)

N
true

Ormap2
(list "i" "will" "write" "some
N
false

non

words")

(list "good" "bad" "ugly")
—
true

(list "correct")
—

true

Ormap3

(list 1 3 7 19)

BN

false

(list "rock" "paper" "
N

true

scissors")

(list false false true false)
—

true

Sort1
(list 94 26 -3 15 -7)
N

(list -7 -3 15 26 94)
(list 25 3 25 @)
5

(list @ 3 25 25)

(list -1 4 -7 @ 21)
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5
(list -7 -1 @ 4 21)

Sort2

(list "epsilon" "gamma" "beta" "alpha" "beta")

—

(list "alpha" "beta" "beta" "gamma" "epsilon")

(list "highway" "qualify" "subject")

—

(list "subject" "highway" "qualify")

(list "stool" "counter" "stool" "window" "fan" "window")

—

(list "fan" "stool" "stool" "window" "window" "counter")
Sort3

(list 123 454321)

—

(list 11335224 4)

(list "lizard" "bird" "dog" "cat" "snake")
—
(list "dog" "bird" "cat" "lizard" "snake")

(list true false false true true)
—

(list false false true true true)

Multiplel
(list 17 84 20 56)

-

(list 17 84)

(list 94 72 26 -8 -2 -63)
-
(list 94 72 26)

(list 3 6 13 27 153 252)
5

(list 3 6 13 27)

Multiple2
(list "rock" "paper
—
(list "rock")

non

scissors")

(list (list 2 3) (list 1) (list 4 5 2) empty (list 2 7))
-

(list (list 2 3) (list 1) (list 4 5 2))

(list 17 3 -1 -4)
R

(list 1 7 3)

Identity1
(list 7 3 0)
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-
(list 7 3 0)

(list 121 4 9)
R

(list 121 4 9)

(list 8 8 8 8)

-

(list 8 8 8 8)

Identity2
(list 4 1)
N

(list 4 1)
(list (list 7 4 2) (list 5) empty (list 9 3))
—

(list (list 7 4 2) (list 5) empty (list 9 3))

(list "me" "myself" "i")

N
(list "me" "myself" "i")

Comp1
(list (list 4 1) (list 2 7) (list 3 4 9))
N

(list (list 1) (list 2 7) (list 3 9))

(list (list 7 4) (list 4))
—
(list (list 7) empty)

(list (list 5 @ 3) (list 1 8 4) (list 4 2) (list 3 3))

-

(list (list 5 @ 3) (list 1 8) (list 2) (list 3 3))

Comp2
(1iSt (1ist ||dol| “yOU" IlknOWH l|h0W|| "tO“ |Ido|l llthisll)
(1iSt Vlill llknowﬂ lla|l "ShOrtCUt" lli'l lllikeﬂ)
(list "you" "must" "know" "another"))

(list (list "do" "you") (list "i") (list "you" "must"))
(115t (115t "have" uyoun "met" nmyn "pet")

(list "everyone" "i" "have" "met" "has" "met" "him")
(list "he" "likes" "treats"))

(list (list "have" "you") (list "everyone" "i" "have") (list "he" "likes" "treats"))
(list (list "water" "water" "everywhere")
(list "our" "body" "is" "mostly" "water")

(list "well" "water" "is" "from" "a" "well"))

non

(list empty (list "our" "body" "is" "mostly") (list "well"))

Comp3
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(list (list 17 3 -1 -4) (list 3 6 2) (list 4 2 -5))
-

(list (list 1 7 3) (list 3 6 2) (list 4 2))

(list (list true true false) (list true false false) (list false))
—

(list (list true true) (list true) empty)

(list (list "green" "blue") (list "red") (list "green" "yellow" "red"))
—

(list (list "green" "blue") empty (list "green" "yellow"))

Impossible1
(list 4 31 2 5)

-

3

(list 20 10 15)

—

15

(list 15 7 8)
-
10

Impossible2
(list 1 -8 57 -1 -6)
—
10.488

(list -13 11 16 9)

-

25

(list -5 0 0 4 -6 18)
-
24.839

Impossible3
(list 8 4 6)

-

(list 8 4 6 8 4 6)

(list "boots" "cats")
—

(list "boots" "cats" "boots" "cats")

(list (list "x") (list "y") (list "z"))
N
(list (list "x") (list "y") (list "z") (list "x") (list "y") (list "z"))
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B PLANNING QUESTIONS

Define the following functions.

elim-contains-char :: Char List-of-strings -> List-of-strings

Consumes a list of strings and produces a list of the same words, in the same order, excluding those strings that contain the
given character.

valid-words :: List-of-strings List-of-chars -> List-of-strings

Consumes a list of words (represented as strings) and a list of letters (represented as characters). Produces the list of same words, in
the same order, that contain only those letters. (Imagine a game where you have to assemble words with just the letters you have.)

For this assignment, ignore multiplicity: i.e., a word may contain more instances of a letter than the number of times the let-
ter was present in the second parameter. Also, letters should be case-sensitive (e.g., #\A does not appear in "cat").

133t :: List-of-strings -> List-of-strings

Consumes a list of words (represented as strings) and produces a list of the same words, in the same order, but where some
of the letters have been replaced by characters that stand for numbers. Specifically, it turns #\A and #\a into #\4, #\E and #\e into
#\3, #\I and #\1 into #\1, and #\0 and #\0 into #\0.

Note that #\4 is a character, whereas 4 is a number. You can’t do arithmetic on the former or put the latter in a string.

Note: The first letter of the function name we are asking for is the letter '’ (Lima), not the number 1’ (One). It’s pronounced
“leet” and is favored in basements worldwide. If you spell it incorrectly, the grading software will not give you any credit!

strip-vowels :: List-of-strings -> List-of-strings
Consumes a list of words (represented as strings) and produces the same list of words, except with each vowel (#\a, #\e, #\1i,
#\o, or #\u, or their upper-case equivalents) removed. (If a word consists of all vowels, it reduces to the empty string but is not

removed entirely.)

Note: Be careful. There’s a simple, clean decomposition of tasks in this problem, but if you rush you may end up with a mess.
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