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Abstract
Type systems and syntactic sugar are both valuable to pro-

grammers, but sometimes at odds. While sugar is a valuable

mechanism for implementing realistic languages, the expan-

sion process obscures program source structure. As a result,

type errors can reference terms the programmers did not

write (and even constructs they do not know), baffling them.

The language developer must also manually construct type

rules for the sugars, to give a typed account of the surface

language.We address these problems by presenting a process

for automatically reconstructing type rules for the surface

language using rules for the core. We have implemented this

theory, and show several interesting case studies.

CCS Concepts • Software and its engineering→ Exten-

sible languages;
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1 Introduction
Syntactic sugar is a central tool in defining programming

languages and systems. It follows a longstanding tradition

of separating the definition into two parts: a (small) core

language and a rich set of convenient and powerful syntax

defined in terms of that core. (In this paper wewill use surface

to refer to the language the programmer sees, and core for

the target of desugaring.) It is now actively used in many

practical settings:
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• To define useful constructs (such as comprehensions)

in many languages such as Python and Haskell.

• Following the Lisp tradition, to enable programmers

to extend the language; languages such as Scala, Julia,

and Rust offer macro-like facilities.

• To enable tractable semantics for large scripting lan-

guages that have many special-case behaviors, such

as JavaScript and Python [10, 20, 21].

Overall, syntactic sugar enables a smart trade-off by keep-

ing the language tractable for the language’s engineers while

making the language convenient for the language’s users. It

is worth noting that this trade-off does not depend on the

language providing syntactic extensibility (à la macros): the

sugar could be built into the language itself.

This trade-off, however, depends on the abstraction pro-

vided by sugar not leaking [26]. The code generated by desug-

aring can be large and complicated, creating an onerous

comprehension burden; it may even use features of the core

language that the user does not know. Therefore, program-

mers using sugar must not be forced to confront the details

of sugar; they should only confront the core language when

they use it directly.

Desugaring and Type Checking In this paper, we focus

on the interaction between desugaring and type checking.

Type checking occurs either before or after desugaring, and

there can be major problems with each.

Suppose type-checking occurs on the desugared code. This

has the virtue of keeping the type-checker’s target language

more tractable. However, errors are now going to be gener-

ated in terms of desugared code, and it is not always clear

how to report these in terms of the surface language. This

is further complicated when the code violates implicit type

assumptions made by the sugar, which likely results in a

confusing error message.

Alternatively, suppose we type-check surface code. This

too has problems. First, it turns syntactic sugar into a burden

by forcing the type-checker to expand with the size of the

surface language. This is especially problematic in languages

with macro-like facilities, because the macro author must

now also know how to extend a type-checker. This destroys

a valuable division of labor: macro authors may be experts in

a domain but not in programming language theory. Further-

more, the enlarged type-checker must respect desugaring:

i.e., every program must type in exactly the same way in the

surface as it would have after desugaring.

https://doi.org/10.1145/3192366.3192398
https://doi.org/10.1145/3192366.3192398
https://doi.org/10.1145/3192366.3192398
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Inferring a Surface Type System We offer a way out of

this dilemma. Given typing rules for the core language, and

syntactic sugar written as pattern-based rules, we show how

to infer type rules for the surface language.

Notice that this is not a complete solution to the prob-

lem: we provide type rules, but not a full type checker with

quality error messages. This could be done automatically

or manually. Automatically extending a type checker while

maintaining good error messages is (we believe) an open,

and independently valuable, problem. Alternatively, the type

rules can (as usual) be added to the type checker by hand.

Whichever method is used, these new rules can be added

to the documentation for the language, providing a typed

account of the surface. These rules are also a useful diag-

nostic, enabling the author of the sugar, or an expert on the

language’s types, to confirm that the inferred typing rules

are expected; when they are not, these suggest a flaw in the

desugaring. This diagnostic comes very early in the pipeline:

it relies only on the sugar definition, and so is available before

a sugar is ever used.

This approach depends crucially on a particular guarantee,

which our system will provide:

A surface program has a type in the in-

ferred surface type system iff its desugar-

ing has that type in the core type system.

Thus, a well-typed program under the inferred surface rules

will desugar into a well-typed program under the original

core rules. As a result, an ill-typed program will always be

caught in the surface type system, and an ill-typed sugar will

be rejected by our algorithm at definition time rather than

having towait until it is used. Since the inferred type rules are

guaranteed to be correct, they become a valid documentation

of the surface language’s type structure.

2 Type Resugaring
Our overall aim is to be able to generate type judgments for

the surface language given desugaring rules and judgments

for the core. To distinguish this from ordinary type inference,

in which types are inferred within a program, we will call our

inference process type resugaring1, in which type rules are

inferred through syntactic sugar. We wish to obtain type rules

for the surface language that are faithful to the core language

type rules: type checking using resugared type rules should

produce the same result as first desugaring and then type

checking using the core type rules. Specifically, if Icore are the

core language type rules and Isurf are the resugared surface

type rules, then

Goal 1.

Isurf ⊩ Γ ⊢ e : t iff Icore ⊩ Γ ⊢ D (e ) : t

1
We take the term “resugaring” from our previous work [22].

where I ⊩ J means that judgment J is provable by inference

rules I , and D (e ) means the desugaring of expression e .
Notice the assumption implicit in this equation: the right-

hand-side says t , rather than D (t ). We are handling desug-

aring of expressions, but not of types. It is sometimes de-

sirable to introduce a new type by way of translation into

an existing type: for instance, introducing Booleans and im-

plementing them in terms of Integers. We leave this more

general problem—resugaring type rules when types can con-

tain sugars—to future work.

To see how type resugaring might proceed, let us work

through an example. Take a simple and sugar, defined by:

α and β ⇒ if α then β else false

Our goal is to construct a type rule for and that is faithful

to the core language, meaning that (using goal 1):

Isurf ⊩ Γ ⊢ (α and β) : t

iff Icore ⊩ Γ ⊢ D (α and β ) : t

Expanding out the sugar:

Isurf ⊩ Γ ⊢ (α and β) : t

iff Icore ⊩ Γ ⊢ (if D (α ) then D (β ) else false) : t

It is seemingly straightforward to obtain this property. We

just have to add this inference rule to Isurf:

Γ ⊢ (if D (α ) then D (β ) else false) : t
t-and→

Γ ⊢ (α and β) : t

and perhaps also its converse:

Γ ⊢ (α and β) : t
t-and←

Γ ⊢ (if D (α ) then D (β ) else false) : t

The rule t-and→can be read as “to prove that (α and β)
has type t under type environment Γ in the surface language,

prove that its desugaring has type t under Γ in the core

language”. This is useful because it provides a way to prove

a type in the surface language by way of the core language

type rules.

Its converse t-and←, however, is not helpful: there is no
need to use the surface language when trying to prove a

type in the core language. Furthermore, t-and←is actually
redundant: since t-and→is the only type rule mentioning

and, t-and←is admissible. Therefore, we only need t-and→.
In this particular case, we have added only the rule t-and→,

but in general we would add one such rule for each sugar.

This could be called the augmented type system: it is the core

language type system, plus one extra rule per sugar, such

that we obtain a type system for the surface language.

Type checking in this augmented type system is akin to

desugaring the program and type checking in the core lan-

guage. For example, the program true and false has the
type derivation:
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⊢ true : Bool ⊢ false : Bool ⊢ false : Bool
t-if

⊢ (if true then false else false) : Bool
t-and→

⊢ (true and false) : Bool

Since the extension type rules (like t-and→) always suc-
ceed, any type errors will be found in the core language. For

example, if the first argument to and was not a boolean, this

will be discovered by the t-if rule, not by the t-and→rule!
Thus, while the augmented type system technically obeys

goal 1, it breaks the abstraction that ought to be provided by

syntactic sugar. Type errors made in the surface language

should be reported with respect to surface language con-

structs. This can be achieved with a second goal:

Goal 2. Type rules for surface constructs should not mention

core constructs.

Let us see how we can accomplish this. The essential in-

sight is that every type derivation of and will share a com-

mon form. It will always follow the template:

Dα

Γ ⊢ α : Bool

Dβ

Γ ⊢ β : Bool
t-false

Γ ⊢ false : Bool
t-if

Γ ⊢ (if α then β else false) : Bool
t-and→

Γ ⊢ (α and β) : Bool

where the sub-derivations Dα and Dβ depend on α and β .
Notice that the rest of the derivation is constant: every type-

derivation of α and β has this form. Thus there is no reason

to re-derive it every time we type-check. Instead, we can

remove this “cruft” to obtain a simpler type rule for and:

Γ ⊢ α : Bool Γ ⊢ β : Bool
t-and

Γ ⊢ (α and β) : Bool

This type rule now satisfies our two goals, and is a valid and

useful type rule for the surface language. Indeed, it hides

the implementation of and and instead focuses just on its

(expected) type structure.

The important step was determining the “template” deriva-

tion. We presented it above without fanfare, but how can

it automatically be discovered? Let us look into this with a

slightly more complex example, an or sugar
2
:

α or β ⇒ let x = α in if x then x else β

As before, we want to find a derivation for the sugar’s rhs

(right-hand-side). That is, we should search for a derivation

of the judgment:

Γ ⊢ (let x = α in if x then x else β) : t

We can begin by applying the core type rules, obtaining a

partial derivation, shown at the top of fig. 1. However, the

core type rules (unsurprisingly) cannot prove the judgments

about pattern variables (marked with ? ). Each pattern vari-

able stands for an unknown surface term, so its derivation

2
The let in the desugaring of or prevents the duplicate evaluation of α .

will vary between different uses of the or sugar. Since we do
not know what type it will have, we will assign it a globally

fresh type variable, using the rule t-premise:

fresh x
t-premise

Γ ⊢ α : x

(This rule will be refined in section 4.2 and section 4.3.) We

write this rule with a dashed line because it is in a sense

incomplete: it serves as a placeholder for a subderivation that

would be filled in if the pattern variable were instantiated.

Using this rule—together with a t-fresh rule that will be

introduced in section 4.3—finishes the derivation, giving the

bottom derivation in fig. 1.

As seen, pattern variables introduce type variables. Solv-

ing for these type variables in general requires unification.

We therefore split the search for a derivation: first we find a

potential derivation with equality constraints (as in fig. 1),

then we solve these constraints (via an ordinary unifica-

tion algorithm). Solving the constraints of fig. 1 gives the

substitution {A = Bool, B = Bool}. Finally, gathering the

premises and conclusion of the derivation and applying the

substitution to them produces the type rule for or:

Γ ⊢ α : Bool Γ ⊢ β : Bool
t-or

Γ ⊢ α or β : Bool

Our Overall Approach Putting all this together, we can

describe our type resugaring algorithm. For each desugaring

rule, such as the or sugar from above:

1. Construct a generic type judgment from the sugar’s

rhs, e.g. Γ ⊢ (let x = α in if x then x else β) :

t
2. Search for a derivation of this judgment using the

core language type rules plus the t-premise rule from
above. Fail if no derivation, or if multiple derivations,

are found. For example, this will find the derivation

shown in fig. 1.

3. Gather the equality constraints from the derivation.

Additionally, if multiple premises (i.e., judgments proved

by the t-premise rule) are of the same expression, add

equality constraints that these expressions have the

same type. Solve the unification problem. (If there are

any unconstrained variables, they become free vari-

ables in the type rule.)

For example, in or, there are two equality constraints:

A = Bool and A = B. The t-premise rule is used only
once for α and once for β , so no additional constraints
are needed. The solution is {A = Bool, B = Bool}.

4. Form a type rule whose premises are the judgments

proved by t-premise from the derivation in step (2),

and whose conclusion is a generic type judgment from

the sugar’s lhs. Apply the unification from step (3).

This is the resugared surface type rule.

We have implemented a prototype of this approach, called

SweetT. SweetT is written in Racket [8] (racket-lang.org),

racket-lang.org
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?

Γ ⊢ α : A

t-id

Γ, x : A ⊢ x : A A = Bool
t-id

Γ, x : A ⊢ x : A

?

Γ,x : A ⊢ β : B A = B
t-if

Γ,x : A ⊢ if x then x else β : B
t-let

Γ ⊢ let x = α in if x then x else β : B

t-premise

Γ ⊢ α : A

t-id

Γ,x : A ⊢ x : A A = Bool
t-id

Γ,x : A ⊢ x : A

t-premise

Γ ⊢ β : B
t-fresh

Γ,x : A ⊢ β : B A = B
t-if

Γ,x : A ⊢ if x then x else β : B
t-let

Γ ⊢ let x = α in if x then x else β : B

Figure 1. Derivation of or. Top: an incomplete derivation. Bottom: a complete derivation, using t-premise.

and makes use of the semantics engineering tool Redex [6].

All of the examples in this paper run in our implementation,

albeit with a different, more parenthetical, syntax.

SweetT is available for download at http://cs.brown.edu/
research/plt/dl/pldi2018/.

3 Theory
In this section, we describe the assumptions that type re-

sugaring will rely on, and then prove that it obeys goal 1

and goal 2 given these assumptions. Roughly speaking, these

assumptions are:

• Desugaring rules must be defined using pattern-based

rules, and their lhss must be disjoint (section 3.1).

• The type system used to resugar must support pattern

variables and partial derivations, and they must obey

some obvious laws (section 3.2).

• The core language type rules must be syntax directed

(also section 3.2). This will fail, for instance, on a type

system with non-algorithmic subtyping.

• Our implementation of SweetT must be correct (sec-

tion 3.3). (As must Redex, which we use to find deriva-

tions.)

• Finally, SweetT’s unification algorithm must be able to

handle the sugars given. Section 4.5 gives an example

of extending it.

The rest of this section describes these assumptions in

more detail. As a prelude, fig. 2 provides a guide to the nota-

tion we will use throughout the paper.

3.1 Requirements on Desugaring
First, we require that desugaring rules be pattern-based. Each

desugaring rule has a lhs and a rhs, which are terms ẽ
that may contain pattern variables. Desugaring proceeds by

recursively expanding these rules, replacing the lhs with

the rhs. Formally:

Notation Explanation
e ::= k (atomic expression)

| (P e1 . . . en ) (compound expression

of syntactic category P )
ẽ ::= k
| (P e1 . . . en )
| α (pattern variable)

t ::= type (type)

Γ ::= · | Γ, x : t (type environment)

J ::= Γ ⊢ ẽ : t (type judgment)

I ::= J1 . . . Jn/J (inference rule)

I ::= I1 . . . In (set of inference rules)

σ ::= {α 7→ e, . . . } (substitution)

L ::= {ẽ ⇒ ẽ ′, . . . } (desugaring rules)

Our approach relies on being able to use ẽ in two different
ways: (i) from one perspective ẽ is one side of a desugaring
rule, and any α inside is a pattern variable; (ii) from the

other perspective, ẽ is an expression inside a type rule,

in which α is a metavariable. The convention of the first

perspective is to call ẽ as C , but we choose instead to use

ẽ to emphasize the other perspective.

In addition, to the above notation, we will also write:

I ⊩ J to mean that judgment J is provable under in-

ference rules I (i.e., there is a derivation that proves

J ).
I ⊩ J1 . . . Jn → J to mean that there is a derivation

that proves J with unproven leaves Ji .

I ⊩ J1 . . . Jn / J to mean that there is a derivation of

depth 1 that proves J with unproven premises Ji .
(σ • ẽ ) to denote applying substitution σ to expres-

sion ẽ .

Figure 2. Notation explanation

DL (k ) = k
DL (α ) = α
DL (σ • ẽ ) = (DL (σ )) • (L[̃e])

if ẽ = (P ẽ1 . . . ẽn ),
and P is in the surface langauge

DL (P e1 . . . en ) = (P DL (e1) . . .DL (en ))
if P is in the core language

http://cs.brown.edu/research/plt/dl/pldi2018/
http://cs.brown.edu/research/plt/dl/pldi2018/
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where DL (·) is desugaring, L represents the desugaring

rules, L[̃e] is the rhs of the desugaring rule whose lhs

is ẽ , and desugaring a substitution σ means desugaring its

expressions: DL ({α 7→ e, ...}) = {α 7→ DL (e ), ...}.
Likewise, desugaring can be extended in the obvious way

to desugar judgments and type environments:

DL (Γ ⊢ ẽ : t ) = Γ ⊢ DL (ẽ ) : t
DL ({x → ẽ, . . . }) = {x → DL (ẽ ), . . . }

Unsurprisingly, substitution distributes over pattern-based

desugaring:

Lemma 3.1 (Distributivity of Substitution and Desugaring).

DL (σ • J ) = DL (σ ) • DL (J )

Proof. Let J = Γ ⊢ ẽ : t . By definition, DL (Γ ⊢ ẽ : t ) = Γ ⊢
DL (ẽ ) : t . Induct on ẽ .
Base case: it is an atomic expression k :

DL (σ • k ) = k = DL (σ ) • k .
Base case: it is a pattern variable α :

DL (σ • α ) = DL (σ [α]) = (DL (σ ))[α] = DL (σ ) • α =
DL (σ ) • DL (α ).
Inductive case: it is a compound term {α1 7→ e1, ...} • ẽ ,

where ẽ is the lhs of a desugaring rule:

DL (σ • ({α1 7→ e1, ...} • ẽ ))
= DL ({α1 7→ (σ • e1), ...} • ẽ ) (substitution)

= {α1 7→ DL (σ • e1), ...} • ẽ ′ where L[̃e] = ẽ ′

= {α1 7→ (DL (σ ) • DL (e1)), ...} • ẽ ′ (I.H.)

= DL (σ ) • ({α1 7→ DL (e1), ...} • ẽ ′) (substitution)

= DL (σ ) • DL ({α1 7→ e1, ...} • ẽ ) (desugar)

□

We also assume that the lhss of each desugaring rule are

disjoint, so that there is never any ambiguity as to which

resugaring rule to apply. That is:

Assumption 1 (Unique Desugaring). For every pair ẽ1 and
ẽ2 of sugar lhss, there are no substitutions σ1 and σ2 such that

σ1 • ẽ1 = σ2 • ẽ2.

This is everything we need of desugaring.

3.2 Requirements on the Type System
Let us now change focus to the type system. In the and
example in section 2, we made implicit assumptions about

the core type system. We stated that every type derivation of

(α and β)must share a common template, andwe implicitly

assumed that this template could not depend on α or on β .
This is certainly not true of every conceivable type system.

Type resugaring will rely on three assumptions about the

type system in order to make the approach we outlined work.

Before we describe these assumptions, notice that the

type derivations found by resugaring (e.g., in fig. 1) contain

pattern variables. Thus the type system used by resugaring

is not exactly the language’s type system: it is an extension

of the type system that handles pattern variables (and partial

derivations, discussed shortly). It is this extended type system

we will be discussing in this section. With that said, we can

state the assumptions.

First, we will assume that the type system supports pattern

variables: it must be possible to search for type derivations

of a judgment whose term contains pattern variables. Fur-

thermore, a judgment with pattern variables must hold iff

that judgment holds under all substitutions for those pattern

variables:

Assumption 2 (Substitution into Derivations). A deriva-

tion (possibly containing pattern variables) is provable iff it is

provable under all substitutions:

I ⊩ J1 . . . Jn → J iff ∀σ . I ⊩ σ • J
1
. . . σ • Jn → σ • J

Likewise for rules:

I ⊩ J1 . . . Jn / J iff ∀σ . I ⊩ σ • J
1
. . . σ • Jn /σ • J

Next, we assume that the type system supports partial

derivations that may contain unjustified judgments in their

leaves, whichwewill call their premises. If a partial derivation

is provable, and its premises are provable, then its conclusion

must also be provable:

Assumption 3 (Composition of Derivations). The composi-

tion of provable derivations is provable:

If I ⊩ J1 . . . Jn → J and ∀i . I ⊩ Ji , then I ⊩ J .

Finally, we would like the core type system to be deter-

ministic in a particular way. Say that a judgment is abstract

if it contains pattern variables, or concrete otherwise. We

would like that if an abstract partial derivation J1 . . . Jn → J
applies to a concrete judgment σ • J that can be proven, then

the proof of σ • J must use J1 . . . Jn → J , and thus prove

as intermediate steps σ • Ji for each i ∈ 1..n. Formally, we

define determinism as:

Definition 3.2 (Determinism). A set of inference rules I is
deterministic when, for any concrete judgment σ • J :

If I ⊩ σ • J and I ⊩ J1 . . . Jn → J , then I ⊩ σ • Ji for each
i ∈ 1..n.

Instead of assuming outright that the core language is

deterministic, we can prove it from a more conservative as-

sumption. We will assume that there is never any ambiguity

as to which type rule applies to a concrete judgment J , i.e.,
that the type system is syntax directed:

Assumption 4 (Syntax Directedness). At most one type rule

in Icore ever applies to a concrete judgment J .

Under this assumption, the core language can be proven

deterministic. This will be essential for our proof of goal 1.

Lemma 3.3 (Determinism). Suppose that at most one type

rule in I ever applies to a concrete judgment J . Then I is deter-
ministic.
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Proof. Suppose that I ⊩ σ • J and I ⊩ J1 . . . Jn → J . We aim

to show that I ⊩ σ • Ji for each i ∈ 1..n.
Induct on the derivation I ⊩ J1 . . . Jn → J . Let the bottom-

most step in the derivation be I ⊩ J ′
1
. . . J ′m / J , and call this

rule R. By assumption 2 (substitution),

I ⊩ σ • J ′
1
. . . σ • J ′m /σ • J . Since, by assumption 4 (syntax-

directedness), only one rule can apply to the judgment σ • J ,
no rule other than R may apply. Hence the derivation of σ • J

must have I ⊩ σ • J ′
1
. . . σ • J ′m /σ • J as the bottommost

step. Thus for each i ∈ 1..m:

• I ⊩ σ • J ′i , and

• There is a subset Ji1 . . . Jil of J1 . . . Jn such that I ⊩
Ji1 . . . Jil → J ′i . Since each judgment J1 . . . Jn must be

used in the derivation I ⊩ J , the union of these subsets

must be the full set J1 . . . Jn .

For each i ∈ 1..m, by the inductive hypothesis,

I ⊩ σ • J i1 . . . σ • J il . Since the union of these sets is σ •
J1 . . . σ • Jn , we are done.
(Note that in the base case, n = 0, and the result is vacu-

ously true.) □

Corollary 3.4 (Core Determinism). If a core language Icore
obeys assumption 4 (syntax-directedness), then it is determin-

istic.

Proof. Follows directly from the lemma, together with as-

sumption 4 (syntax-directedness). □

3.3 Requirements on Resugaring
Our final set of requirements is on the behavior of the type

resugaring algorithm. Thus it is essentially a specification

for our implementation: SweetT is correct iff it obeys the

requirements of this subsection.

Let us look at what it means to successfully resugar a

desugaring rule ẽlhs ⇒ ẽrhs ∈ L. Resugaring will search for

a partial derivation of the sugar’s rhs:

Icore ⊩ J1 . . . Jn → Jrhs

where J1 . . . Jn are provable using the t-premise rule and

Jrhs has the form Jrhs = Γ ⊢ ẽrhs : t .
3
If such a derivation is

found, and is unique, then we will write:

R(Icore, ẽlhs ⇒ ẽrhs) = J1 . . . Jn/Jlhs

where Jlhs = Γ ⊢ ẽlhs : t , and we will add the type rule

J1 . . . Jn/Jlhs to Isurf. Therefore:

Assumption 5 (Resugaring). Suppose that
R(Icore, ẽlhs ⇒ ẽrhs) = J1 . . . Jn/(Γ ⊢ ẽlhs : t ). Then:

Icore ⊩ J1 . . . Jn → DL (Γ ⊢ ẽlhs : t )

3
Our implementation uses Redex’s build-derivations function to per-

form this search.

This is the correctness criterion for resugaring.

For the upcoming proof, we will also need that the surface

language be deterministic in the sense of definition 3.2. This

is provable using assumption 1 (unique-sugar):

Lemma 3.5 (Surface Determinism). If resugaring succeeds,
then Isurf is deterministic. Repeating the definition of deter-

minism, this means that:

If Isurf ⊩ σ • J and Isurf ⊩ J1 . . . Jn → J , then Isurf ⊩ σ • Ji
for each i ∈ 1..n.

Proof. To start, we will show that at most one resugared

type rule may apply to a concrete judgment J . Suppose, for
the sake of contradiction, that two distinct rules apply, with

conclusions J1 and J2. Let the expressions in J , J1, and J2 be
e , e1, and e2 respectively. Since both rules can be applied to

J , there must be substitutions σ1 and σ2 such that σ1 • J1 =
σ2 • J2 = J . Thus σ1 • e1 = σ2 • e2 = e . However, this
contradicts assumption 1 (unique-sugar). Thus at most one

type rule in Isurf may apply to a concrete judgment.

Then, by lemma 3.3, Isurf is deterministic. □

3.4 Main Theorem
Given the requirements of this section, type resugaring obeys

goal 1:

Theorem 3.6. Grant assumptions 1–5 from this section, let

L = ẽlhs ⇒ ẽrhs, . . ., and suppose that

Isurf = R(Icore, ẽlhs ⇒ ẽrhs), . . .. Then for all surface type

judgments Jsurf:

Isurf ⊩ Jsurf iff Icore ⊩ DL (Jsurf)

Proof. Given in fig. 3. □

Furthermore, resugaring obeys goal 2, essentially by con-

struction:

Lemma 3.7. Resugaring obeys goal 2: type rules for surface
constructs never mention core constructs.

Proof. Let R(Icore, ẽlhs ⇒ ẽrhs) = J1 . . . Jn/Jlhs be any sur-

face rule. We aim to show that J1 . . . Jn and Jlhs do not

mention core constructs P . By assumption 5 (resugaring),

Icore ⊩ J1 . . . Jn → DL (Jlhs), where J1 . . . Jn are all provable

using t-premise. We gave the t-premise rule in section 2,

and generalize it in section 4.3 and section 4.4. However, in

all of its versions, the judgment must be over a surface term.

Thus J1 . . . Jn do not mention core constructs.

Finally, the expression in Jlhs is the lhs of a desugaring
rule, and is thus by definition a surface term. Therefore,

given our assumptions listed in this section, resugaring obeys

goal 2. □

4 Desugaring Features
There are several important features of desugaring that make

the above story more interesting. We describe them in this

section.
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Proof. Split on the “iff”.

Forward implication (“soundness”). Induct on the derivation proving that Isurf ⊩ Jsurf. Let J1 . . . Jn/J0 = R(Icore, _) be the
rule in Isurf used to prove Jsurf, and let σ be the substitution such that Jsurf = σ • J0. Then:

Isurf ⊩ Jsurf assumption

iff Isurf ⊩ σ • J0 equality

implies Isurf ⊩ σ • Ji for i ∈ 1..n by lemma 3.5 (surface determinism)

implies Icore ⊩ DL (σ • Ji ) for i ∈ 1..n inductive hypothesis

Also:

Icore ⊩ J1 . . . Jn /DL (J0) by assumption 5 (resugaring)

implies Icore ⊩ DL (σ ) • J1 . . .DL (σ ) • Jn /DL (σ ) • DL (J0) by assumption 2 (substitution)

iff Icore ⊩ DL (σ ) • DL (J1) . . .DL (σ ) • DL (Jn ) /DL (σ ) • DL (J0) since DL (Ji ) = Ji
iff Icore ⊩ DL (σ • J1) . . .DL (σ • Jn ) /DL (σ • J0) by lemma 3.1 (distributivity)

iff Icore ⊩ DL (σ • J1) . . .DL (σ • Jn ) /DL (Jsurf) equality

Thus Icore ⊩ DL (Jsurf) by assumption 3 (composition).

Reverse implication (“completeness”). Induct on the derivation proving that Icore ⊩ DL (Jsurf). Let J1 . . . Jn/J0 = R(Icore, _)
be the rule in Isurf for the (outermost) sugar in Jsurf’s expression, and let σ be the substitution such that Jsurf = σ • J0. Then:

Icore ⊩ DL (Jsurf) assumption

iff Icore ⊩ DL (σ • J0) equality

implies Icore ⊩ DL (σ ) • DL (J0) by lemma 3.1 (distributivity)

Also: Icore ⊩ J1 . . . Jn → DL (J0) by assumption 5 (resugaring)

implies Icore ⊩ DL (σ ) • J1 . . .DL (σ ) • Jn by corollary 3.4 (core determinism)

iff Icore ⊩ DL (σ ) • DL (J1) . . .DL (σ ) • DL (Jn ) since DL (Ji ) = Ji
iff Icore ⊩ DL (σ • J1) . . .DL (σ • J1) by lemma 3.1 (distributivity)

implies Isurf ⊩ σ • J1 . . . σ • Jn inductive hypothesis

Also:

Isurf ⊩ J1 . . . Jn / J0 by assumption 5 (resugaring)

implies Isurf ⊩ σ • J
1
. . . σ • Jn /σ • J0 by assumption 2 (substitution)

iff Isurf ⊩ σ • J
1
. . . σ • Jn / Jsurf equality

Thus Isurf ⊩ Jsurf by assumption 3 (composition). □

Figure 3. Proof of theorem 3.6.

4.1 Calculating Types
Consider the desugaring of let into the application of a

lambda:

let x = α in β ⇒ (λ x : ? . β)(α)

What is the missing type? It needs to match the type of α , but
there is no way to express this using the kind of desugaring

rules we have presented so far. We therefore extend the

desugaring language with a feature called calc-type. In
this example, it can be used as follows:

let x = α in β ⇒ calc-type α as X in (λ x : X . β)(α)

This binds the type variable X to the type of α in the rest

of the desugaring.

In general, calc-typemay be used in expression position

on the rhs of a desugaring rule, and its meaning is that:

calc-type ẽ1 as t in ẽ2

desugars to ẽ2, in which the type t has been unified with the

type of ẽ1, thus allowing the free type variables of t to be

used in ẽ2.
4
Notice that this requires desugaring and type

checking to be interspersed. This is not surprising, since the

desugaring of let involves determining a type.

This feature needs to be reflected in our type system. We

do so with the type rule:

4 calc-type can also be used to force a more specific surface type rule than

would be inferred. For example, (calc-type α as List<X> in ...)
will lead to a surface type rule that enforces that α is a list. This is used in

the Haskell list comprehension example of section 6.2 and in the or example

of section 4.5.
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Γ ⊢ ẽ1 : t1 t1 = t Γ ⊢ ẽ2 : t2
t-calc-type

Γ ⊢ (calc-type ẽ1 as t in ẽ2) : t2
With this type rule, we can find a type derivation for let,

shown in fig. 4. It leads to the type rule:

Γ ⊢ α : A Γ, x : A ⊢ β : B
t-let

Γ ⊢ let x = α in β : B

Here we can see an advantage of type resugaring. As

noted above, to type check let in the core, type checking

and desugaringmust be interspersed. However, to type check

let in the surface, only this resugared rule is needed.

4.2 Recursive Sugars
Consider boolean guards in Haskell list comprehensions,

which are defined by the desugaring rule (in Haskell’s syn-

tax):

[α | β, γ] ⇒ if β then [α | γ] else []

This sugar, unlike those we have seen up to this point, is

defined recursively: its rhs contains a list comprehension.

Our resugaring algorithm, as described so far, will fail to find

a type derivation for this sugar. It will get to the judgment

Γ ⊢ [α | γ] : _, but lack any way to prove this judgment,

because the t-premise rule does not match.

Our solution is to generalize the t-premise rule to al-

low any judgment about a surface term to be accepted as

a premise. Notice that the term [α | γ] is a surface term:

when desugaring, pattern variables such as α and γ will

only ever be bound to surface terms, and thus they them-

selves should be considered part of the surface language. We

therefore refine the t-premise rule as:

fresh x ẽ is a surface term
t-premise

Γ ⊢ ẽ : x
Furthermore, this is the most general rule we can make:

goal 2 states that surface type rules must never mention core

constructs, so t-premise can allow judgments over surface

terms but nothing more.

4.3 Fresh Variables
Take the sugar const, which produces a constant function:

const α ⇒ λ x : Unit. α

It is important that x be given a fresh name, or else this

sugar might accidentally capture a user-defined variable

called x which is used in α . This is easy to add to desugaring:
each desugaring rule will specify a set of “capturing” vari-

ables that are not freshly generated, and all other introduced

variables will be given fresh names.
5
(We use a capturing

rather than fresh set to choose hygiene by default.)

This feature must also be reflected in the surface type

system. First, let F be the set of introduced variables that

are not marked as captured. We then add the type rule:

5
Picking fresh names for sugar-introduced variables suffices for hygiene

because our sugars are declared outside the language.

Γ ⊢ ẽ : t ẽ is a surface term x1 . . . xn ∈ F
t-fresh

Γ,x1 : t1 . . . xn : tn ⊢ ẽ : t

to remove unnecessary fresh variables from the type en-

vironment, and by modifying t-premise to only work on

judgments so limited:
6

ẽ is a surface term ∀x ∈ Γ. x < F fresh x ′
t-premise

Γ ⊢ ẽ : x ′

What exactly is t-fresh saying? It is a form of weaken-

ing, but with two extra restrictions. First, the variables being

weakened are variables that will be given fresh names dur-

ing desugaring. Second, the expression e is a surface term.

Together, these imply that e cannot contain x1 . . . xn , so it

should be safe to remove them from Γ. One way this could

fail is if the language does not admit weakening, for example

if it has a linear type system. We therefore assume that:

Assumption 6. The rule:

x < Γ x < e Γ,x : t ′ ⊢ e : t
Γ ⊢ e : t

is admissible in the core type system.

This rule can be used to “reverse” any use of t-fresh, so
if it is admissible then applying t-fresh greedily can never

lead a derivation into a dead end.

4.4 Globals
Sugars may rely on library functions. For instance, Haskell’s

list comprehension sugar makes use of the library function

concatMap (which is map followed by list concatenation). We

therefore allow the declaration of “global” names, together

with their type, with the understanding that this name will

be available to the desugared code (with the given type).
7

The declared globals effectively form a primordial type

environment, available in conjunctionwith the ordinary type

environment. For example, if + desugars into a call to a global
plus, the type rule for + is actually (using N as shorthand for
Number):

plus : N,N→N, Γ ⊢ α : N plus : N,N→N, Γ ⊢ β : N

plus : N,N→N, Γ ⊢ α + β : N

However, this is both verbose and unusual, so we opt to leave

the N,N→N implicit. We do so by adding the type rule:

дlobals[x] = t
t-global

Γ ⊢ x : t

which allows plus to be left out of Γ.

6
Our implementation combines t-fresh and t-premise into one rule for

convenience, but the effect is the same.

7
The ability to reference “globals” is but a poor approximation to a macro

system that allows macros and code to be interspersed, in which a macro

may reference any identifier it is in scope of. However, type resugaring in

this setting is a much harder problem which we leave to future work.
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t-premise

Γ ⊢ α : A A = t

t-premise

Γ, x : t ⊢ β : D
t-lambda

Γ ⊢ (λ x:t. β) : t → D
t-premise

Γ ⊢ α : t
t-app

Γ ⊢ (λ x:t. β)(α) : D
t-calc-type

Γ ⊢ (calc-type α as t in (λ x:t. β) α) : D
t-let

Γ ⊢ let x = α in β : D

Figure 4. Type derivation of let

4.5 Variable Arities
We support syntactic constructs with variable arity by having

a sort called e∗ that represents a sequence of expressions:

e∗ ::= ϵ empty sequence

| (cons e e∗) nonempty sequence

| α pattern variable

SweetT supports these sequences by providing:

• The above grammar production, allowing a language’s

grammar to refer to e∗.
• Proper handling of sequences in the unification algo-

rithm, allowing them to be resugared.

• Built-in operations for accessing the n’th element of a

sequence, and for asserting that a type judgment holds

for all expressions in a sequence.

SweetT likewise supports sequences of types, t∗, and records
of both expressions and types.

Using this feature, a simple variable-arity or sugar can

have production rule (or e∗), and desugaring rules:

(or (cons α ϵ)) ⇒ α
(or (cons α (cons β γ)))

⇒ if α then true else (or (cons β γ))
Type resugaring produces one type rule for each desugar-

ing rule:

Γ ⊢ α : A
sugar-or-1

Γ ⊢ (or (cons α ϵ )) : A

Γ ⊢ (or (cons β γ )) : Bool Γ ⊢ α : Bool
sugar-or-2

Γ ⊢ (or (cons α (cons β γ ))) : Bool

The first rule may appear to be too general, but it ac-

curately reflects the sugar as written: (or (cons 3 ϵ)) is a
synonym for 3 and has type Number. However, we can stati-

cally restrict the singleton or to accept only booleans using

calc-type:
(or (cons α ϵ)) ⇒ calc-type α as Bool in α

at which point the resugared type rule becomes:

Γ ⊢ α : Bool
sugar-or-1

Γ ⊢ (or (cons α ϵ )) : Bool

as probably desired.

5 Implementation
We have implemented a prototype of our tool in PLT Re-

dex [6], a semantics engineering tool. It can be found at

cs.brown.edu/research/plt/dl/pldi2018/. Among other fea-

tures, Redex allows one to define judgment forms, and given

a judgment form can search for derivations of it.

SweetT takes as input:

• The syntax of a language, given as a grammar in Redex.

• Core language type rules, defined as a judgment form

in Redex. We require that these rules be written using

equality constraints: if two premises in a type rule

would traditionally describe equality by repeating a

type variable, SweetT instead requires that the rule

be written using two different type variables, with an

equality constraint between them—thus making the

unification explicit.
8

• Desugaring rules, given by a lhs and rhs. Each rule has

a capture list of variables to be treated unhygienically,

as described in section 4.3, and the rhs of a rule may

make use of calc-type, as described in section 4.1.

• Type definitions of globals, as described in section 4.4.

SweetT then provides a resugar function that follows the

process outlined at the end of section 2, together with the

extensions described in section 4. If resugar succeeds, it

produces the resugared type rule, as well as the derivation

which led to it. If it fails, it announces that no derivation

was found (or, less likely, that more than one was found, in

violation of assumption 4 (syntax-directedness)).

Assumption 5 (resugaring) is essentially a specification

for resugar, and we believe our implementation obeys this

property. We provide empirical evidence for this fact, and

for the power of SweetT, in the next section.

6 Evaluation
There is no standard benchmark for work in this area. There-

fore, we evaluate our approach in two ways. First, we try

resugaring on a number of sugars we create atop existing

type systems, to ensure that it can support that variety of type

systems. Second, we show some case studies which validate

that it can handle interesting sugars.

8
This is necessary because re-using the same type variable would invoke

Redex’s pattern-matching algorithm. This is usually sufficient, because

Redex is meant to type a complete term. However, we are typing a partial

term, and instead need a more general unification algorithm. So instead,

SweetT gathers equations and performs unification itself.

cs.brown.edu/research/plt/dl/pldi2018/
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6.1 Type Systems
We evaluate SweetT by implementing a number of type

systems from Types and Programming Languages (tapl [3]).

We tested the type systems in Part II of tapl (except for

references, pg. 167), as well as two later systems (subtyping

and existentials). Altogether, this is:

• Booleans (pg. 93)

• Numbers (pg. 93)

• Simply Typed Lambda Calculus (pg. 103)

• Unit (pg. 119)

• Ascription (pg. 122)

• Let binding (pg. 124)

• Pairs (pg. 126)

• Tuples (pg. 128)

• Records (pg. 129)

• Sums (pg. 132)

• Variants (pg. 136)

• General recursion (pg. 144)

• Lists (pg. 147)

• Error handling (pg. 174)

• Algorithmic subtyping (pg. 212)

• Existential types (pg. 366)

We tested each type system by picking one or more sugars

that made use of its features, resugaring them to obtain type

rules, and validating the resulting type rules by hand. All of

them resugared successfully. The full version of the paper

will provide an appendix with complete details.

Three type systems required extending SweetT’s unifica-

tion algorithm: records and lists needed built-in support, as

described in section 4.5, and subtyping required adding sub-

typing constraints, as well as a new t-sub-premise rule.9

References (pg. 167) would have required changing the form

of judgments, from Γ ⊢ e : t to Γ, Σ ⊢ e : t where Σ is a store

environment, which would be a more extensive change.

6.2 Case Studies
We describe six case studies below.

The first three are simpler than the rest. We describe them

briefly, and show them in fig. 6. For each, the figure first

shows the relevant core language type rules, then the sugar,

then its core derivation, and finally the resugared type rule.

To make them fit, we show all of the derivations after unifi-

cation, eliminating equality constraints.

The last three case studies are more complex, so we discuss

them more but do not show their type derivations (which do

not fit on a page).

Letrec The letrec sugar (fig. 6) introduces recursive bind-

ings using λ and fix (the fixpoint operator).

λret The λret sugar (fig. 6) implements return in func-

tions using tapl-style exceptions (using String as the fixed

9
The t-sub-premise rule is like t-premise, but for subtyping judgments

instead of type judgments.

exception type). The variable return is marked as capturing

in the sugar, and thus appears explicitly in the resulting type

rule.

Upcast The upcast sugar (fig. 6) converts an expression

to a supertype of its type via η-expansion. Notice that the
core language type system contains subtyping judgments,

as mentioned in section 6.1.

Foreach We consider a functional foreach loop, that per-
forms a map on a list, and also provides break within the

loop. If break is called, the loop halts and returns the ele-

ments processed so far. Its desugaring is:

foreach x list body
=>
letrec loop : ((List a) -> (List b) -> (List b)) =

(λ (lst : (List a)) (acc : (List b))
if (isnil lst)
then acc
else

try
let break = (λ (_ : Unit) raise "") in
let x = head lst in
loop (tail lst) (cons body acc)

with (λ (_ : String) acc))
in reverse (loop list nil)

where reverse is a global (section 4.4) with type [i] ->
[i], and where list and body are pattern variables (instead

of α and β , as in the rest of the paper). In addition, this sugar

is declared to capture the variable break (see section 4.3).

The resugared type rule for foreach is show in fig. 5. It

demonstrates how different variables must be handled. In the

desugaring, when body is used, several variables are in scope:
loop, lst, acc, break, and x. However, in the resugared type
rule, only break and x are in scope in the judgment for body:
x because it is an argument to the sugar, and break because

it is declared as capturing.

Haskell List Comprehensions List comprehensions [18,

section 3.11] are given by the following transformation:

[e | True] = [e]
[e | q] = [e | q, True]
[e | b, Q] = if b then [e | Q] else []
[e | p <- l, Q] = let ok p = [e | Q]

ok _ = []
in concatMap ok l

[e | let decls, Q] = let decls in [e | Q]

A Haskell list comprehension has the form [e | Q], where
e is an expression and Q is a list of qualifiers. There are three

kinds of qualifiers, which are visible in the rules above: (i)

boolean guards b perform a filter; (ii) generators p <- l
perform a map; and (iii) let decls declare local bindings.
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Γ ⊢ list : List D Γ,x : D,break : (Unit→ B) ⊢ body : F
t-foreach

Γ ⊢ foreach x list body : List F

Figure 5. foreach type rule

We will ignore first two rules (which are uninteresting

base cases), and focus on the last three, that introduce quali-

fiers. To resugar these three kinds of qualifiers, we declare

concatMap as a global with type (i -> [o]) -> [i] ->
[o], as described in section 4.4. We also simplify the genera-

tor desugaring to consist of a single variable binding, because

that is what is available in the tapl core language we are

desugaring to. Finally, we use calc-type (section 4.1) to

determine the type of elements in generators. Thus, we are

resugaring these slightly modified rules (using Greek letters

for pattern variables to match this paper’s notation):

[α | β, γ] = if β then [α | γ] else []
[α | x <- β, γ] = calc-type β as [t] in

concatMap (\(x :: t) -> [α | γ]) β
[α | let x = β, γ] = (let x = β in [α | γ])

SweetT resugars these rules, producing the following type

rules (transcribed into Haskell syntax)
10
:

Γ ⊢ [α | γ] : C Γ ⊢ β : Bool
t-hlc-guard

Γ ⊢ [α | β, γ] : C

Γ,x : t ⊢ [α | γ] : [o] Γ ⊢ β : [t]

t-hlc-gen

Γ ⊢ [α | x <- β, γ] : [o]

Γ,x : A ⊢ [α | γ] : B Γ ⊢ β : A

t-hlc-let

Γ ⊢ [α | let x = β, γ] : B

Newtype Let us now look at a desugaring of new-type into
existential types. The core language will have constructs for

packing and unpacking existentials:

Γ ⊢ α : [X7→U]t

t-pack

Γ ⊢ pack (U α) as (∃ X t) : (∃ X t)

Γ ⊢ α : (∃ X t1) Γ,x : t1 ⊢ β : t2
t-unpack

Γ ⊢ unpack α as (∃ X x) in β : t2
We define a new-type sugar that presents a concrete type

T as an abstract type X, and provides wrapping and unwrap-

ping functions (with user-chosen names) that convert from

T to X and from X to T respectively. The desugaring is:

new -type (wrap unwrap) of T as X in body

⇒

unpack (pack (T (pair id id)

as (∃ X (Pair (T → X ) (X → T )))))

as (∃ X w)

in let wrap = fst w in

let unwrap = snd w in

body

10
“hlc” stands for “Haskell list comprehension”.

where id is a global (section 4.4) identity function.

This sugar is successfully resugared to give the type rule:

Γ,u : X → T ,w : T → X ⊢ body : A
t-new-type

Γ ⊢ new-type (w u) of T as X in body : A

Notice that this type rule does not mention existentials in any

way, thereby hiding the underlying implementation method

and sparing the programmer from needing to understand

anything but new-type itself.

7 Related Work
Work with the Same Goal We know of a few pieces of

work with the same end goal as us: to take a language with

syntactic sugar, and type check it without allowing for the

possibility of a user seeing a type error in the core language.

In Lorenzen and Erdweg’s SoundExt [14], desugaring comes

before type checking. Their formalism takes (i) a type sys-

tem for the core language, (ii) a type system for the surface

language, and (iii) desugaring rules. It then statically verifies

that the surface type system is consistent with the core type

system. More precisely, they ensure that, for any program,

if that program type-checks in the surface language, then

its desugaring must type-check in the core language. Our

approach has a critical advantage over theirs: we do not re-

quire type rules to be written for the surface language, but

rather infer them. This simplifies the process of extending

the language, restoring the adage “oh, that’s just syntactic

sugar”. We believe this is especially valuable to authors of,

say, domain-specific languages, who are experts in a domain

but may not be in the definition of type systems.

Lorenzen and Erdweg’s later SoundX [15] shows how to

integrate desugaring and type rules, so that the same rule

can serve both to extend desugaring and to extend the type

system. Essentially, the lhs of a desugaring rule is given as a

type rule, and the rhs is given as an expression (per usual).

Again, the difference with our work is that we do not require

type rules to be written for the surface language.

In a similar vein, both Granz et al.’s MacroML [9] andMain-

land’s MetaHaskell [16] are staged programming languages.

They provide the same guarantee as SoundExt and SoundX:

in the words of Mainland, “Well-typed metaprograms should

only generate well-typed object terms.” Therefore, as with

our work, a user is guaranteed never to see a type error in

desugared code. Unlike SweetT, these staged systems allow

macro definitions to be interspersed with code. On the other
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hand, they do not allow macros to check the type of an ex-

pression (as in our calc-type, section 4.1), or to inspect

code (they can only build code up from smaller fragments).

Omar et al. provide a syntactic extension mechanism for

Wyvern called “type-specific languages” (TSLs) [17]. They

note that syntactic extensions often conflict with each other,

but can be resolved based on the type that the syntax is

checked against. As a simple example, Python uses the same

syntax {...} for both sets and dictionaries. The expression

{} is thus ambiguous, but this could be resolved by checking

whether the type context expected a set or a dictionary. This

is the purpose of TSLs. Like MacroML and MetaHaskell,

Wyvern TSLs can only construct code, and cannot inspect

or deconstruct it. (This is sufficient for their main intended

use case, which is defining language literals.)

Finally, Heeren et al., and later Serrano and Hage, show

how to augment a type system with new hand-written error

messages [11, 24]. They do so in the context of embedded

dsls that are implemented without syntactic sugar (which is

why their work does not immediately apply to our situation).

When coding in such an embedded dsl, programmers would

normally be confronted with type errors arising from the

implementation of the dsl. This line of work allows the dsl

author to write custom error messages that instead frame

the error in terms of the dsl.

Work with Similar Goals There are many systems that

type check after desugaring; they potentially show a pro-

grammer a type error in code the programmer did not write.

Some of these are type systems retrofitted onto languages

with macros, such as Type Racket [28] and Typed Clojure [1].

They at best use sourcemaps, providing an accurate line

number for a potentially confusing message. There are also

metaprogramming systems added to languages with types,

such as those of Haskell [25], Ocaml [5], and Scala [2]. They

permit grammar extension, and allow desugaring to be de-

fined as an arbitrary function from ast to ast. However,

while their metasyntactic types capture the syntactic cate-

gory of an expression (for instance Exp vs. Name in Template-

Haskell), they do not reflect the object types (e.g., expressions

of type Int vs. expressions of type String). As a result, they
need to type check after desugaring. (Contrast this to Meta-

Haskell and MacroML, described above.)

Fish and Shivers’ Ziggurat [7] is a framework for defining

a hierarchy of language levels, that makes it easy to attach

static analysis of any sort to each level. However, it does not

analyze the analysis, so it is possible for one level’s analysis

to conflict with that of another.

Similar work has been done for scope rules. Herman and

Wand present λm , in which scope annotations on macros are

statically checked [12]. λm ensures that if a surface term is

well-scoped according to the annotations, then after desug-

aring it will still be well-scoped. Stansifer and Wand con-

tinue in this direction with a more powerful system called

Romeo [27]. In previous work [23], we go further, infer-

ring rather than checking surface scope annotations, directly

analogous to this work.

Workwith aDifferentGoal Ourwork could be contrasted

with Chang et al.’s Turnstile [4]. Turnstile is a macro-based

framework for defining type systems. However, while it uses

desugaring in the implementing language, it has no support

for sugar in the implemented language. To this end, it is a

competitor to other lightweight language modeling tools

(like Redex), and we could have used Turnstile instead of

Redex as the basis for our work (we settled on Redex for

various practical reasons).

8 Discussion and Conclusion
We have presented an algorithm and system for type re-

sugaring: given syntactic sugar over a typed language, it

reconstructs type rules for that sugar. These rules can be

added to a type-checker to check the sugar directly (and

produce error messages at the level of the sugar, rather than

its expanded code), and also be added to the documentation

of the surface language. We show that the system can han-

dle a variety of language constructs, and that it successfully

suppresses the details of what the sugar expands to.

The paper discusses restrictions on the pattern language

of sugars in section 3.1 and the underlying type system in

sections 3.2 and 3.3. It also presents some limitations of the

implementation in section 6.1. It is worth investigating to

see if these restrictions can be lifted to make this idea even

more broadly applicable.

In principle, not much in our work has specifically been

about types. Therefore, this idea could just as well be applied

to other syntax-driven deductive systems, such as a natural

semantics [13] or structural operational semantics [19]. This

would correspondingly enable the creation of semantic rules

at the level of the surface language, which can not only

enrich a language’s documentation but also facilitate its use

in, say, a proof assistant.
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Sugars: Letrec and λret

Core Type Rules:

Γ, x : T ⊢ e : U
t-lambda

Γ ⊢ λ x:T. e : (T → U)
Γ ⊢ f : T → U Γ ⊢ e : T

t-apply

Γ ⊢ (f e) : U
Γ ⊢ e : T → T

t-fix

Γ ⊢ (fix e) : T

Γ ⊢ e : Str
t-raise

Γ ⊢ (raise e) : T
Γ ⊢ e : T Γ ⊢ ecatch : Str → T

t-try

Γ ⊢ try e with ecatch : T

Desugaring Rules:

letrec x : C = α in β ⇒ (λ x:C. β) (fix (λ x:C. α))

λret x:T. β ⇒ λ x:T. try (let return = (λ v:Str. raise v) in β) with (λ v:Str. v)

λret is a function with return automatically bound (i.e., marked as capturing) to escape from the function.

Core Derivations:

t-premise

Γ, x : C ⊢ β : D
t-lambda

Γ ⊢ (λ x:C. β) : C → D

t-premise

Γ, x : C ⊢ α : C
t-lambda

Γ ⊢ (λ x:C. α) : C → C
t-fix

Γ ⊢ (fix (λ x:C. α)) : C
t-apply

Γ ⊢ ((λ x:C. β) (fix (λ x:C. α))) : D
t-letrec

→

Γ ⊢ letrec x : C = α in β : D

t-id
Γ, x : T, v : Str ⊢ v : Str

t-raise
Γ, x : T, v : Str ⊢ raise v : A

t-λ
Γ, x : T ⊢ (λ v:Str. raise v) : Str→ A

t-prem.

Γ, x : T, return : Str → A ⊢ β : Str
t-let

Γ, x : T ⊢ (let return = (λ v:Str. raise v) in β) : Str

t-id
Γ, x : T, v : Str ⊢ v : Str

t-λ
Γ, x : T ⊢ (λ v:Str. v) : Str→ Str

t-try

Γ, x : T ⊢ (try (let return = (λ v:Str. raise v) in β) with (λ v:Str. v)) : Str
t-λ

Γ ⊢ λ x:T. (try (let return = (λ v:Str. raise v) in β) with (λ v:Str. v)) : T→ Str
t-λret→

Γ ⊢ (λret x:T. β) : T→ Str

Resugared Type Rules:

Γ, x : C ⊢ α : C Γ, x : C ⊢ β : D
t-letrec

Γ ⊢ letrec x : C = α in β : D

Γ, x : T, return : (Str → A) ⊢ β : Str
t-λret

Γ ⊢ (λret x:T. β) : T → Str

Sugar: Upcast

Core Type Rules:

x:T ∈ Γ
t-id

Γ ⊢ x : T

Γ, x : T ⊢ e : U
t-lambda

Γ ⊢ λ x:T. e : (T → U)
Γ ⊢ f : T → U Γ ⊢ e : T′ T′ <: T

t-apply

Γ ⊢ (f e) : U

Desugaring Rule:

upcast α as C ⇒ (λ x:C. x) α

Core Derivation:

t-id

Γ, x : C ⊢ x : C
t-lambda

Γ ⊢ (λ x:C. x) : C → C
t-premise

Γ ⊢ α : A
t-sub-premise

A <: C
t-apply

Γ ⊢ ((λ x:C. x) α) : C
t-upcast

→

Γ ⊢ upcast α as C : C
Resugared Type Rule:

Γ ⊢ α : A A <: C
t-upcast

Γ ⊢ upcast α as C : C

Figure 6. Derivation examples
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