
Synthesizing Mutable Configurations:
Setting up Systems for Success

Tim Nelson
Brown University
tbn@cs.brown.edu

Natasha Danas
Brown University

ndanas@cs.brown.edu

Theophilos Giannakopoulos
Systems and Technology Research

theophilos.giannakopoulos@stresearch.com

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract—Numerous devices, from network switches and
servers to industrial control systems, can be unreliable if they
are not configured properly. Even if a device’s implementation
has been proven correct, it must still be configured to meet the
specific functional and security requirements of its stakeholders.

However, manual configuration remains labor intensive and
error-prone even for experts. Automated configuration synthesis
presents a promising way forward. Unfortunately, as we show,
existing counterexample-guided algorithms can perform poorly if
the system model allows configuration changes during execution.
Yet disallowing such changes can hide significant problems, such
as privilege escalation.

We present a new synthesis algorithm that exploits structure
inherent in state-machine models where the system configura-
tion changes. We implement it using the Kodkod relational
model finder, and show that it favorably solves a number of
configuration-synthesis tasks.

I. INTRODUCTION

Numerous devices, from network switches to industrial con-
trol systems, can be unreliable and insecure if they are not con-
figured properly. Multiple reports [1]–[3] from cloud-service
providers show problems arising from misconfiguration and
related issues (such as unsound configuration generation).
Formal synthesis presents a promising way forward.

Most traditional synthesis projects focus on producing pro-
grams. However, even if a device’s implementation is “cor-
rect”, it will not function correctly unless it is configured to
meet the user’s goals. Thus, we focus on the less-attended
problem of configuration synthesis: given a fixed program,
produce a configuration that will ensure those goals.

Prior work (Sec. VII) in configuration synthesis assumes
that the system configuration never changes (which certainly
aids synthesis performance). In practice, this misses many real-
world systems that are reconfigured by external controllers
(as in software-defined networking [4]), human-executed stan-
dard operating procedures, and more. All these dynamically
change the configuration. A poor initial configuration can, after
mutation, become an undesirable configuration, resulting in
problems like privilege escalation attacks.

Thus, our synthesis goal is to find initial configurations
that do not contain latent flaws. Our approach consumes a
transition system and temporal safety goals, and generates a
configuration that meets those goals even if the system mutates
the configuration. Our problem domain is therefore distinct
from most program synthesis (e.g., SyGuS [5]) and reactive
synthesis [6], as we discuss in Sec. VII.

In this short paper, we identify the mutable-configuration
synthesis problem, note issues with naively applying popular
counterexample-based algorithms, and describe an approach
that yields promising improvement.

II. SYNTHESIS EXAMPLE

We begin with an example domain: Role-Based Ac-
cess Control [7] (RBAC). In RBAC, roles mediate user
access to permissions. For instance, if user Alice has
the role Accountant and the Accountant role has the
ReadStatements permission, Alice can read bank statement
files. An RBAC policy can be represented as a pair of relations:
ra : User × Role and pa : Role × Permission .

Administrative RBAC [8], [9] (ARBAC) formalizes online
modifications to an RBAC policy. There are numerous variants
of ARBAC; we adopt a simplified version for brevity (eliding,
e.g., role revocation). Concretely, we add to RBAC:

canAssign : Role × Role says which roles users with a
given administrative role are empowered to assign.
require : Role × Role × Role positively filters role-
assignment.
forbid : Role × Role × Role negatively filters role-
assignment.

For someone to use role a to grant role r to user u, it must
hold that (1) (a, r) ∈ canAssign; (2) ∀ r′ such that (a, r, r′) ∈
require , (u, r′) ∈ ra; and (3) ∀ r′ such that (a, r, r′) ∈ forbid ,
(u, r′) 6∈ ra .

In our synthesis setting, the set of entities is bounded
(although not necessarily fixed) a priori. For this example,
we specify that there exist 3 potential users Alice, Bob, and
Charlie along with the concrete roles Manager, Auditor,
and Accountant. Now suppose that an organization has three
synthesis goals:

1. The Accountant and Auditor roles are always popu-
lated by some user.

2. The Accountant and Auditor roles are always disjoint.
3. The Accountant and Auditor roles (at least) can be

assigned in the initial state.
The first two goals correspond to safety properties in linear
temporal logic, where states correspond to configurations. The
third goal precludes trivial examples that disallow any ARBAC
actions. We wish to synthesize initial values to the ARBAC
relations (i.e., an initial configuration state) such that these
properties hold for all potential system traces.

ra
(Charlie, Acc)

(Alice, Aud)
(Alice, Mgr)

¬ra
(Charlie, Aud)

(Alice, Acc)
(Bob, Mgr)
(Bob, Acc)
(Bob, Aud)

canAssign
(Mgr, Acc)
(Mgr, Aud)
¬canAssign
(Aud, Aud)
(Acc, Aud)

forbid
(Mgr, Acc, Aud)
(Mgr, Aud, Acc)

¬forbid
(empty)

require
(Acc, Acc, Acc)
(Aud, Acc, Acc)

¬require
(Mgr, Aud, Aud)
(Mgr, Acc, Acc)
(Mgr, Acc, Aud)
(Mgr, Aud, Acc)
(Mgr, Acc, Mgr)
(Mgr, Aud, Mgr)

Fig. 1. Synthesized configuration. We typeset settings according to which goal
they help ensure: (1): normal red; (2): bold olive; (3): italic blue. Raw output
is edited for readability; role names are truncated, e.g., “Accountant” is
“Acc”. Negative settings, denoted with a ¬, are false in the configuration.

Mutability and Synthesis: User-role assignment is muta-
ble: it changes over time as a result of ARBAC, and the system
model used for synthesis must account for this. Moreover, in
a realistic system there are other sources of mutability—both
automated and human. One component’s configuration (e.g.,
a filesystem) may guard and enable reconfiguration of other
components, and (unlike in this example) the dependencies
are not necessarily acyclic. System administrators may also
dynamically reconfigure live systems, limited only by standard
operating procedure.

Synthesis in this setting requires an engine that is able
to account for all possible system traces (i.e., higher-order
universal quantification) without relying on any part of the
trace to remain constant. Fortunately, as we will see, this
problem contains rich structure that can be exploited to aid
synthesis. Our prototype implementation generates the config-
uration shown in Fig. 1 in 2 seconds.

III. PRELIMINARIES

Space limitations preclude a full formalization, but we
briefly establish some foundations for what follows.

Synthesis input consists of a symbolic state machine M (the
system model) with transition relation δ over a set of relations
R and a set of R-properties Θ in safety Linear Temporal Logic
(LTL). Note that safety properties can state more than just
global assertions, and allow, e.g., the weak-until operator.

As M describes how configuration change can occur in the
overall system, its states represent concrete system configura-
tions. For example, the state machine for ARBAC is defined
over relations ra , pa , canAssign , require, and forbid and
encodes the transition system for role-assignment described
in Sec. II. The synthesis properties Θ are LTL formalizations
of the three goals in Sec. II.

We denote the set of execution traces for M as Traces(M),
and the set of length-n traces as Tracesn(M). If all traces
starting at s satisfy Θ then we say that s satisfies Θ. If all
traces of length n starting at s (extended to infinite-length via
stuttering) satisfy Θ, then we say that s is n-feasible for Θ.

The goal of synthesis is to provide a configuration (i.e., a
start state of M) that satisfies Θ. For the Sec. II example,
Fig. 1 gives a configuration that satisfies all 3 goals shown.

IV. ALGORITHMICS

For simplicity, we consider the bounded-trace version of
synthesis: given a machine M , a finite set of safety re-
quirements Θ and a trace-length n, we seek an n-feasible
configuration of the machine for Θ. Logically, this means
satisfying ∃c∀~s . (s0 = c ∧ ~s ∈ Tracesn(M)) =⇒ Θ(~s),
where c ranges over configurations and ~s over traces, and s0
denotes the first state in ~s.

A. A First Attempt: Learning from counterexamples

Such problems often submit to the CounterExample-Guided
Inductive Synthesis [10] (CEGIS) approach. The key idea is
that, while the ∀ quantifier may be expensive to eliminate,
counterexamples for Θ starting from a fixed candidate c
are easier to produce and so a solution can be reached by
successive approximation.

Adapted for our domain, CEGIS proceeds in two parts: (1)
find a candidate c that satisfies ∃c∀~s ∈ S . (s0 = c ∧ ~s ∈
Tracesn(M)) =⇒ Θ(~s) for small (initially empty) S; then
(2) attempt to satisfy ∃~s . s0 = c∧~s ∈ Tracesn(M)∧¬Θ(~s).
Should phase (2) yield a counterexample trace, it is added to
S and phase (1) repeats. Otherwise, c is correct.

Adding a fixed trace ~s to S involves learning the instan-
tiation of the quantifier-free subformula with the trace. Since
¬Θ(~s) always holds, this means excluding the counterexample
from the system’s behavior. But Tracesn(M) is fixed, so the
new constraint is just s0 6= c. Thus, a naive iteration of CEGIS
will only learn that a different configuration is necessary. Given
the large search space of potential configurations (the small
example in Sec. II admits 281 since there are 81 potential
tuples), we must do better.

B. A Way Forward: Extracting Blame

To improve on the above algorithm, we exploit two key
ideas. First, if a trace violates Θ, there will be a finite set of
relational facts (possibly spanning multiple states in the trace)
that suffice to violate Θ. Second, these facts describe a set of
traces that can be transformed under the transitions of M to
yield a set of shorter traces that can be extended to violate Θ.
The revised algorithm, Alg. 1, adds corresponding new phases
3 and 4 to CEGIS. We address each phase individually.
• Phase 1 (Line 3–Line 5): Find a candidate starting state s0

via a satisfiability query on the initial-state formula α0 of the
system M plus any constraints learned so far. If this query is
unsatisfiable, all possible configurations have been excluded.
Otherwise, obtain candidate configuration c from the result.
• Phase 2 (Line 6–Line 7): Seek a trace starting from c

that violates the requirements Θ. The only subtlety is that we
must reframe the problem to return traces rather than a starting
configuration. We use M̂ to denote the formula that encodes
Tracesn(M). We translate finite-trace LTL formulas to first-
order logic in the usual way. For instance, the statement that
XGp (p holds globally from the second state) would become
the assertion that, for all state atoms after the first, p holds.

If there is no counterexample, return the n-feasible config-
uration. Otherwise, another iteration is needed.

1 L← empty;
2 while true do
3 s0 ← solve(α0 ∧ L);
4 if unsat(s0) then return fail();
5 candidate← s0;
6 ~s← solve(candidate ∧ M̂ ∧ ¬Θ);
7 if unsat(~s) then return success(candidate);
8 ~w ← minimize(core(solve(~s ∧Θ)));
9 ~w ← buckets(filter(pc, in?(~s))); // bucket by state

10 ~s · ← ~s; // discard final state
11 while |~w| > 1 do
12 ~s · s← ~s ; // isolate current prestate
13 ~w · w · w′ ← ~w ; // cause fragment in poststate
14 root← solve(s ∧ ¬w′ ∧ δ) ;
15 φ← filter(minimize(core(root)), in?(s));
16 ~w ← ~w · (w ∧ φ); // empty φ is treated as true
17 · w ← ~w; // isolate last remaining component of ~w
18 L ← L ∧ ¬w;

Algorithm 1: Configuration Synthesis

• Phase 3 (Line 8–Line 9): Determine a proximal cause.
Given a counterexample trace ~s, we seek a smallest justifica-
tion for its failure on Θ. While the conjunction of all facts in
~s suffices, this is often much larger than needed. Consider the
LTL formula Gp100 (“the proposition p100 is true globally”).
There may be many variables in a counterexample trace, but
the lone fact that it includes a state where p100 is false suffices
as a proximal cause for property failure.

Alg. 1 obtains a minimal proximal cause by asking the
solver to satisfy ~s ∧ Θ, where ~s is a conjunction of literals
that fully describe the counterexample trace. The overall query
must be unsatisfiable, or else ~s would not be a counterexample.
By using a core-extracting solver (Sec. V), our algorithm can
obtain a minimal unsatisfiable core: a minimal subset of the
conjuncts that are themselves unsatisfiable. Filtering the core
to only literals of ~s and sorting its components by state yields
a vector of formulas ~w that the next phase will, intuitively,
refine into a root cause in the initial state.
• Phase 4 (Line 10–Line 18): Determine the root cause.

To do this, Alg. 1 iteratively reduces a sequence of enabling
causes for ¬Θ, beginning with the proximal cause.

In each inner iteration the length of the enabling cause
~w is decreased, eventually terminating at a cause entirely in
terms of the initial state. For any initial state s that satisfies
this final enabling cause, some trace starting at s exists that
violates Θ, and thus the algorithm can soundly learn the
cause’s negation after filtering to the candidate. (Showing that
this is sound involves proving by induction that, essentially,
the causal nature of each successive ~w is preserved.)

If the post-filter cause φ is empty, this means that there is
no configuration that satisfies Θ. In this case, the algorithm
learns a contradiction and rightly fails in the next iteration.
Learning the negation of this final formula must exclude at
least one configuration, and thus Alg. 1 terminates.

Alg. 1 is no better in the worst case than 2-phase CEGIS, as
it can potentially iterate once for every configuration. However,
Sec. VI shows it is often an order-of-magnitude improvement.

V. IMPLEMENTATION

Our synthesis engine is implemented in Java and runs atop
Kodkod [11]. Kodkod supports problems with rich (bounded)
relational state and provides features we use such as unsat-core
minimization. Below Kodkod, we use incremental Minisat [12]
for Alg. 1’s synthesis phase and proof-extracting Minisat for
the other three phases. The engine accepts synthesis problems
via an API, along with various options such as trace length.

VI. EVALUATION

We address the following research questions: (RQ1): Is
Alg. 1 more performant than 2-phase CEGIS when synthe-
sizing mutable configurations? (RQ2): Where are the perfor-
mance bottlenecks of Alg. 1? We report on the example from
Sec. II (ARBAC), along with an unsatisfiable variant (Unsat)
that allows a system administrator to make arbitrary changes,
making the goals impossible to satisfy.

All experiments were run on a MacBook Pro (2.3 GHz i5,
MacOS 10.14.4, 3 GB Java heap). Trials that did not complete
in 30 minutes were terminated. Fig. 2 presents the results.
The Example, Bounds, and Tr. Ln. columns indicate the
example name, bounds (maximum number of users, roles, and
permissions), and maximum trace length respectively.

A. RQ1: Performance vs. Baseline CEGIS

As a baseline, we modeled and ran each problem in Al-
loy* [13], which uses 2-phase CEGIS. The Total (s) column
lists wall-clock runtime in seconds for both Alg. 1 and Alloy*,
rounded to the nearest second. Alloy* failed to finish within
the time limit on every Unsat example, while Alg. 1 completed
the 3-role case for both trace lengths. We also report the
number of iterations taken. In all cases, Alg. 1 iterates less,
indicating that more information is being learned in each pass.

We ran additional experiments with an 8-hour timeout to
clarify two ambiguous cases. First, we re-ran the first unsolved
5-state Unsat example for both Alg. 1 and Alloy* (bounds
4 and 3 respectively). Alg. 1 reached an unsatisfiable result
in 70 minutes; Alloy* did not terminate. Second, we re-ran
ARBAC(8) in Alloy*, since Alg. 1 nearly timed out at 30
minutes. Alloy* failed to terminate in 8 hours.

The Alloy* models used for comparison can be found at:

http://cs.brown.edu/research/plt/dl/seconfig2019/

B. RQ2: Performance Bottlenecks

The Phase column lists time taken, to the nearest second,
per phase: synthesis, verification, proximal cause, and root
cause. Sub-1-second results are shown as 1 second to avoid
potentially misleading zeros. Throughout, the vast majority
of runtime is spent in root-cause extraction—the step that
repeatedly performs core extraction and minimization. (The
gap between s+v+p+r and the total time comprises overhead:
setup of data structures, etc.)

The #∨ column reports how many disjuncts were in each
iteration’s learned constraint. Smaller numbers are better.

http://cs.brown.edu/research/plt/dl/seconfig2019/

Tr. # iterations Total (s) Phase (s) # ∨
Example Bounds Ln. Alg. 1 Alloy* Alg. 1 Alloy* s v p r avg sd
ARBAC 3 URP 5 13 4383 2 63 1 1 1 1 6 2
ARBAC 4 URP 5 15 2452 6 127 1 1 1 4 9 2
ARBAC 5 URP 5 27 2784 19 484 1 1 1 14 12 3
ARBAC 6 URP 5 37 3574 47 >1800 1 3 1 38 12 4
ARBAC 7 URP 5 16 1609 42 >1800 1 2 1 32 15 3
ARBAC 8 URP 5 154 670 769 >1800 1 31 9 695 21 8
ARBAC 3 URP 10 45 69 13 4 1 2 1 9 9 4
ARBAC 4 URP 10 22 356 14 42 1 1 1 10 10 3
ARBAC 5 URP 10 35 4598 51 >1800 1 4 1 38 16 5
ARBAC 6 URP 10 57 234 169 274 1 11 3 138 21 10
ARBAC 7 URP 10 68 551 454 >1800 1 23 5 389 31 15
ARBAC 8 URP 10 213 274 1576 >1800 1 96 24 1350 22 9

Unsat 3 URP 5 314 62753 73 >1800 1 5 2 62 8 2
Unsat 4 URP 5 2610 22943 >1800 >1800 1 89 24 1626 10 2
Unsat 5 URP 5 1149 7151 >1800 >1800 1 76 21 1660 12 3
Unsat 6 URP 5 563 2423 >1800 >1800 1 63 20 1685 14 4
Unsat 3 URP 10 475 39580 221 >1800 1 18 4 184 8 3
Unsat 4 URP 10 1283 10704 >1800 >1800 1 107 24 1593 11 4
Unsat 5 URP 10 538 2765 >1800 >1800 1 87 21 1639 14 4
Unsat 6 URP 10 291 702 >1800 >1800 1 83 20 1654 16 6

Fig. 2. Numeric Evaluation. Columns shaded gray give baseline performance in Alloy*. Timed-out experiments are indicated by “>1800”.

Sizes are aggregated over iterations as average and standard
deviation. Higher bounds and trace lengths often lead to larger
enabling causes and thus to larger learned constraints. There
is a strong, although not universal, relationship between this
metric and performance.

VII. RELATED WORK

Alloy* [13] enables for-all-traces synthesis in a relational
setting through higher-order universal quantification, which
it achieves via CEGIS. While this is expressively sufficient,
Sec. VI shows there is room for improvement. Modeling tran-
sition systems and checking temporal properties in Alloy are
well studied (e.g., Giannakopoulos, et al. [14], DynAlloy [15],
[16], Vakili and Day [17], [18], and Electrum [19], [20]).

Program Synthesis: CEGIS was first introduced by
Sketch [10], a seminal example of Syntax Guided Synthe-
sis [5]. A representative sample of CEGIS in program syn-
thesis includes program-repair hints [21], memory-consistency
models [22], optimal synthesis [23] low-level bit-manipulation
programs [24] and data structures [25], and concurrent pro-
grams subject to temporal safety goals [26]. Other algorithmic
approaches include enumerative search [27], a QBF solver
via a symbolic model-checker [28], and conflict-driven learn-
ing [29]. All of these focus on finding fixed programs, rather
than initial configurations.

Reactive Synthesis: Reactive synthesis [6] synthesizes
a system automaton satisfying given temporal properties. In
contrast, our work takes properties and a system automaton
as input and finds safe starting states. We are therefore able
to search directly within the pre-established symbolic system.

Reactive synthesis for the GR(1) LTL fragment [30] has
been useful for, e.g., robot controllers [31], [32]. Our proper-
ties are both more and less expressive; Alg. 1 only supports
safety but permits operator nesting that GR(1) excludes.

Configuration synthesis: In the network-configuration
domain, many works (e.g., ConfigAssure [33], Diekmann, et
al. [34], [35], Zhang, et al. [36], NetGen [37], Merlin [38],
FatTire [39], Propane [40], [41], and the NetComplete [42],
[43] line of work) synthesize fixed configurations for specific
domains such as firewalls, routing rules, BGP policies, and
middlebox configuration scripts. They handle properties in-
volving connectivity, bandwidth, and other network-specific
goals. In contrast, we consider synthesis within a domain-
agnostic system model with online mutation. Interestingly,
NetComplete can also autocomplete an existing partial con-
figuration, reducing the search space by leveraging human
expertise. This could be added to our implementation via
(partial) exact Kodkod bounds during candidate generation.

Parameter Synthesis: Parametric transition systems allow
a (fixed) initial configuration to affect system behavior. Param-
eter synthesis (e.g., [44]–[46]) finds parameters under which
the system meets desired properties. Once fixed, parameters do
not change. Yet, some techniques from parameter synthesis
are still applicable here; our approach is strongly related
to Cimatti, et al. [46], who use an unbounded-trace model-
checking algorithm to produce counterexamples. These works
all accept state properties, which are weaker than general
safety. Although it is possible to support arbitrary safety
properties by adding additional state to the model, our ap-
proach works without any modifications to the state machine
by identifying a proximal cause for failure which is then
iteratively collapsed to produce blame in the initial state.

This work is partially supported by the US NSF, AFRL,
and DARPA. We are grateful to Armando Solar-Lezama and
James Bornholt for feedback at the beginning of this project,
to Howard Reubenstein for discussions throughout, and to the
anonymous reviewers for their remarks.

REFERENCES

[1] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?:
Lessons from hundreds of service outages,” in ACM Symposium on
Cloud Computing, 2016.

[2] Amazon Web Services, “Summary of the Amazon S3 Ser-
vice Disruption in the Northern Virginia (US-EAST-1) Region,”
https://aws.amazon.com/message/41926/, 2017, accessed March 31,
2019.

[3] Google official blog, posted by Ben Treynor, VP Engi-
neering , “Today’s outage for several Google services,”
https://googleblog.blogspot.com/2014/01/todays-outage-for-several-
google.html, 2014, accessed March 31, 2019.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” in Conference
on Communications Architectures, Protocols and Applications (SIG-
COMM), 2007.

[5] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-
guided synthesis,” in Formal Methods in Computer-Aided Design, 2013.

[6] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Principles of Programming Languages (POPL), 1989.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[8] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model
for role-based administration of roles,” ACM Trans. Inf. Syst. Secur.,
vol. 2, no. 1, Feb. 1999.

[9] R. Sandhu and Q. Munawer, “The ARBAC99 model for administration
of roles,” in Proceedings of the 15th Annual Computer Security Appli-
cations Conference, ser. ACSAC ’99, 1999.

[10] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2006.

[11] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2007, pp. 632–647.

[12] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, 2003.

[13] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A general-
purpose higher-order relational constraint solver,” in International Con-
ference on Software Engineering, 2015.

[14] T. Giannakopoulos, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“Towards an operational semantics for Alloy,” in International Sympo-
sium on Formal Methods (FM), 2009.

[15] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre,
“DynAlloy: Upgrading Alloy with actions,” in International Conference
on Software Engineering, 2005.

[16] G. Regis, C. Cornejo, S. Gutiérrez Brida, M. Politano, F. Raverta,
P. Ponzio, N. Aguirre, J. P. Galeotti, and M. Frias, “DynAlloy Analyzer:
A tool for the specification and analysis of Alloy models with dynamic
behaviour,” in Foundations of Software Engineering, 2017.

[17] A. Vakili and N. A. Day, “Temporal logic model checking in Alloy,” in
International Conference on Abstract State Machines, Alloy, B, and Z,
2012, pp. 150–163.

[18] A. Vakili, “Temporal logic model checking as automated theorem
proving,” Ph.D. dissertation, University of Waterloo, Ontario, Canada,
2016.

[19] J. Brunel, D. Chemouil, A. Cunha, T. Hujsa, N. Macedo, and J. Tawa,
“Proposition of an action layer for Electrum,” in International Confer-
ence on Abstract State Machines, Alloy, B, and Z, 2018.

[20] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight specification and analysis of dynamic systems with rich
configurations,” in Foundations of Software Engineering, 2016.

[21] P. M. Phothilimthana and S. Sridhara, “High-coverage hint generation for
massive courses: Do automated hints help CS1 students?” in Conference
on Innovation and Technology in Computer Science Education, 2017.

[22] J. Bornholt and E. Torlak, “Synthesizing memory models from frame-
work sketches and litmus tests,” in Programming Language Design and
Implementation (PLDI), 2017.

[23] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze, “Optimizing synthesis
with metasketches,” in Principles of Programming Languages (POPL),
2016.

[24] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in Programming Language Design and Implementation
(PLDI), 2011.

[25] C. Loncaric, M. D. Ernst, and E. Torlak, “Generalized data structure
synthesis,” in International Conference on Software Engineering, 2018.

[26] A. Solar-Lezama, C. G. Jones, and R. Bodı́k, “Sketching concurrent
data structures,” in Programming Language Design and Implementation
(PLDI), 2008.

[27] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin,
and R. Alur, “TRANSIT: Specifying protocols with concolic snippets,”
in Programming Language Design and Implementation (PLDI), 2013.

[28] A. Gascón and A. Tiwari, “A synthesized algorithm for interactive
consistency,” in NASA Formal Methods, 2014.

[29] Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis
using conflict-driven learning,” in Programming Language Design and
Implementation (PLDI), 2018.

[30] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation, 2006.

[31] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering, 2015.

[32] ——, “On the software engineering challenges of applying reactive
synthesis to robotics,” in Workshop on Robotics Software Engineering,
2018.

[33] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” J. Netw. Syst. Manage., vol. 16,
no. 3, Sep. 2008.

[34] C. Diekmann, J. Naab, A. Korsten, and G. Carle, “Agile network
access control in the container age,” IEEE Trans. Network and Service
Management, vol. 16, no. 1, pp. 41–55, 2019.

[35] C. Diekmann, S. Posselt, H. Niedermayer, H. Kinkelin, O. Hanka, and
G. Carle, “Verifying security policies using host attributes,” in Formal
Techniques for Distributed Objects, Components, and Systems, 2014.

[36] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, “Verification and Syn-
thesis of Firewalls using SAT and QBF,” IEEE International Conference
on Network Protocols (ICNP), 2012.

[37] S. Saha, S. Prabhu, and P. Madhusudan, “NetGen: Synthesizing data-
plane configurations for network policies,” in Symposium on SDN
Research (SOSR), 2015.

[38] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with Merlin,” in Workshop on Hot Topics in Networks, 2013.

[39] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’13, 2013.

[40] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-
level configurations,” in Conference on Communications Architectures,
Protocols and Applications (SIGCOMM), 2016.

[41] ——, “Network configuration synthesis with abstract topologies,” in
Programming Language Design and Implementation (PLDI), 2017.

[42] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev, “Network-
wide configuration synthesis,” in International Conference on Computer
Aided Verification, 2017.

[43] ——, “NetComplete: Practical network-wide configuration synthesis
with autocompletion,” in Networked Systems Design and Implementa-
tion, 2018.

[44] F. Wang, “Symbolic parametric safety analysis of linear hybrid systems
with BDD-like data-structures,” in International Conference on Com-
puter Aided Verification, 2004.

[45] G. Frehse, S. K. Jha, and B. H. Krogh, “A counterexample-guided
approach to parameter synthesis for linear hybrid automata,” in Interna-
tional Workshop on Hybrid Systems: Computation and Control, 2008.

[46] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with IC3,” in Formal Methods in Computer-Aided Design, 2013.

