The Feature Signatures of Evolving Programs *

Daniel R. Licata, Christopher D. Harris and Shriram Krishnamurthi
Computer Science Department
Brown University

1. Introduction

As programs evolve, their code increasingly becomes
tangled by programmers and requirements. This mosaic
quality complicates program comprehension and mainte-
nance. Many of these activities can benefit from viewing
the program as a collection of features. We introduce an
inexpensive and easily comprehensible summary of pro-
gram changes called the feature signature and investigate
its properties. We find a remarkable similarity in the na-
ture of feature signatures across multiple non-trivial pro-
grams, developers and magnitudes of changes. This indi-
cates that feature signatures are a meaningful notion worth
studying. We then show numerous applications of feature
signatures to software evolution, establishing their utility.
A more comprehensive version of this paper (including ad-
ditional case study results) is also available [16].

Building programmer-friendly tools means both leaving
the development process intact and limiting the amount of
extra work that the programmer must do, relying instead on
software artifacts that are kept up-to-date as the software
evolves. One such artifact is the program itself; however,
any ascription of human knowledge requires some form of
redundant specification beyond the program source. The
most natural place to look for redundancy is in design docu-
ments and other forms of documentation. Sadly, any portion
of the software suite that is not immediately useful to devel-
opers and that suffers from poor tool support tends to be
neglected; documentation is notorious in this regard. Fortu-
nately, there is one source of redundancy that programmers
often maintain, because of its utility: the test suite.

2. Test Suites and Features

In this paper, we will use the term zest case for the in-
put/output pair necessary to complete a single execution of
a program and specify the expected result; fest suite for a
collection of test cases; and test battery for a program’s

*Research partially supported by NSF grants ESI-0010064, ITR-
0218973, SEL-0305949 and SEL-0305950, and by Brown University’s
Karen T. Romer UTRA program.

complete set of test suites. A feature is a product charac-
teristic that customers find important in describing and dis-
tinguishing related software systems. We make a crucial as-
sumption about the structure of test suites: we assume that
the test battery is partitioned into suites that are roughly
aligned with the features of the system.

Why should tests align with features at all? In many
cases, testing is conducted by people outside the develop-
ment process; these testers can view the system only in
terms of its features (which they derive from the require-
ments documentation), not its implementation. Even when
developers and testers coincide, tests typically measure the
input-output behaviors of a program —which correspond to
the features that a user sees. When individual test cases
themselves correspond to some small part of the function-
ality of a program that the user can see, it is easy to collect
them into suites based on the features that those bits of func-
tionality comprise.

3. Analysis Methodology

We begin by assuming that we have two versions of the
program. This is usually easy to reconstruct from a standard
version control system such as CVS [2]. For simplicity, we
also assume that the test battery does not change between
the two states of the system.

Given these inputs, the methodology for extracting data
about the program from the test battery is simple:

1. Use a differencing utility which consumes the two pro-
gram sources and generates a list of blocks of code that
have been added, deleted, or changed between the two
versions.

2. Run the test battery on both versions of the program,
gathering profiling information (the frequency of exe-
cution of each block of code) for each test suite. The
profiling tool needs to monitor execution at the same
level of granularity captured by the differencing tool.

The data that ensue from this process have the following
form:

tsl | ts2 [ts3 | --- | tsm
block 1 1 0 0 0
block 2 1 1 0 0
block n 0 0 1 0

Each row of this table corresponds to one block of code that
the differencing utility identified as being added, deleted, or
changed in this modification to the program. Each column
depicts the execution of one test suite. A 1 in a particular
entry means that that particular code block was exercised
(as recognized by the profiler) by that test suite; a 0 means
that it was not. For additions and changes, we use the profil-
ing results from the program after the change; for deletions,
we must use the results from the program before the change.
We call each row that difference block’s feature signature:
the feature signature of a block of code is the vector of 0’s
and 1’s that indicates which test suites executed it.

Having obtained the feature signature of each difference
block, we can then summarize these data into a simple
graphical form. First, we compute the number of 1°s in the
feature signature of each difference block, which tells us
how many test suites impacted that modification. We then
generate a histogram of these counts.

4. Parameters for Case Study

This paper contains a case study that analyzes the form
of feature signatures. Our study employed two large soft-
ware systems, each with a significant number of features:
the standard interpreter for the Python [3] language, and
MzScheme [11], the virtual machine for the DrScheme pro-
gramming environment [10]. Though both are language
implementations, their implementation details and develop-
ment methodologies differ in enough ways to mask super-
ficial similarities. These systems are Open Source, so our
experiments are easily repeatable.

The tests we used for MzScheme were factored into 25 to
38 suites, while the tests for Python were factored into 113
to 196 suites; the tests for these programs were all manually
written and came factored by feature.

Both of these programs are written in C, so we chose to
adopt the naive differencing that Unix’s dif £ offers and to
profile with gcov (part of the gcc compiler suite), which
reports profiling information for each executable line. In
our reports, we adopt the convention that a block executes
if at least one of the lines in it executes (according to gcov).

5. Feature Signature Analysis

Figure 1 is an example of the histograms that result from
our case study (the full set of histograms is also available
[16]). The ¢th bar of the histogram tells the number of

[
' 7o)
(¢p)
o
4 ™
o)
-1 QN
) ~
o)
—
o
—
o)
I R N R MO T o
oNoNoNoNolNoNoNoNoeNe)
oNoNoNoNoNoNoNoNe)
OO MNOUOSTTOAN
= 10
g M~
-
1 o
-4
e
o)
d«
N
o
4 O
© -
o)
1 M~
1
o
45
{10
1 AN
o
N
O O O O O O O O
O O O O O O O
N O IO < O AN

Figure 1. Feature signature histograms
Histograms of the number of difference blocks executed by
exactly each number of different test suites for changes to
(a) Python and (b) MzScheme

changed blocks of code that were executed by exactly 4
test suites. The left-hand-side of each graph thus shows the
number of change blocks that were executed by only a small
number of test suites, while the right-hand-side shows how
many were impacted by almost all or all of the test suites.

We created these histograms for many small (27 to 56
diff blocks) changes to Python, each on the granularity
of between one and five CVS commits. Examining these
graphs showed that they have a very distinctive shape: most
differences blocks fall near the left or right edge of the his-
togram. Very few of the blocks fall in the middle. We found
that these graphs were all nearly identical in shape, despite
being for semantically unrelated changes to the program.

Figure 1(a) presents a much larger change to Python—at
the level of significant release (between versions 1.5.2 and
2.2, a change affecting 2442 difference blocks in several
hundred commits). Remarkably, we found that this graph
(and that of another change to Python of the same magni-
tude) had the same shape as those for the small changes—
change blocks concentrated at the left and right ends.

Finally, we found the same histogram shape in our ex-
periments on the MzScheme code base. Figure 1(b) shows
the histogram for the change between versions 103 and 200,
a change taking 21 months and affecting 2400 difference
blocks. Another change to MzScheme involving about 700
differences exhibited the same shape as well.

We have manually studied the difference blocks in many
of these cases, and in each case found that the number of
suites impacting the block is consistent with the changed
block’s actual impact:

1. Blocks that are on the right appear to affect all uses
of the system. In the case of Python and MzScheme,
we find that these tend to be changes to infrastructure
such as the garbage collector. We therefore call such
differences infrastructural.

2. Blocks that are on the left appear to pertain to a very
small number of features. We label these featuristic .

The shape of the typical histogram says that almost all
change blocks are either featuristic or infrastructural. The
remarkable similarity in shape across both different soft-
ware systems and different magnitudes of edits suggests that
a technique based upon this property of feature signatures
may apply broadly.

6. Clustering

While feature signatures give us some information about
program changes, for many of the applications we describe
later the number of differences is simply too many. Ob-
viously, a programmer cannot contend with thousands of
little difference blocks; we must group these into clusters

of conceptual changes—aggregates of changed blocks that
the programmer thinks of as one change to the program. In
the programs we studied, there was always more than one
conceptual change per CVS commit (if there were only one,
then we could simply make each commit a single cluster).

Since programmers often identify conceptual changes by
the program features they impact, clustering using feature
signatures is likely to be effective. One easy clustering tech-
nique is to simply group together all of the code blocks with
identical feature signatures. We call the clusters that ensue
from this grouping naive clusters.

To analyze this technique’s utility, we compared the con-
ceptual changes identified in the (remarkably detailed) CVS
change logs for seven small changes to Python with our
naive clustering. In our study of the naive clusters, all the
code blocks grouped into a naive cluster were clearly identi-
fiable as part of the same conceptual change to the program.
In addition, the test suites that exercised the edits in a clus-
ter corresponded with the features that the edits impacted
(according to the change logs). Furthermore, our analy-
sis showed that, for both small and large edits, the num-
ber of naive clusters was significantly less than the number
of change blocks. (The line graphs in Figure 1 denote the
number of naive clusters.)

While the naive clusters are a significant improvement
over looking at blocks individually, not all change blocks
that are part of the same conceptual edit always fall within
the same cluster. Advances in clustering techniques can
thus improve our results; this remains a significant area for
future research.

7. Applications

Feature signatures and their clusters are versatile: they
give rise to numerous useful and diverse analyses.

7.1. Code Rationale Construction

Any programmer who has worked on an unfamiliar soft-
ware system is accustomed to looking at a baffling piece of
code and trying to piece together a guess about that code’s
role in the larger system. They would benefit greatly from
having a rationale for the code in question. This rationale is,
unfortunately, rarely documented well. Programmers some-
times have difficulty justifying their own code, so manu-
ally reconstructing a rationale for someone else’s program
is daunting. The problem compounds when the original pro-
grammer who wrote the code is not easily accessible, or at
any rate no longer has a stake in the project (which is espe-
cially typical of many Open Source projects).

There are two ways to apply the information from fea-
ture signatures to the rationale problem. The first is a tool
that helps programmers write better rationales when they

perform a commit: the feature signature can be used to cre-
ate templates of rationale logs that are then kept in version
control software. Given a cluster of blocks that are part of a
conceptual edit, the tool can supply the union of their non-
infrastructural feature signatures as the rationale template.
The author of the code is presented with a list of the fea-
tures that each of his changes impacted. By giving much
finer-grained information than merely which files changed,
these templates prompt programmers to provide meaningful
descriptions of changes and remind them of changes they
may otherwise forget to document. They also can help a
subsequent code browser identify incomplete change logs.
Furthermore, by being lightweight and automatic, this pro-
cess is easy to integrate with a tool such as CVS.

The second use is a related tool that helps later program-
mers discover rationales ex post facto for poorly-annotated
changes. Given an unclear code fragment, the programmer
gets the history of changes that impacted the code, then ap-
plies our methodology to pairs of versions; the features that
the code impacted at each change then tell the programmer
something about why the code evolved to its current state.

The key reason that these techniques are meaningful is
the pattern of featuristic and infrastructural changes: a code
block will likely either have only a few features in its ra-
tionale or be infrastructural. Rationale generation would
also benefit from detailed knowledge of which individual
test cases impacted the difference, especially if the number
of test cases is small. We have not explored this extension
in the present work.

7.2. Test Suite Structure Investigation

Following the work of Birkhoff [6], Ganter and
Wille [12] describe concept analysis as a way of under-
standing and clustering data. Concept analysis lets users
alternate between tabular and hierarchical views of lattices.
In particular, given the tabular view, it lets the user con-
struct a lattice whose ordering relationship identifies the
relationship between maximal collections of “objects” (in
our case, difference blocks) that have the same set of “at-
tributes” (here, test suites).

We can apply concept analysis to our feature signatures.
Studying the concept lattice helps the user understand po-
tentially subtle relationships between the test suites. For
instance, she could identify test suites with the relationship
that whenever the first exercised a difference block, so did
the second. We can also use this lattice to improve the
clustering of difference blocks as well. As Section 6 ex-
plains, while naive clusters are useful, they sometimes draw
too many distinctions. Relaxing this clustering amounts to
knowing when a 0 in one feature signature can “match”
a 1 in another. The relationships between test suites that
concept analysis identifies can help determine when such

matching is appropriate.
7.3. Associating Related Changes

When developers commit significant changes to a code-
base, they often add important new features to the system.
Yet each new feature often corresponds to edits to multiple
non-contiguous portions of the program source. (Our find-
ing multiple difference blocks that should be clustered into
a single feature supports this idea.)

Many code editors and browsers use colors to highlight
syntactic “parts of speech”; however, this provides little in-
formation about the program’s semantics. Visually identi-
fying features is likely to be much more useful to a user.
Given the clustering of edits by feature signature, it is easy
to color each feature differently; syntactically distant but se-
mantically related edits are then associated by a color cor-
responding to the feature set they affect.

In principle, a programmer should then be able to take
these bits of code implementing a single feature and iso-
late them into a module; this is the intuition behind aspect-
oriented programming [14]. Unfortunately, this process
runs into shortcomings in modern aspect technology. Some
forms, such as AspectJ [13], are very good at performing an
intrusive (i.e., without respect to modular boundaries and
interfaces) but consistent change at many places in the pro-
gram. Other forms, such as mixin layers [21], are best
at performing disparate changes but only at well-defined
points. The changes we identify are both intrusive and dis-
parate. This suggests the need for better aspect technology
to capture and modularize the kinds of changes we notice
occurring in practice.

8. Related Work

Many aspects of our work rely on techniques that have
been thoroughly treated in the literature. Clustering is one
such technique; Fasulo [9] provides an overview of current
clustering techniques. Concept analysis was pioneered by
Ganter and Wille [12], and has since been applied to pro-
gram comprehension and refactoring [20, 22].

Our work is closely related to dynamic slicing [15] and
similar tracing techniques. This has mainly been employed
for program comprehension and debugging [15] and visu-
alizations [4, 17]. For instance, xSuds [1] lets the user vi-
sualize code features using coloring schemes similar to the
one we propose, but lacking clustering; we believe the vol-
ume of data would pose an overwhelming cognitive burden
to the programmer.

In the same vein, Mehta and Heineman [18] describe
a process for refactoring legacy systems into components;
however, they do not describe and exploit patterns of soft-
ware evolution. They offer a technique for clustering test

cases into feature-specific suites, which we can exploit
when applying our work to systems whose test batteries are
not already so factored. Wilde and colleagues [23] describe
a dynamic analysis based on test cases for discovering the
code implementing only a single specific feature. Eisen-
barth, Koschke and Simon [8] expand this work to multiple
features using concept analysis, but they use this analysis
only to assist the programmer in manual feature discovery.

Baxter [5] captures code rationale as the goals met
by program transformations, but only for those who pro-
gram by iterative transformations of a formal specification.
Egyed [7] uses a profiling technique to help generate and
validate associations among source code and other software
artifacts; code rationale could then be presented in terms of
those associations. Other program comprehension methods
help programmers understand the overall design of a system
(rather than a specific bit of code); for instance, Murphy and
colleagues [19] provide a method for finding where an ab-
stract model of a system and the source code diverge.

9. Conclusion and Future Work

We have presented a lightweight yet effective technique
for studying the evolution of programs. We propose a no-
tion of feature signature, which identifies the features of a
system that impact a change. We determine impact dynam-
ically by profiling using a program’s test suites.

Our experiments with two significant software systems
shows that feature signatures are a useful measure of
changes. In particular, we find that most changes tend to
pertain to either a very small number of features or to al-
most all of them. As a result, we can draw a distinction
between changes made to the program’s infrastructure and
ones made to implement or modify very specific features.
We also use the feature signatures as inputs to clustering al-
gorithms to group related changes. We then show that the
bimodal nature of changes, and the availability of clusters,
lead to numerous useful applications. We present proto-
types of tool support for most of these applications.

For future work, we need to consider many more sources
of information, such as fine-grained changes to test suites,
success and failure of test cases, profiling counts, better
differencing techniques, and better clustering algorithms
(such as ones that can exploit the test suite relationships de-
scribed by the concept lattice). Additionally, experiments
with other software systems would test our claims about the
shape of feature signatures.

References

[1] xsuds manual. http://xsuds.argreenhouse.com/.
[2] cvs user’s guide. http://www.cvshome.org/.
[3] Python language. http://www.python.org.

(4]
(5]
(6]
(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

T. Ball. Software visualization in the large. IEEE Computer,
29(4):33-43, April 1996.
I. Baxter. Design maintenance systems. Communications of

the ACM, Vol. 4, April 1992.
G. Birkhoff. Lattice theory. American Mathematical Society

Colloquium Publications, 25, 1967.
A. Egyed. A scenario-driven approach to trace dependency

analysis. Transactions on Software Engineering, 29(2),

2003.
T. Eisenbarth, R. Koschke, and D. Simon. Aiding pro-

gram comprehension by static and dynamic feature analy-
sis. In Proceedings of the International Conference on Soft-
ware Maintenance. IEEE Computer Society Press, Novem-

ber 2001.
D. Fasulo. An analysis of recent work on clustering algo-

rithms. Technical Report 01-03-02, University Of Washing-

ton, 1999.
R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krish-

namurthi, P. Steckler, and M. Felleisen. DrScheme: A pro-
gramming environment for Scheme. Journal of Functional

Programming, 12(2):159-182, 2002.
M. Flatt. PLT MzScheme: Language manual. Technical

Report TR97-280, Rice University, 1997.
B. Ganter and R. Wille. Formal Concept Analysis: Mathe-

matical Foundations. Springer Verlag, 1999.
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. Griswold. An overview of Aspect]. In European

Conference on Object-Oriented Programming, 2001.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In European Conference on Object-Oriented

Programming, June 1997.
B.Korel and J. Laski. Dynamic program slicing. Information

Processing Letters,29(3):155-163, 1998.
D. R. Licata, C. D. Harris, and S. Krishnamurthi. The fea-

ture signatures of evolving programs. Technical Report CS-
03-12, Brown University Department of Computer Science,

2003.
A. Malony, D. Hammerslag, and D. Jabalonski. Traceview:

A trace visualization tool. IEEE Software, pages 19-28,

September 1991.
A. Mehta and G. T. Heineman. Evolving legacy system

features into fine-grained components. In Proceedings of
the 24th International Conference on Software Engineering,

pages 417-427. ACM Press, 2002.
G.C. Murphy, D. Notkin, and K. J. Sullivan. Software reflex-

ion models: bridging the gap between design and implemen-

tation. Transactions on Software Engineering, 27(4),2001.
M. Siff and T. Reps. Identifying modules via concept anal-

ysis. In International Conference on Software Maintenance,

pages 170-179. IEEE Computer Society Press, 1997.
Y. Smaragdakis and D. Batory. Implementing layered de-

signs and mixin layers. In European Conference on Object-

Oriented Programming, pages 550-570, July 1998.
G. Snelting and F. Tip. Understanding class hierarchies us-

ing concept analysis. ACM Transactions on Programming

Languages and Systems, 22:540-582, May 2000.
N. Wilde and C. Casey. Early field experience with the soft-

ware reconnaissance technique for program comprehension.
In International Conference on Software Maintenance. IEEE
Computer Society Press, 1996.

