
Problematic and Persistent Post-Secondary
Program Performance Preconceptions

Shriram Krishnamurthi

Brown University

Providence, RI, USA

shriram@brown.edu

Anika Bahl

Brown University

Providence, RI, USA

Benjamin H. Lee

Brown University

Providence, RI, USA

Steven A. Sloman

Brown University

Providence, RI, USA

ABSTRACT
Student conceptions about program “efficiency” shape their ap-

proach to programming and problem-solving. However, we know

very little about the kinds of conceptions students have on entry

into post-secondary education. In this paper we present the result

of multiple iterations of a study where we ask students to rank

programs on efficiency. We find students have several misconcep-

tions across the iterations. We attempt to employ two standard

techniques for puncturing people’s illusions of understanding, but

both have only limited success: students have strongly-held opin-

ions despite their frequent errors. Post-secondary education about

program efficiency needs to take much more account of students’

pre-conceptions.

CCS CONCEPTS
• Applied computing→ Education.

KEYWORDS
efficiency, misconceptions, illusion of explanatory depth, refutation

texts

ACM Reference Format:
Shriram Krishnamurthi, Anika Bahl, Benjamin H. Lee, and Steven A. Sloman.

2022. Problematic and Persistent Post-Secondary Program Performance

Preconceptions. InKoli Calling ’22: 22nd Koli Calling International Conference
on Computing Education Research (Koli 2022), November 17–20, 2022, Koli,
Finland. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3564721.

3564722

1 INTRODUCTION
Programmers often want efficient programs. To increase efficiency,

they make both design and coding decisions. Therefore, it is im-

portant that their conceptions about efficiency be accurate. This is

especially important because their conceptions factor into program

design, as a recent paper [7, §3.2] shows. In particular, on grounds

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Koli 2022, November 17–20, 2022, Koli, Finland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9616-5/22/11. . . $15.00

https://doi.org/10.1145/3564721.3564722

of efficiency, students rejected program structures that earlier work

by Fisler [6] showed generally produced more correct programs.

These student opinions are reported as somewhat surprising,

because most of the students had little prior computing experience,

and the instructor stated that they do not discuss performance

(and indeed dissuaded students from dwelling on it). In addition, as

novices, the students have little understanding of implementation

details, which can significantly alter performance (even changing

asymptotic performance).

In this paper, we attempt to investigate this phenomenon more

closely.Wewant to knowwhat pre-conceptions students have about

performance efficiency, and if these are wrong, whether standard

techniques from other domains can help students overcome them.

We design and apply instruments to students who are (mostly) start-

ing post-secondary education but have had non-trivial secondary

school computing experience. We do so because we believe the out-

comes could inform what should and perhaps should not be covered
in secondary school curricula, a topic that has not received much

coverage from the perspective of the effects on post-secondary

education.

Due to space limitations, we are forced to leave out many details.
Instead, we have provided the material needed to judge the work and
learn its important lessons. To aid reproducibility, every section has
a corresponding appendix, which provides the full details. The paper
provides the appendix as a supplemental document.

2 THEORETICAL FOUNDATIONS FOR
INTERVENTIONS

The education literature makes clear [1, 10, 14] that direct instruc-

tion alone is unlikely to overcome misconceptions; activities that

are more learner-centric are much more likely to be effective. Our

work draws on two theories for tackling problematic beliefs.

The Illusion of Explanatory Depth. People generally do not un-

derstand how things work as well as they think they do. This was

originally demonstrated by Rozenblit and Keil [13], who punctured

people’s illusion of understanding of how several common objects

worked simply by asking them to explain. Subjects were first asked

how well they understood how the objects worked and then to

explain how they worked in as much detail as they could. For the

most part, people were unable to construct anything resembling a

reasonable explanation, revealing to themselves that they did not

understand as well as they thought they had. Thus, when they were

https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0002-5156-9171
https://orcid.org/0000-0003-0755-7429
https://orcid.org/0000-0001-8223-3788
https://doi.org/10.1145/3564721.3564722
https://doi.org/10.1145/3564721.3564722
https://doi.org/10.1145/3564721.3564722

Koli 2022, November 17–20, 2022, Koli, Finland Krishnamurthi, Bahl, Lee, Sloman

again asked how well they understood how the objects worked,

their judgments were lower, showing that subjects themselves real-

ized they did not understand as well as they had thought they did.

The authors referred to this finding as the illusion of explanatory

depth (IoED). This phenomenon is seen across numerous domains.

Refutation Texts. Another promising avenue is the line of work

starting from Posner et al. [12]. It presents a theory of conceptual

change, at the heart of which is the refutation text. A refutation text

tackles the misconception directly, providing a refutation for the

incorrect idea. A recent study [20] showed their effectiveness in

physics; we use this study’s guidance in the design of our refutation

text.

3 RELATEDWORK
We know of only two papers that are closely related to our work. In

a “commonsense computing” paper, McCartney, et al. [11] discuss

algorithm efficiency. Students are given a problem and two semanti-

cally equivalent solutions, which they must choose between. Their

responses are coded on multiple dimensions, the most relevant to

us being how they interpreted the “fewest”. These are clustered into

conventional algorithm analysis categories such as “better worst-

case” and “better average-case”. Thus, there are many differences

between this work and ours (it is over an abstract solution, not code;

it focuses on conventional computational complexity; and it has

no intervention). Still, it provides useful insight into how students

think about computational complexity before formal training.

Most closely related is work by Gal-Ezer and Zur [8], who study

late secondary-school students learning computer science. Their

work predefines “efficiency” to be in terms of number of executed

instructions. Based on work by Stavy and Tirosh [15], it hypothe-

sizes that students will be thrown off by shallow syntactic criteria

(e.g., program length). Its main study instrument is pairs of pro-

grams that are semantically identical but that vary syntactically

according to these criteria. These are set up to trigger the hypoth-

esized misconceptions, and the paper confirms that students do

indeed exhibit these mistakes. (Similar findings are echoed in our

work.)

Our work differs from this work in a few important ways. First,

we do not fix what efficiency means; rather, we wish to learn how

students have conceptualized it. Second, we use feedback from one

iteration to enrich our study on the next round. Third, we choose

a linguistic setting where students are much less likely to have

experience and actual knowledge. Fourth, we choose programs that

are actually equal or cannot be told apart with the given information.

Finally, and most significantly, we create interventions around a

collection of techniques well-grounded in cognitive science and

educational psychology to overcome students’ misconceptions, and

evaluate the utility of those methods.

Additional but less-related work is discussed in appendix A.

4 STUDY CONTEXT
Our study was conducted at a highly-selective private university

in the USA. The student subjects took an accelerated introduction

to computer science, which covers much of the material of the

first-year sequences at the university. Though self-contained and

open to everyone, the class was primarily designed to provide an

intensive experience for students with prior computing experience.

Students therefore placed into it through a month-long placement

process in the summer, during which they were expected to read

How to Design Programs [4] and implement a variety of exercises

(while obtaining assistance through an on-line message board).

Once the semester began, students learned big-O time analysis

and applied it to a variety of algorithms over lists, sets, trees, and

dags, working up to basic graph algorithms. Students primarily

programmed functionally.

5 STUDY ORGANIZATION
Our study was conducted over two separate years. The Summer

2020 data are labeled S20. We already saw the problematic phe-

nomena that are at the heart of this paper. Our intent was to give

students a refutation text and perform the study again. However,

due to the stresses of virtual instruction and COVID, we were al-

ready trying to reduce work in the course, and hence opted to not

perform a second round. In Summer 2021 (labeled S21-1), we con-

ducted the study the second time. This study largely confirmed

our earlier findings. On this iteration, we presented our students

with the refutation texts during the course (in the Fall semester),

and asked them to do the study one more time (but, because it was

near the end of the semester, the second administration was made

optional). These data are labeled F21-2.

6 STUDY POPULATION
In 2020, a total of 172 students completed the study. In 2021, 60

students contributed to S21-1 and 31 students to F21-2. The sharp

discrepancy in numbers across the years is because of the way

the institution restructured learning due to COVID-19. The lower

number in F21-2 is because participation was left optional due to

being late in the semester. We did not collect demographics for

F21-2 to reduce student burden and because this group is a subset

of S21-1.

Most students were new to post-secondary education. In 2020,

due to a COVID-induced restructuring of courses, 78% were incom-

ing, 14% had finished up to one year, and 8% had finished more than

one year. In 2021, more typically of the course, 95% were incoming.

Most students in the study had prior computing background.

The percentages below are slightly approximate because in some

cases students wrote in answers that required interpretation. In

terms of US Advanced Placement computer science, 37% in 2020

and 33% in 2021 had not taken an AP exam, but it is worth noting

that several students may not have had the opportunity (due to

being international, studying at a school that did not offer it, etc.).

Over half of all respondents in both years had taken the AP CS A

exam, which is considered more programming-oriented than AP

CS Principles. Across the years, over 40% indicated knowledge of

Web/JavaScript, over 45% a block-based language, over 68% Python,

over 71% Java, over 26% C/C++, over 23% a statistical language,

and 8% a Lispy language. Very few (3-4%) reported having no prior

programming background at all.

In short, the population is mostly students who have had a non-

trivial amount of prior computer science, and are hence being ex-

posed to attitudes before entry. Students were asked where they had

“gotten opinions on program efficiency from”. The leading answers

Problematic and Persistent Post-Secondary
Program Performance Preconceptions Koli 2022, November 17–20, 2022, Koli, Finland

(not mutually exclusive) were past teachers (52% in 2021, 33% in

2022), Web discussion sites (42% and 30%), classmates and friends

(24% and 13%), and family (7% and 5%). In contrast, 22% and 43%

respectively said “I don’t really have any”.

7 STUDY PROGRAMMING LANGUAGE
All our studies were conducted using programs written in the

Racket programming language [5]. The placement process required

students to use Racket alongside the course book [4]. At the point of

S20 and S21-1, students had used Racket for about four weeks. After

this, they did not see Racket again, so F21-2 students were referring

back to a language they had not seen in over three months.

The use of Racket is not entirely incidental. It is already used

in part because of its connection to the aforementioned book, but

also because most students don’t know it coming in: very few

students (section 6) had any prior exposure to it (note that the 8%

includes several Lispy languages). Therefore, this avoids giving

most students a significant advantage over the others. Similarly, it

offers numerous advantages in the context of this study:

• Because of their lack of prior exposure, they are unlikely to

have strong prior knowledge about it. A vastly more popular

language, like Java or Python, would have many more con-

founding factors based on what students had been taught

previously.

• Students have little to no prior exposure to functional pro-

gramming, and both the placement and course were pri-

marily functional. Given that functional programming is

generally perceived to be “different” from imperative or

object-oriented programming, this would likely reduce the

pre-conceptions they applied to Racket.

• Racket is syntactically distinctive (with a parenthetical, Lisp-

inspired syntax), so it is unlikely to remind them too closely

of languages they had programmed in before, which could

otherwise have had some confounding recall effects.

Arguments for not using a made-up pseudocode are provided in

appendix B.

8 STUDY INSTRUMENTS
Students were given three sets of behaviorally identical programs,

followed by questions designed to learn about student perceptions.

The programs are shown in fig. 1, fig. 2, and fig. 3. The programs

satisfy different purposes. The first set examines student beliefs

about fine-grained behavior. The second checks their impression

about built-in functions. The third does the same, but specifically

for built-in higher-order functions.

What matters for the purpose of this study is that these programs

are effectively also all identical (or at least not reliably distinguish-

able) in terms of their execution time. For the benefit of the reader

not familiar with Racket or performance considerations, a full ex-

planation of these program texts is provided in appendix C.

In general, students were given sets of programs and asked to

pair-wise indicate which they thought was “more efficient”. In S20

they saw only sets 1 and 2, and set 1 had only (A) and (B). S21-1

and F21-2 used all the programs.

After making their initial estimate, students were asked to ex-

plain their choices. In S20, they were told to “take into account the

transformations a compiler performs on code and the optimizations

an architecture performs during execution that would apply in this

setting”, with the hope this would trigger their IoED. After they

had done so, they were asked to rate their programs again, with

the hope we would see results from this triggering. When we saw

that the S20 students ignored the details of this prompt, in S21-1,

we instead gave them a concrete list of 18 different compiler opti-

mizations, most of which they (as expected) did not know, to more

directly trigger their IoED.

For F21-2, instead of using IoED, we used refutation texts. These

were shared with them right after the conclusion of S21-1, and

again before F21-2, and also linked to the study instrument. Below

we give one illustrative example of a refutation text entry:

Belief [LENGTH]: A line of code takes a single unit

(constant) amount of time to run.

Status: Not necessarily true!

Explanation: It depends on what code is on that line.

Think about the most extreme case: you can write an

infinite loop in one line; do you think an infinite loop

finishes in one unit of time? Actually, it doesn’t finish

at all! In short, fewer lines of code don’t necessarily

run faster than more lines. A function call on that line

means it could take a long time.

Full details of how the study versions differed are in appendix C,

and the full refutation text is in appendix J.

9 ANALYSIS METHODS
The program comparisons are easy to summarize directly, and to

compare against ground truth. However, two questions—one on

their conception of efficiency, and the other on their explanation for

their program comparisons—asked for free-form text. We therefore

generated rubrics for assessing these. In both cases, two authors

revised the rubric and computed Cohen’s 𝜅 [2] for inter-rater relia-

bility. The rubric for efficiency comparisons is shown in fig. 4 and

obtained a 𝜅 of 0.88 after two iterations. The rubric for program

textual explanations is shown in fig. 5 and obtained 𝜅 of 0.839 after

five iterations. More detail about the creation of the rubrics is given

in appendix D.

10 FINDINGS: CONCEPTIONS ABOUT
“EFFICIENCY”

Figure 4 shows both the rubric and counts of student conceptions

about efficiency. Students largely associate efficiency with running

time, and to a lesser extent with the number of steps and with

space usage. Students who referenced correctness did so in the

context of improving performance (i.e., making a program faster

without changing its correctness). Some students also referred to

other syntactic criteria such as readability and writability. A few

referenced power consumption. Appendix E discusses some of the

differences (e.g., why twomonths of the course could have impacted,

for instance, the drop in step and growth in time), but in general

these numbers are quite instructive.

Koli 2022, November 17–20, 2022, Koli, Finland Krishnamurthi, Bahl, Lee, Sloman

(A) (B) (C)
(define (f x) (define (f x) (define (f x)
(cond (cond (cond

[(empty? x) P] [(empty? x) P] [(empty? x) P]
[(empty? (rest x)) Q] [(cons? x) [else
[else R])) (if (empty? (rest x)) (if (empty? (rest x))

Q Q
R)])) R)]))

Figure 1: Program Set 1

(A) (B)
(define (len l)

(cond
[(empty? l) 0] (define (f g)
[(cons? l) (+ 1 (len (rest l)))])) ;; length is built-in and

;; produces the same answer as `len`
(define (f g) (loop ... (length g) ...))

(loop ... (len g) ...))

Figure 2: Program Set 2

Suppose L is bound to a list of numbers:

(A) (B)
(define (sum l) (foldr + 0 L)

(cond
[(empty? l) 0]
[(cons? l) (+ (first l) (sum (rest l)))]))

(sum L)

Figure 3: Program Set 3

Code Explanation S20 S21-1 F21-2

step Mentions computational steps 40.2% 25.8% 11.3%

time Mentions time/speed 66.4% 78.8% 87.1%

mem Mentions memory 26.5% 40.9% 58.1%

corr Mentions correctness 10.7% 12.1% 6.5%

code Mentions amount of code 13.7% 4.5% 3.2%

misc Mentions some other interesting point 17.0% 18.2% 25.8%

read Mentions readability or comprehensibility 8.0% 0.0% 12.9%

writ Mentions how easy the code is to write or otherwise work with 5.1% 1.5% 8.1%

pow Mentions processing power, computational power, or energy 3.6% 6.1% 17.7%

Figure 4: Rubric for Student “Efficiency” Conceptions

11 FINDINGS: PROGRAM RANKINGS
We have numerous tables (nine in all) that give the detailed findings;

they are all given in appendix F. However, these are not only not

necessary, they may also obscure the central message, which we

summarize here.

Keep in mind that the programs are essentially identical (sec-

tion 8), but also that students do not know much about them (sec-

tion 7). As a result, there are basically two answers that we expect

from correct student rankings: that the programs are Equal or that

the students don’t know (IDK, short for “I don’t know”).

In contrast, student responses were uniformly off and highly

problematic. In S20, the highest Equal response was 29% and high-
est IDK was 20%. Worse, the written activity, which should have

triggered their IoED, had no impact.

In S21-1, their initial answers (with one exception, noted be-

low) were similar: the highest Equal was 31% (but as low as 11%)

and highest IDK was 20% (but as low as 0%). The only exception

Problematic and Persistent Post-Secondary
Program Performance Preconceptions Koli 2022, November 17–20, 2022, Koli, Finland

Code Explanation S20 S21-1 F21-2

bigo References big-O when evaluating program efficiency 4.4% 17.7% 1.8%

bado Makes mistaken and/or fallacious big-O arguments 0.8% 5.4% 0.0%

okay Big-O rationalization is correct (though it may be weak) if we were to take their

assumptions to be true

3.6% 12.3% 1.8%

step Considers number of operations (implicitly or explicitly) when evaluating pro-

gram efficiency

42.8% 48.5% 25.4%

bltn Evaluation of efficiency relies on assumptions about builtin implementations 34.3% 67.7% 50.0%

wysi Assumes that source code corresponds directly to executed codewithout potential

compiler modification(s)

41.5% 73.1% 50.9%

comp Evaluation of efficiency relies on assumptions about compiler behavior 28.8% 6.2% 3.5%

rckt Specifically mentions Racket in evaluation 4.4% 2.5% 16.7%

elgn Used style, succinctness, elegance, or “follow-ability” of a solution to assess its

efficiency

11.6% 12.5% 4.4%

unkn References lack of knowledge with regards to builtin implementations and/or

compiler behavior

13.7% 24.6% 51.8%

Figure 5: Rubric for Student Efficiency Explanations

was program pair 1(A)–1(C) (which was only introduced in 2021),

which is exactly the same program after desugaring. 63% saw it

as identical, but 35% did not; in particular, 26% were misled by the

longer syntactic length (echoing [8] and [15]). Students were then

asked to indicate which compiler optimizations they knew. 80%

knew none; only two were chosen by three students. That is, most

students admitted to little or no knowledge of the inner workings

of programming language implementations. Despite this, when

asked to rank the same programs again, their results barely shifted;

in fact, the highest IDK went down to 14%, and even the Equal

for pair 1(A)–1(C) went down to 57%. This is the opposite of what

we would expect if IoED were triggered. Students were also asked

to list their confidence on a 7-point Likert-like scale. Again, after

being confronted with a long list of compiler optimizations that

they indicated they did not know, students seem to have increased
in their confidence in assessing efficiency.

In F21-2, we see much greater rates of Equal (23–58% for the rest,

and 71% for 1(A)–1(C)) as well as of IDK (16–32%). There are many

factors that may explain this: a semester of sophisticated computer

science; extensive use of big-O (which, though they were told to

not use in this study, may have lurked in their assessment, resulting

in greater Equal scores); and of course the refutation texts. We have

not attempted to tease apart these factors. Still, it is worth noting

the bottom-line: students confidently perceive all sorts of performance
differences that don’t exist!

12 FINDINGS: RANKING EXPLANATIONS
Recall that students were also asked to provide written explanations

for their rankings. Figure 5 shows both the rubric and counts of

responses. Counts are aggregated across all pairwise comparisons

for simplicity. While this loses some precision, our goal here is to

study general phenomena.

We find the following points most significant. Unsurprisingly,

non-trivial numbers of students “count steps” for evaluating pro-

gram efficiency, but that reduces dramatically in F21-2. Our best

explanation for this is that they have spent a whole semester in func-

tional programming, where programs have non-trivial expressions—

and often just one in a function body—rather than “lines” of impera-

tive code. Nevertheless, many of them have a “what you see is what

you get” (wysi) interpretation; few of them seem to understand

that the compiler is capable of having a small or even large impact

on the generated program, even when confronted with a long list

of alien terms. They are nevertheless quite confident about small

syntactic differences (like between 1A and 1B) having a meaningful

effect. Relatively few students use non-performance measures like

elegance when analyzing efficiency, but more do than one might

initially expect.

Again, there is much more one can examine and discuss. In

particular, there are salient figures in the table above that could

benefit from further explanation. Appendix G provides these.

13 THREATS TO VALIDITY
This work naturally has many threats to validity. We summarize

them below, with elaboration in appendix H.

In terms of internal validity, we have notable differences in pop-

ulations across years, and only a subset of S21-1 also took F21-2.

These make some comparisons across these instances tricky. In par-

ticular, having similar populations might alter some of the ratios:

seemingly problematic differences might disappear, while seeming

non-differences may now stand out. We also showed students the

same pairs of programs, which could cause view entrenchment;

isomorphic programs may help, though they may also cause other

issues (as seen, for instance, in variants [3, 16] of the Wason selec-

tion task [19]), making the results hard to reason about. We have

also sampled students on very few programs.

There are many factors that affect the external validity of our

findings: choice of language, non-standard pedagogy (section 4),

student population, etc. The fact that many of our students have

completed (and probably done well) on AP-like exams might make

them overconfident.

Koli 2022, November 17–20, 2022, Koli, Finland Krishnamurthi, Bahl, Lee, Sloman

In terms of ecological validity, the “programs” in our instruments

are not actually programs but rather templates with placeholders.

When given real and full programs, students would naturally sim-

ply be able to run and measure them, especially if their primary

efficiency concern is a physical quantity such as time or memory.

14 DISCUSSION
We conclude with some discussion points. We provide additional

discussion points in appendix I.

Transfer. We wonder about the impact of students’ experiences

with the world they live in and the material they learn in courses.

Consider, for instance, a typical algorithmic topic: binary search,

and a proof that logarithmic complexity is a lower bound. Yet many

students have spent a decade or more using search engines, which

clearly respond in constant time even as the Web keeps growing.

How do students reconcile these phenomena? Do they fail to even

make a connection (a form of failure to transfer [17])?

Is Counting Steps Harmful? Students are pressured to count steps

at a potentially unhelpful level. For instance, as of this writing,

the very earliest Code.org curriculum—“Pre-reader Express” for

Ages 4–8—will, as early as Puzzle 7 in Lesson 2, give feedback about

extraneous (but functionally harmless) blocks: e.g., Congratulations!
You completed Puzzle 7. (However, you could have used only 3 blocks.)
This is the only criterion (beyond correctness) applied to programs.

We believe it is unhealthy to prematurely instill poor optimization

ideas, and know of no research supporting it. Similarly, the Ask-

Elle tutor [9] pushes students away from a quadratic solution even

when a student is still learning the basics.

Absolving the Sin of Poor Efficiency. Anecdotally, along the lines

of what [7] report, we have seen students exhibit strong resistance

to certain program structures that they perceive as “wasteful” (in

particular, ones that traverse a compound datum—such as a list—

more than once). Curiously, we have seen that giving students some

information about compiler optimizations such as deforestation [18]

(which merges multiple traversals into one) significantly changes

their perception. On its own, this is not surprising. However, this

change persists even when they are told that the compiler they are

using does not perform this optimization! This suggests that their

performance conceptions are actually even more complicated than

this paper’s analysis suggests.

The Confidence to Not Know. We find it notable that students

seem to generally be reluctant to say that they do not know an

answer. There are many phenomena that could be at work here.

Students in general may not be accustomed to their educational

system giving them questions that don’t have clear answers, and

thus may have felt some pressure to guess. (However, this should

have been reflected in lower confidence numbers, which it did not!

That suggests this is only a partial explanation.) It is also possible

that our student population is stubborn in all respects, not only on

program efficiency, and hence somewhat impervious to IoED. Their

strong high-school preparation may have also given them inflated

confidence. Finally, they may also subtly mirror the university’s

admissions processes, which may (inadvertently) select for students

who express confidence, even when misplaced!

ACKNOWLEDGMENTS
We are grateful to Usama Naseer, Theophilus Benson, and Malte

Schwarzkopf for useful discussions about performance measure-

ment in systems. This work was partially funded by US National

Science Foundation grant DGE-2208731.

REFERENCES
[1] M. Cakir. 2008. Constructivist Approaches to Learning in Science and Their

Implications for Science Pedagogy: A Literature Review. Intl. J. Env. & Sci. Ed. 3,
4 (2008), 193–206.

[2] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20 (1960), 37–46.

[3] Leda Cosmides and John Tooby. 1992. Cognitive Adaptions for Social Exchange.

In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Leda
Cosmides, John Tooby, and Jerome H. Barkow (Eds.). Oxford University Press.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,

Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2018. A Programmable

Programming Language. In Communications of the ACM.

[6] Kathi Fisler. 2014. The Recurring Rainfall Problem. In SIGCSE International Com-
puting Education Research Conference. 35–42. https://doi.org/10.1145/2632320.

2632346

[7] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing

Plan-Composition Studies. In ACM Technical Symposium on Computer Science
Education.

[8] Judith Gal-Ezer and Ela Zur. 2004. The efficiency of algorithms—misconceptions.

Computers & Education 42, 3 (2004), 215–226. https://doi.org/10.1016/j.compedu.

2003.07.004

[9] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.

2017. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated

Feedback. International Journal of Artificial Intelligence in Education 27 (2017),

65–100. https://doi.org/10.1007/s40593-015-0080-x

[10] J. Longfield. 2009. Discrepant Teaching Events: Using an Inquiry Stance to

Address Students’ Misconceptions. Intl. J. Teach. and Learn. in Higher Ed. 21, 2
(2009), 266–271.

[11] Robert McCartney, Dennis J. Bouvier, Tzu-Yi Chen, Gary Lewandowski, Kate

Sanders, Beth Simon, and Tammy VanDeGrift. 2009. Commonsense Computing

(Episode 5): Algorithm Efficiency and Balloon Testing. In International Work-
shop on Computing Education Research. 51–62. https://doi.org/10.1145/1584322.

1584330

[12] G. J. Posner, K. A. Strike, P. W. Hewson, andW. A. Gertzog. 1982. Accommodation

of a Scientific Conception: Toward a Theory of Conceptual Change. Sci. Edu. 66,
2 (1982), 211–227.

[13] Leonid Rozenblit and Frank Keil. 2002. The misunderstood limits of folk science:

an illusion of explanatory depth. Cognitive Science 26 (2002), 521–562.
[14] L. Savion. 2009. Clinging to discredited beliefs: The larger cognitive story. J.

Schol. of Teach. and Learn. 9, 1 (2009), 81–92.
[15] Ruth Stavy and Dina Tirosh. 1996. Intuitive rules in science and mathematics:

the case of ‘more of A – more of B’. International Journal of Science Education 18

(1996), 653–667. https://doi.org/10.1080/0950069960180602

[16] Keith Stenning andMichiel van Lambalgen. 2008. Human Reasoning and Cognitive
Science. MIT Press.

[17] Edward L. Thorndike and Robert S. Woolworth. 1901. The influence of improve-

ment in one mental function upon the efficiency of other functions. Psychological
Review 8 (1901).

[18] Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees.

Theoretical Computer Science 73 (1990), 231–248.
[19] Peter Cathcart Wason. 1966. Reasoning. In New Horizons in Psychology I, B. M.

Foss (Ed.). Penguin.

[20] Kristin M. Weingartner and Amy M. Masnick. 2019. Refutation texts: Implying

the refutation of a scientific misconception can facilitate knowledge revision.

Contemp. Edu. Psych. 58 (2019), 138–148.

http://www.htdp.org/
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1145/1584322.1584330
https://doi.org/10.1145/1584322.1584330
https://doi.org/10.1080/0950069960180602

	Abstract
	1 Introduction
	2 Theoretical Foundations for Interventions
	3 Related Work
	4 Study Context
	5 Study Organization
	6 Study Population
	7 Study Programming Language
	8 Study Instruments
	9 Analysis Methods
	10 Findings: Conceptions About ``Efficiency''
	11 Findings: Program Rankings
	12 Findings: Ranking Explanations
	13 Threats to Validity
	14 Discussion
	Acknowledgments
	References

