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Abstract

While class-based object-oriented programming languages
provide a flexible mechanism for re-using and managing re-
lated pieces of code, they typically lack linguistic facilities
for specifying a uniform extension of many classes with one
set of fields and methods. As a result, programmers are
unable to express certain abstractions over classes.

In this paper we develop a model of class-to-class func-
tions that we refer to as mizins. A mixin function maps
a class to an extended class by adding or overriding fields
and methods. Programming with mixins is similar to pro-
gramming with single inheritance classes, but mixins more
directly encourage programming to interfaces.

The paper develops these ideas within the context of
Java. The results are

1. an intuitive model of an essential Java subset;
2. an extension that explains and models mixins; and

3. type soundness theorems for these languages.

1 Organizing Programs with Functions and Classes

Object-oriented programming languages offer classes, inher-
itance, and overriding to parameterize over program pieces
for management purposes and re-use. Functional program-
ming languages provide various flavors of functional abstrac-
tions for the same purpose. The latter model was developed
from a well-known, highly developed mathematical theory.
The former grew in response to the need to manage large
programs and to re-use as many components as possible.
Each form of parameterization is useful for certain situa-
tions. With higher-order functions, a programmer can easily
define many functions that share a similar core but differ in
a few details. As many language designers and program-
mers readily acknowledge, however, the functional approach
to parameterization is best used in situations with a rela-
tively small number of parameters. When a function must
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consume a large number of arguments, the approach quickly
becomes unwieldy, especially if many of the arguments are
the same for most of the function’s uses.'

Class systems provide a simple and flexible mechanism
for managing collections of highly parameterized program
pieces. Using class extension (inheritance) and overriding,
a programmer derives a new class by specifying only the
elements that change in the derived class.  Nevertheless,
a pure class-based approach suffers from a lack of abstrac-
tions that specify uniform extensions and modifications of
classes. For example, the construction of a programming
environment may require many kinds of text editor frames,
including frames that can contain multiple text buffers and
frames that support searching. In Java, for example, we
cannot implement all combinations of multiple-buffer and
searchable frames using derived classes. If we choose to de-
fine a class for all multiple-buffer frames, there can be no
class that includes only searchable frames. Hence, we must
repeat the code that connects a frame to the search engine
in at least two branches of the class hierarchy: once for
single-buffer searchable frames and again for multiple-buffer
searchable frames. If we could instead specify a mapping
from editor frame classes to searchable editor frame classes,
then the code connecting a frame to the search engine could
be abstracted and maintained separately.

Some class-based object-oriented programming languages
provide multiple inheritance, which permits a programmer
to create a class by extending more than one class at once.
A programmer who also follows a particular protocol for
such extensions can mimic the use of class-to-class func-
tions. Common Lisp programmers refer to this protocol
as mizin programming [21, 22], because it roughly corre-
sponds to mixing in additional ingredients during class cre-
ation. Bracha and Cook [6] designed a language of class
manipulators that promote mixin thinking in this style and
permit programmers to build mixin-like classes. Unfortu-
nately, multiple inheritance and its cousins are semantically
complex and difficult to understand for programmers.? As a
result, implementing a mixin protocol with these approaches
is error-prone and typically avoided.

For the design of MzScheme’s class and interface sys-
tem [15], we experimented with a different approach. In
MzScheme, classes form a single inheritance hierarchy, but
are also first-class values that can be created and extended at
run-time. Once this capability was available, the program-

!Function entry points & la Fortran or keyword arguments & la
Common Lisp are a symptom of this problem, not a remedy.

?Dan Friedman determined in an informal poll in 1996 that almost
nobody who teaches C++ teaches multiple inheritance [pers. com.].



interface Place' ...
interface Barrier' ...
interface Door' extends Place', Barrier' ...

class Door® extends Object implements Door' { =
... Room¢ Enter(Person® p) { ... } ...

class LockedDoor® extends Door® ...
class ShortDoor® extends Door¢ ...
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Figure 1: A program determines a static directed acyclic graph of types
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Figure 2: In the context of a type graph, reductions map a store-expression pair to a new store-expression pair

mers of our team used it extensively for the construction of
DrScheme [14], a Scheme programming environment. How-
ever, a thorough analysis reveals that the code only contains
first-order functions on classes.

In this paper, we present a typed model of such “class
functors” for Java [18]. We refer to the functors as mizins
due to their similarity to Common Lisp’s multiple inheri-
tance mechanism and Bracha’s class operators. Our pro-
posal is superior in that it isolates the useful aspects of mul-
tiple inheritance yet retains the simple, intuitive nature of
class-oriented Java programming. In the following section,
we develop a calculus of Java classes. In the third section,
we motivate mixins as an extension of classes using a small
but illuminating example. The fourth section extends the
type-theoretic model of Java to mixins. The last section
considers implementation strategies for mixins and puts our
work in perspective.

2 A Model of Classes

CrassicJAvA is a small but essential subset of sequential
Java. To model its type structure and semantics, we use
well-known type elaboration and rewriting techniques for
Scheme and ML [13, 19, 29]. Figures 1 and 2 illustrate our
strategy. Type elaboration verifies that a program defines a
static tree of classes and a directed acyclic graph (DAG) of
interfaces. A type is simply a node in the combined graph.
Each type is annotated with its collection of fields and meth-
ods, including those inherited from its ancestors.
Evaluation is modeled as a reduction on expression-store
pairs in the context of a static type graph. Figure 2 demon-
strates reduction using a pictorial representation of the store
as a graph of objects. Fach object in the store is a class-

tagged record of field values, where the tag indicates the
run-time type of the object and its field values are refer-
ences to other objects. A single reduction step may extend
the store with a new object, or it may modify a field for an
existing object in the store. Dynamic method dispatch is
accomplished by matching the class tag of an object in the
store with a node in the static class tree; a simple relation
on this tree selects an appropriate method for the dispatch.

The class model relies on as few implementation details
as possible. For example, the model defines a mathemati-
cal relation, rather than a selection algorithm, to associate
fields with classes for the purpose of type-checking and eval-
uation. Similarly, the reduction semantics only assumes that
an expression can be partitioned into a proper redex and an
(evaluation) context; it does not provide a partitioning al-
gorithm. The model can easily be refined to expose more
implementation details [12, 19].

2.1 CrassicJava Programs

The syntax for CLAsSICJAVA is shown in Figure 3. A pro-
gram P is a sequence of class and interface definitions fol-
lowed by an expression. Fach class definition consists of
a sequence of field declarations and a sequence of method
declarations, while an interface consists of methods only. A
method body in a class can be abstract, indicating that the
method must be overridden in a subclass before the class is
instantiated. A method body in an interface must be ab-
stract. As in Java, classes are instantiated with the new
operator, but there are no class constructors in CLASSIC-
JAVA; instance variables are always initialized to null. In the
evaluation language for CLASSICJAVA, field uses and super
invocations are annotated by the type-checker with extra in-



P = defn*e
defn = class c extends ¢ implements i* { field* meth* }
| interface 7 extends i* { meth* }
field = t fd
meth = t md ( arg*) { body }
arg = twvar
body = e | abstract
e = newc|wvar|null |e:c.fd|e:c.fd=c¢
| eemd (e*) | super = this : ¢ .md (e*)
| view t e | let var = ein e
var = a variable name or this
¢ = a class name or Object
1 = interface name or Empty
fd = a field name
md = a method name

el

Figure 3: CrAssicJAVA syntax; underlined phrases are in-
serted by elaboration and are not part of the surface syntax

formation (see the underlined parts of the syntax). Finally,
the view and let forms represent Java’s casting expressions
and local variable bindings, respectively.

A valid CrAssIcJAVA program satisfies a number of sim-
ple predicates and relations; these are described in Figure 4.
For example, the predicate CrassesONCE(P) states that each
class name is defined at most once in the program P. The
relation <% associates each class name in P to the class it
extends, and the (overloaded) &% relations capture the field
and method declarations of P.

The syntax-summarizing relations induce a second set of
relations and predicates that summarize the class structure
of a program. The first of these is the subclass relation
<%, which is a partial order if the CoMpPLETECLASSES(P) and
WELLFOUNDEDCLASSES(P) predicates hold. In this case, the
classes declared in P form a tree that has Object at its root.

If the program describes a tree of classes, we can “deco-
rate” each class in the tree with the collection of fields and
methods that it accumulates from local declarations and in-
heritance. The source declaration of any field or method
in a class can be computed by finding the minimum (i.e.,
farthest from the root) superclass that declares the field or
method. This algorithm is described precisely by the €%
relations. The €% relation retains information about the
source class of each field, but it does not retain the source
class for a method. This reflects the property of Java classes
that fields cannot be overridden (so instances of a subclass
always contain the field), while methods can be overridden
(and may become inaccessible).

Interfaces have a similar set of relations: the superin-
terface declaration relation <p induces a subinterface rela-
tion <'p. Unlike classes, a single interface can have multiple
proper superinterfaces, so the subinterface order forms a DAG
instead of a tree. The methods of an interface, as described
by €p, are the union of the interface’s declared methods and
the methods of its superinterfaces.

Finally, classes and interfaces are related by implements
declarations, as captured in the <% relation. This relation
is a set of edges joining the class tree and the interface graph,
completing the subtype picture of a program. A type in the
full graph is a subtype of all of its ancestors.

2.2 CrassicJava Type Elaboration

The type elaboration rules for CLASSICJAVA are defined by
the following judgements:

Fp P = P’ :t P elaborates to P’ with type ¢
P by defn = defn’ defn elaborates to defn’
P,t Fm meth = meth’ meth in t elaborates to meth’
PTlree=e ¢t e elaborates to ¢’ with type ¢
PTlhse=e ¢t e has type t using subsumption
Pyt t exists

The type elaboration rules translate expressions that access
a field or call a super method into annotated expressions
(see the underlined parts of Figure 3). For field uses, the
annotation contains the compile-time type of the instance
expression, which determines the class containing the dec-
laration of the accessed field. For super method invoca-
tions, the annotation contains the compile-time type of this,
which determines the class that contains the declaration of
the method to be invoked.

The complete typing rules are shown in Figure 5. A
program is well-typed if its class definitions and final ex-
pression are well-typed. A definition, in turn, is well-typed
when its field and method declarations use legal types and
the method body expressions are well-typed. Finally, ex-
pressions are typed and elaborated in the context of an en-
vironment that binds free variables to types. For example,
the get® and set® rules for fields first determine the type of
the instance expression, and then calculate a class-tagged
field name using €p; this yields both the type of the field
and the class for the installed annotation. In the set® rule,
the right-hand side of the assignment must match the type of
the field, but this match may exploit subsumption to coerce
the type of the value to a supertype. The other expression
typing rules are similarly intuitive.

2.3 CrassicJava Evaluation

The operational semantics for CLASSICJAVA is defined as
a contextual rewriting system on pairs of expressions and
stores. A store § is a mapping from objects to class-tagged
field records. A field record is a mapping from elaborated
field names to values. The evaluation rules are a straight-
forward modification of those for imperative Scheme [13].

The complete evaluation rules are in Figure 6. For exam-
ple, the call rule invokes a method by rewriting the method
call expression to the body of the invoked method, syn-
tactically replacing argument variables in this expression
with the supplied argument values. The dynamic aspect of
method calls is implemented by selecting the method based
on the run-time type of the object (in the store). In con-
trast, the super reduction performs super method selection
using the class annotation that is statically determined by
the type-checker.

2.4 CurassicJava Soundness

For a program of type ¢, the evaluation rules for CrLAssIC-
JAvA produce either a value that has a subtype of ¢, or
one of two errors. Put differently, an evaluation cannot get
stuck. This property can be formulated as a type soundness
theorem.



CLASSESONCE(P)

FIELDONCEPERCLASS(P)

METHODONCEPERCLASS(P)
vYmd,md class --- { -

INTERFACESONCE(P)

INTERFACESA BSTRACT(P)

Each class name is declared only once

Ve,e' class ¢ ---class ¢/ -+ isin P = ¢ # ¢’

Field names in each class declaration are unique
Vfd fd' class - - { - fd--
Method names in each class declaration are unique
md () {
Each interface name is declared only once
Vi,i’ interface 7 - - -
Method declarations in an interface are abstract

fd' - }isin P = fd # fd’
Yooomd (o) { -} Yisin P = md# md’

interface i’ -+ isin P = i # i

Vmd,einterface --- { --- md (---) {e} --- } isin P — e is abstract
<% Class is declared as an immediate subclass
c<% ¢’ & class cextends ¢’ - { -} isin P
> Field is declared in a class
(c.fd, t) €p c& classc---{---tfd---}isin P
€ Method is declared in class
) (md, (t1...tn —> t), (vary ... vary), e) €p ¢ <& classc--- { - t md (t; vary ... t, vary) {e} --- }isin P
<'p Interface is declared as an immediate subinterface
i <p i’ & interface i extends -~ i’ -~ { ...} isin P
€'p Method is declared in an interface
(md, (t1...tn —> t), (vary ... vary), e) €p ¢ < interface i --- { --- t md (¢t vary ... t, vary) {e} --- } isin P
<P Class declares implementation of an interface
¢cKp i class ¢ --- implements --- ¢---{---} isin P
<% Class is a subclass
<% = the transitive, reflexive closure of <%
COMPLETECLASSES(P) Classes that are extended are defined

WELLFOUNDEDCLASSES(P) Class hierarchy is an order

rng(<%) C dom(<p)U{Object}

<% is antisymmetric

CLASSMETHODSOK (P)

Method overriding preserves the type

Ve, e e’y md, T, TV, V' ({md, T,V,e) €p cand (md, T', V' &) €p ') = (T =T or c €% ')

c

€P Field is contained in a class

(¢' fd, t) €9 c & (' fd, t) €, ¢’ and ¢’ = min{c" | ¢ <% ¢ and Ft’ s.t. (" .fd, t') € "'}

P Method is contained in a class

(md, T,V, e) €p ce ({md, T,V,e) € ¢’ and ¢’ = min{c"’ | ¢ <% ¢’ and &', V' st. (md, T, V' &) €% ¢''})

< Interface is a subinterface
COMPLETEINTERFACES(P)

WELLFOUNDEDINTERFACES(P)

Lp Class implements an interface
c K% 1 A0

Interface hierarchy is an order

<ip = the transitive, reflexive closure of <p

Extended/implemented interfaces are defined

rng(<p) U rng(<«%) C dom(<'p)U{Empty}
<lp is antisymmetric

7 7 iy i . 7 .
st. c<p ¢ and i <p iand ¢’ «KP 1

INTERFACEMETHODSOK (P)

Redeclarations of methods are consistent

) vi,i',md, T,T',V,V' (md, T, V, abstract) €'» i and {(md, T', V', abstract) €b i = (T =T ori g'p i)
€p Method is contained in an inte_rface ) )
(md, T, V, abstract) € i & 3i’ s.t. i <5 i’ and {md, T, V, abstract) €'» i’

CLASSESIMPLEMENTALL(P)

Classes supply methods to implement interfaces

Vice Kp i = (Ymd, T,V (md, T, V, abstract) €p i = Je, V' st (md, T, V' €) €% ¢)

NOABSTRACTMETHODS(P, ¢)

<p Type is a subtype

Ep Field or method is in a type

Class has no abstract methods (can be instantiated)

VYmd,T,V,e (md, T, V, e} €p ¢ =—> e # abstract

<p=<puU<huUKh

c i

Ep =ZEPUEP

The sets of names for variables, classes, interfaces, fields, and methods are assumed to be mutually distinct. The meta-variable T is
used for method signatures of the form (¢ ... — t), V is used for variable lists of the form (var...), and T is used for environments

mapping variables to types. Ellipses on the baseline (..

.) indicate a repeated pattern or continued sequence, while centered ellipses

(---) indicate arbitrary missing program text (without straddling a class or interface definition).

Figure 4: Predicates and relations in the model of CLASSICJAVA

THEOREM: If +, P = P': tand
P’ = defn, ... defn, e, then either
o P'F (e, 0) —* (object, S)
and S(object) = (t', F)y and t' <p t;
o Pk (e 0) =* (null, 8);
o P+ (e, B) —* (error: bad cast, S); or
o P+ (e, B) —* (error: dereferenced null, S).

The main lemma in support of this theorem states that each
step taken in the evaluation preserves the type correctness
of the expression-store pair (relative to the program) [29].
Specifically, for a configuration on the left-hand side of an

evaluation step, there exists a type environment that estab-
lishes the expression’s type as some t. This environment
must be consistent with the store:

Pl kS
& (S(object) = (¢, F)
= ['(object) = ¢
and dom(F) = {c1.fd | {c1.fd, c2) €P c1}
and rng(F) C dom(S) U {null}
and (F(cy.fd) = object’ and {(c1.fd, c2) €% c1)
= (S(object’) = (!, F'Y = ' <p ¢2))
and object € dom(I") = object € dom(S)
and dom(S) C dom(T")
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where P = defny ... defnn e
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Figure 5: Context-sensitive checks and type elaboration rules for CrassicJava

An evaluation step yields one of two possible configurations:
either a well-defined error state or a new expression-store
pair. In the latter case, there exists a new type environment
that is consistent with the new store, and it establishes that
the new expression has a type below t. A complete proof is
available in an extended version of the paper [16].

2.5 Related Work on Classes

Our model for class-based object-oriented languages is sim-
ilar to two recently published semantics for Java [9, 28], but
entirely motivated by prior work on Scheme and M1, mod-
els [13, 19, 29]. The approach is fundamentally different
from most of the previous work on the semantics of objects.
Much of that work has focused on interpreting object sys-
tems and the underlying mechanisms via record extensions
of lambda calculi [11, 20, 24, 23, 25] or as “native” object
calculi (with a record flavor) [1, 2, 3]. In our semantics,

types are simply the names of entities declared in the pro-
gram; the collection of types forms a DAG, which is specified
by the programmer. The collection of types is static during
evaluation® and is only used for field and method lookups
and casts. The evaluation rules describe how to transform
statements, formed over the given type context, into plain
values. The rules work on plain program text such that each
intermediate stage of the evaluation is a complete program.
In short, the model is as simple and intuitive as that of first-
order functional programming enriched with a language for
expressing hierarchical relationships among data types.

3Dynamic class loading could be expressed in this framework as
an addition to the static context. Still, the context remains the same
for most of the evaluation.



... | object
object | null

P+ (E[new c], ) — (E[object], S[objectr+{c, {c'.fd—null | ¢ <% ¢’ and ¢ s.t. {c’.fd, t) € '})])

where object ¢ dom(S)
P+ (E[object_: ¢’ .fd], S} — (E[v], S)
where S(object) = (¢, F) and F(c'.fd) = v

P+ (E[object_: ¢’ .fd = o], 8) = (E[v], S[objectrs{c, Flc'.fd—v]}])

where S(object) = (¢, F)
P+ (E[object.md(v1, ...
P + (E[super = object : ¢! .md(v1, ...

where (md, (t1...tn — t), (var ...
P+ (E[view t’ object], 8) — (E[object], S)

where S(object) = (¢, F) and ¢ <p t'

P+ (E[let var = vin €], 8) — (E[e[v/var]], S)

P + (E[view t' object], S} — ({error: bad cast, S)
where S(object) = (¢, F) and ¢ £ p ¢'

vn)], 8) — (E[e[object/this, vi /var, ...
where S(object) = (c, F) and (md, (¢1...tn — t), (vary ...
vn)], ) — (E[e[object/this, vi /vary, ...

varp), ) €p ¢

P+ (E[null_: c .fd], §) — (error: dereferenced null, S)

P+ (E[null_: ¢ .fd = 4], 8) < (error: dereferenced null, S)
vn)], §) = (error: dereferenced null, S)

P F (E[nullmd(v: , ...
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[new]
[get]
[set]

vn fvary]], 8)
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[call]
v fvary]], S) [super]
[cast]
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[ngef]

[nset]
[neall]

Figure 6: Operational semantics for CLASSICJAVA

3 From Classes to Mixins: An Example

Implementing a maze adventure game [17, page 81] illus-
trates the need for adding mixins to a class-based language.
A player in the adventure game wanders through rooms and
doors in a virtual world. All locations in the virtual world
share some common behavior, but also differ in a wide vari-
ety of properties that make the game interesting. For exam-
ple, there are many kinds of doors, including locked doors,
magic doors, doors of varying heights, and doors that com-
bine several varieties into one. The natural class-based ap-
proach for implementing different kinds of doors is to im-
plement each variation with a new subclass of a basic door
class, Door®. The left side of Figure 7 shows the Java def-
inition for two simple Door® subclasses, LockedDoor® and
ShortDoor®. An instance of LockedDoor® requires a key to
open the door, while an instance of ShortDoor® requires the
player to duck before walking through the door.

A subclassing approach to the implementation of doors
seems natural at first because the programmer declares only
what is different in a particular door variation as compared
to some other door variation. Unfortunately, since the su-
perclass of each variation is fixed, door variations cannot
be composed into more complex, and thus more interesting,
variations. For example, the LockedDoor® and ShortDoor®
classes cannot be combined to create a new LockedShortDoor®
class for doors that are both locked and short.

A mixin approach solves this problem. Using mixins, the
programmer declares how a particular door variation differs
from an arbitrary door variation. This creates a function
from door classes to door classes, using an interface as the
input type. FEach basic door variation is defined as a sepa-
rate mixin. These mixins are then functionally composed to
create many different kinds of doors.

A programmer implements mixins in exactly the same
way as a derived class, except that the programmer cannot
rely on the implementation of the mixin’s superclass, only
on its interface. We consider this an advantage of mixins

because it enforces the maxim “program to an interface, not
an implementation” [17, page 11].

The right side of Figure 7 shows how to define mixins
for locked and short doors. The mixin Locked™ is nearly
identical to the original LockedDoor® class definition, except
that the superclass is specified via the interface Door'. The
new LockedDoor® and ShortDoor® classes are created by ap-
plying Locked™ and Short™ to the class Door®, respectively.
Similarly, applying Locked™ to ShortDoor yields a class for
locked, short doors.

Consider another door variation: MagicDoor®, which is
similar to a LockedDoor®, except the player needs a book of
spells instead of a key. We can extract the common parts
of the implementation of MagicDoor® and LockedDoor® into
a new mixin, Secure™. Then, key- or book-specific infor-
mation is composed with Secure™ to produce Locked™ and
Magic™, as shown in Figure 8. Each of the new mixins ex-
tends Door' since the right hand mixin in the composition,
Secure™, extends Door'.

The new Locked™ and Magic™ mixins can also be com-
posed to form LockedMagic™. This mixin has the expected
behavior: to open an instance of LockedMagic™, the player
must have both the key and the book of spells. This com-
binational effect is achieved by a chain of super.canOpen()
calls that use distinct, non-interfering versions of neededltem.
The neededltem declarations of Locked™ and Magic™ do not
interfere with each other because the interface extended by
Locked™ is Door', which does not contain neededltem. In con-
trast, Door' does contain canOpen, so the canOpen method
in Locked™ overrides and chains to the canOpen in Magic™.

4 Mixins for Java

MIXEDJAVA is an extension of CLASSICJAVA with mixins.
In CrassicJava, a class is assembled as a chain of class
expressions. Specifically, the content of a class is defined
by its immediate field and method declarations and by the



class LockedDoor® extends Door® {
boolean canOpen(Person® p) {

if ('p.hasltem(theKey)) {
System.out.println(" You don’t have the Key”);
return false;

}

System.out.printIn(" Using key..." );

return super.canOpen(p);

}

class ShortDoor® extends Door¢ {
boolean canPass(Person® p) {
if (p.height() > 1) {
System.out.println(" You are too tall”);
return false;

System.out.println(” Ducking into door...” );
return super.canPass(p);

}
}

/* These classes cannot implement LockedShortDoor® */

interface Door' {
boolean canOpen(Person® p);
boolean canPass(Person® p);
}
mixin Locked™ extends Door' {
boolean canOpen(Person® p) {
if ('p.hasltem(theKey)) {
System.out.printin(" You don’t have the Key”);
return false;
}
System.out.printIn(" Using key...”);
return super.canOpen(p);
}
¥ .
mixin Short™ extends Door' {
boolean canPass(Person® p) {
if (p.height() > 1) {
System.out.println(" You are too tall”);
return false;
}
System.out.println(” Ducking into door...” );
return super.canPass(p);

}

class LockedDoor® = Locked™(Door®);
class ShortDoor® = Short™(Door®);
class LockedShortDoor® = Locked™(Short™(Door®));

Figure 7: Some class definitions and their translation to composable mixins

interface SecureDoor' extends Door' {
Object neededltem();
) . .
mixin Secure™ extends Door' implements SecureDoor' {
Object neededltem() { return null; }
boolean canOpen(Person® p) {
Object item = neededltem();
if ('p.hasltem(item)) {
System.out.println("You don’t have the " + item);
return false;
}
System.out.printin("Using " + item + "...");
return super.canOpen(p);
}
}

mixin

LockedNeeded™ extends SecureDoor' {

Object neededItem() {
return theKey;

}
}

mixin

MagicNeeded™ extends SecureDoor' {

Object neededItem() {
return theSpellBook;

}
}
mixin
mixin
mixin
mixin

Locked™ = LockedNeeded™ compose Secure™;
Magic™ = MagicNeeded™ compose Secure™;
LockedMagic™ = Locked™ compose Magic™;
LockedMagicDoor™ = LockedMagic™ compose Door™;

class LockedDoor® = Locked™(Door®); ...

Figure 8: Composing mixins for localized parameterization

declarations of its superclasses, up to Object.* In MIXED-
JAvA, a “class” is assembled by composing a chain of mixins.
The content of the class is defined by the field and method
declarations in the entire chain.

MixeDJAVA provides two kinds of mixins:

e An atomic mixin declaration is similar to a class dec-
laration. An atomic mixin declares a set of fields and
methods that are extensions to some inherited set of
fields and methods. In contrast to a class, an atomic
mixin specifies its inheritance with an inheritance in-
terface, not a static connection to an existing class.
By abuse of terminology, we say that a mixin eztends
its inheritance interface.

A mixin’s inheritance interface determines how method
declarations within the mixin are combined with inher-

We use boldfaced class to refer to the content of a single class
expression, as opposed to an actual class.

ited methods. If a mixin declares a method z that is
not contained in its inheritance interface, then that
declaration never overrides another z.

An atomic mixin implements one or more interfaces as
specified in the mixin’s definition. In addition, a mixin
always implements its inheritance interface.

A composite mixin does not declare any new fields or
methods. Instead, it composes two existing mixins to
create a new mixin. The new composite mixin has all
of the fields and methods of its two constituent mixins.
Method declarations in the left-hand mixin override
declarations in the right-hand mixin according to the
left-hand mixin’s inheritance interface. Composition
is allowed only when the right-hand mixin implements
the left-hand mixin’s inheritance interface.

A composite mixin extends the inheritance interface
of its right-hand constituent, and it implements all of
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LockedNeeded™ SecureDoor Secure™ Door MagicNeeded™ SecureDoor Secure™ Door Door™
neededltem neededltem neededltem neededltem canPass

canOpen canOpen canOpen
L ] L ]
| Locked™ Magic™ |
| LockedMagic™ |

LockedMagicDoor™

Figure 9: The LockedMagicDoor™ mixin corresponds to a sequence of atomic mixins

the interfaces that are implemented by its constituents.
Composite mixins can be composed with other mix-
ins, producing arbitrarily long chains of atomic mixin
compositions.”

Figure 9 illustrates how the mixin LockedMagicDoor™
from the previous section corresponds to a chain of atomic
mixins. The arrows connecting the tops of the boxes rep-
resent mixin compositions; in each composition, the inher-
itance interface for the left-hand side is noted above the
arrow. The other arrows show how method declarations in
each mixin override declarations in other mixins according
to the composition interfaces. For example, there is no arrow
from the first Secure™’s neededltem to Magic™’s method be-
cause neededltem is not included in the Door' interface. The
canOpen method is in both Door' and SecureDoor', so that
corresponding arrows connect all declarations of canOpen.

Mixins completely subsume the role of classes. A mixin
can be instantiated with new when the mixin does not
inherit any services. In MIXEDJAvVA, this is indicated by
declaring that the mixin extends the special interface Empty.
Consequently, we omit classes from our model of mixins,
even though a realistic language would include both mixins
and classes.

The following subsections present a precise description
of MIXEDJAVA. Section 4.1 describes the syntax and type
structure of MIXEDJAVA programs, followed by the type
elaboration rules in Section 4.2. Section 4.3 explains the
operational semantics of MIXEDJAvVA, which is significantly
different from that of CrAssicJAVA. Section 4.4 presents a
type soundness theorem, Section 4.5 briefly considers imple-
mentation issues, and Section 4.6 discusses related work.

4.1 MixepJava Programs

Figure 10 contains the syntax for MIXEDJAVA; the missing
productions are inherited from the grammar of CLASSIC-
JAavA in Figure 3. The primary change to the syntax is
the replacement of class declarations with mixin declara-
tions. Another change is in the annotations added by type
elaboration. First, view expressions are annotated with the
source type of the expression. Second, a type is no longer
included in the super annotation. Type elaboration also
inserts extra view expressions into a program to implement
subsumption.

The predicates and relations in Figure 11 (along with the
interface-specific parts of Figure 4) summarize the syntactic

5Qur composition operator is associative semantically, but not
type-theoretically. The type system could be strengthened to make
composition associative—giving MIXEDJAvVA a categorical flavor—by
letting each mixin declare a set of interfaces for inheritance, rather
than a single interface. Each required interface must then either be
satisfied or propagated by a composition. We have not encountered
a practical use for the extended type system.

defn = mixin m extends i implements i* { field* meth* }
| mixin m = m compose m

| interface 7 extends i* { meth* }

new m |var |null | e:m .fd| e:m .fd=¢e

| eemd (e*) | super = this .md (e¥)

| view_tas t e |let var = ein e

mixin name

™
Il

o~

Figure 10: Syntax extensions for MIXEDJAVA

content of a MIXEDJAVA program. A well-formed program
induces a subtype relation <5 on its mixins such that a com-
posite mixin is a subtype of each of its constituent mixins.

Since each composite mixin has two supertypes, the type
graph for mixins is a DAG, rather than a tree as for classes.
This DAG can lead to ambiguities if subsumption is based
on subtypes. For example, LockedMagic™ is a subtype of
Secure™, but it contains two copies of Secure™ (see Figure 9),
so an instance of LockedMagic™ is ambiguous as an instance
of Secure™. More concretely, the fragment

LockedMagicDoor™ door = new LockedMagicDoor™;
(view Secure™ door).neededltem();

is ill-formed because LockedMagic™ is not viewable as Secure™.
The “viewable as” relation <p is a restriction on the sub-
type relation that eliminates ambiguities. Subsumption is
thus based on <, rather than <. The relations €F, which
collect the fields and methods contained in each mixin, sim-
ilarly eliminate ambiguities.

4.2 MixepJava Type Elaboration

Despite replacing the subtype relation with the “viewable
as” relation for subsumption, CLASSICJAVA’s type elabora-
tion strategy applies equally well to MIXEDJAVA. The typing
rules in Figure 12 are combined with the defn', meth, let,
var, null, and abs rules from Figure 5.

Three of the new rules deserve special attention. First,
the super™ rule allows a super call only when the method is
declared in the current mixin’s inheritance interface, where
the current mixin is determined by looking at the type of
this. Second, the wcast™ rule strips out the view part of
the expression and delegates all work to the subsumption
rules. Third, the sub™ rule for subsumption inserts a view
operator to make subsumption coercions explicit.

4.3 MixepJava Evaluation

The operational semantics for MIXEDJAvVA differs substan-
tially from that of CLASSICJAVA. The rewriting semantics of
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Figure 11: Predicates and relations in the model of MIXED JAVA

the latter relies on the uniqueness of each method name in
the chain of classes associated with an object. This unique-
ness is not guaranteed for chains of mixins. Specifically, a
composition m; compose my contains two methods named
z if both m1 and ms declare x and m1’s inheritance inter-
face does not contain z. Both # methods are accessible in

an instance of the composite mixin since the object can be
viewed specifically as an instance of m; or mao.

One strategy to avoid the duplication of z is to rename
it in m; and mso. At best, this is a global transformation
on the program, since z is visible to the entire program as a
public method. At worst, renaming triggers an exponential



MixiNsONCE(P) METHODONCEPERMIXIN(P)
WELLFOUNDEDMIxXINS(P)
MIxINFIELDSOK (P) MIxINMETHODSOK (P)
NoABsTRACTMIxINS(P)

Plllee=¢€:t

INTERFACESONCE(P)
CoMPLETEINTERFACES(P)
INTERFACEMETHODSOK (P)
MIxINSIMPLEMENTALL(P)

CoMPLETEMIXINS(P)
WELLFOUNDEDINTERFACES(P)
INTERFACESA BSTRACT (P)

P tq defn; = defng for j € [1,n]
where P = defny ... defnn e

rog™
Fp defny ... defnn e = defn'l ... defnl, € 1t [prog™]
Fq Pty t; for each j € [1,n] P,m bm methy, = meth) for each k € [1,p] defm
P by mixin m -~ { f fdi ... tn fdn = mixin m -~ { & fdi ... tn fdn [defn™]
methy ... methy } methy ... methy, }
ke Phrym m <5 Empty new™] Pllree= e :m (m'.fd, t) Ep m [get]
P,T' Fe new m = new m: m Plleefd= e :m' . fd:t &
PTlree=¢€:m (m’.fd, t) €p m PTlbse, =6t
[set™]
Plleefd=¢e = e_-m' fd=¢ :t
PTree= ¢t (md, (t1...tn —> 1), (vary ... vary), ep) €p t/
PTbks ey = e; : t; for j € [1,n] fcall"]
PT Feemd(er ...en)= e¢.md(e] ...e)):t
P,T" ke this = this: m m B 1 (md, (t1...tn —> t), (var; ... varp), abstract) €p 1
P,T ks e]:>63:tj for j € [1,n] .
super
P,T te super.md(e; ... en) = super_ = this .md(e] ... e,) : ¢ [super™]
Plhrse= et Pllree= e ¢t t t
- [wcast™] . - £p [ncast™]
Pl hleviewte= ¢ : ¢t PI'le view t e = view t' as t ¢/ : ¢
Fs, e ) ’ m ~m i
Pllree= et t' dpt " t € dom(<B) U dom(=P) Udom(<'p)U{Empty} "
[sub™] [type™]

Plbse= viewt aste : ¢

Pret

Figure 12: Context-sensitive checks and type elaboration rules for MIXEDJAVA

explosion in the size of the program, which occurs when m;
and mo are actually the same mixin m. Since the mixin m
represents a type, renaming z in each use of m splits it into
two different types, which requires type-splitting at every
expression in the program involving m.

Our MIXEDJAvA semantics handles the duplication of
method names with run-time context information: the cur-
rent view of an object.® During evaluation, each reference
to an object is bundled with its view of the object, so that
values are of the form (object||view). A reference’s view can
be changed by subsumption, method calls, or explicit casts.

A view is represented as a chain of mixins. This chain
is always a tail of the object’s full chain of mixins, i.e., the
chain of mixins for the object’s instantiation type. The tail
designates a specific point in the full mixin chain for selecting
methods during dynamic dispatch. For example, when an
instance of LockedMagicDoor™ is used as a Magic™ instance,
the view of the object is [MagicNeeded™ Secure™ Door™].
With this view, a search for the neededltem method of the
object begins in the MagicNeeded™ element of the chain.

The first phase of a search for some method z locates
the base declaration of x, which is the unique non-overriding
declaration of z that is visible in the current view. This dec-
laration is found by traversing the view from left to right,
using the inheritance interface at each step as a guide for
the next step (via the o< and v relations). When the search

8 A view is analogous to a “subobject” in languages with multiple
inheritance, but without the complexity of shared superclasses [26].
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reaches a mixin whose inheritance interface does not include
z, the base declaration of # has been found. But the base
declaration is not the destination of the dispatch; the des-
tination is an overriding declaration of x for this base that
is contained in the object’s instantiated mixin. Among the
declarations that override this base, the leftmost declaration
is selected as the destination. The location of that overrid-
ing declaration determines both the method definition that
is invoked and the view of the object (i.e., the represen-
tation of this) within the destination method body. This
dispatching algorithm is encoded in the €% relation.

Let us apply the algorithm to o.getNeeded() in the fol-
lowing example:

mixin Getter™ extends Empty {
Object get(Secure™ o) { o.neededltem() }

let door = new LockedMagicDoor™
in let ¢ = new Getter™
in g.get(view Secure™ view Locked™ door);
g.get(view Secure™ view Magic™ door)

For the first call to g.get, o is replaced by a reference with
the view [Secure™ MagicNeeded™ Secure™ Door™]. In this
view, the base declaration of neededltem is in the leftmost
Secure™ since neededltemn is not in the interface extended by
Secure™. The overriding declaration is in LockedNeeded™,
which appears to the left of Secure™ in the instantiated chain
and extends an interface that contains neededltem.
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Figure 13: Operational semantics for MIXED JAVA

In contrast, the second call to g.get receives a reference
with the view [Secure™ Door™]. In this view, the base defi-
nition of neededltem is in the rightmost Secure™ of the full
chain, and it is overridden in MagicNeeded™. Neither the
definition of neededltem in LockedNeeded™ nor the one in
the leftmost occurrence of Secure™ is a candidate relative to
the given view, because Secure™ extends an interface that
hides neededltem.

MixEDJAVA not only differs from CLAssIcJAVA with re-
spect to method dispatching, but also in its treatment of su-
per. In MIXEDJAvA, super dispatches are dynamic, since
the “supermixin” for a super expression is not statically
known. The super dispatch for mixins is implemented like
regular dispatches with the € relation, but using a tail
of the current view in place of both the instantiation and
view chains; this ensures that a method is selected from the
leftmost mixin that follows the current view.

Figure 13 contains the complete operational semantics
for MIXEDJAVA as a rewriting system on expression-store
pairs, like the class semantics described in Section 2.3. In
this semantics, an objectin the store is tagged with a mixin
instead of a class, and the values are null and {object||view)
pairs.

4.4 MixepJAvA Soundness

The type soundness theorem for MIXED JAVA is mutatis mu-
tandis the same as the soundness theorem for CLASSICJAVA
as described in Section 2.4. To prove the soundness theorem,
we introduce a conservative extension, MIXEDJAVA’, which
is defined by revising some of the MIXEDJAVA relations (see
Figure 14).

In the extended language, the subtype relation is used di-
rectly for the “viewable as” relation without eliminating am-
biguities. Thus, MIXEDJAVA’ allows coercions and method
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dp Type is viewable as another type dp = <p
Ep Field or method is contained in a type

Choose the leftmost field/method instance
Iy Mixin selects a view in a chain
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Figure 14: Revised relations for M1xeDJava’'

calls that are rejected as ambiguous in MIXEDJAVA. This
makes MIXEDJAVA' less suitable as a programming language,
but the proof of its type soundness theorem is significantly
simpler. The soundness theorem for MIXEDJAVA’ then ap-
plies to MIXEDJAVA by the following two lemmas:

1. Every MIXEDJAVA program is a MIXEDJAVA' program.

2. P+ (e, 8) = (€, S') in MIXEDJAVA
= Pt (e, S) — (€, 8 in MIXEDTAVA',

A complete definition of MIXEDJAVA’, its soundness proof,
and proofs for the above lemmas are available in the ex-
tended paper [16].

4.5 Implementation Considerations

The MIXEDJAvVA semantics is formulated at a high level,
leaving open the question of how to implement mixins effi-
ciently. Common techniques for implementing classes can be
applied to mixins, but two properties of mixins require new
implementation strategies. First, each object reference must



carry a view of the object. This can be implemented using
double-wide references, one half for the object pointer and
the other half for the current view. Second, method invoca-
tion depends on the current view as well as the instantiation
mixin of an object, as reflected in the €3 relation. Never-
theless, this relation determines a static, per-mixin method
table that is analogous to the virtual method tables typically
generated for classes.

The overall cost of using mixins instead of classes is
equivalent to the cost of using interface-typed references in-
stead of class-typed references. The justification for this cost
is that mixins are used to implement parts of a program that
cannot be easily expressed using classes. In a language that
provides both classes and mixins, portions of the program
that do not use mixins do not incur any extra overhead.

4.6 Related Work on Mixins

Mixins first appeared as a CLLOS programming pattern [21,
22]. Unfortunately, the original linearization algorithm for
CLOS’s multiple inheritance breaks the encapsulation of
class definitions [10], which makes it difficult to use CL.OS
for proper mixin programming. The CommonObjects [27]
dialect of CLLOS supports multiple inheritance without break-
ing encapsulation, but the language does not provide simple
composition operators for mixins.

Bracha has investigated the use of “mixin modules” as
a general language for expressing inheritance and overriding
in objects [5, 6, 7]. His system is based on earlier work by
Cook [8]; its underlying semantics was recently reformulated
in categorical terms by Ancona and Zucca [4]. Bracha’s sys-
tem gives the programmer a mechanism for defining modules
(classes, in our sense) as a collection of attributes (meth-
ods). Modules can be combined into new modules through
various merging operators. Roughly speaking, these oper-
ators provide an assembly language for expressing class-to-
class functions and, as such, permit programmers to con-
struct mixins. However, this language forces the program-
mer to resolve attribute name conflicts manually and to
specify attribute overriding explicitly at a mixin merge site.
As a result, the programmer is faced with the same problem
as in Common Lisp, i.e., the low-level management of de-
tails. In contrast, our system provides a language to specify
both the content of a mixin and its interaction with other
mixins for mixin compositions. The latter gives each mixin
an explicit role in the construction of programs so that only
sensible mixin compositions are allowed. It distinguishes
method overriding from accidental name collisions and thus
permits the system to resolve name collisions automatically
in a natural manner.

5 Conclusion

We have presented a programming language of mixins that
relies on the same intuition as single inheritance classes.
Indeed, a mixin declaration in our language hardly differs
from a class declaration since, from the programmer’s local
perspective, there is little difference between knowing the
properties of a superclass as described by an interface and
knowing the exact implementation of a superclass. However,
from the programmer’s global perspective, mixins free each
collection of field and method extensions from the tyranny of
a single superclass, enabling new abstractions and increasing
the re-use potential of code.

While using mixins is inherently more expensive than us-
ing classes—because mixins enforce the distinction between
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implementation inheritance and subtyping—the cost is rea-
sonable and offset by gains in code re-use. Future work on
mixins must focus on exploring compilation strategies that
lower the cost of mixins, and on studying how designers can
exploit mixins to construct better design patterns.

Acknowledgements: Thanks to Corky Cartwright, Robby
Findler, Cormac Flanagan, and Dan Friedman for their com-
ments on early drafts of this paper.

References

[1] ABaDI, M., AND CARDELLI, I.. A theory of primitive
objects — untyped and first-order systems. In Theo-
retical Aspects of Computer Software, M. Hagiya and
J. C. Mitchell, Eds., vol. 789 of LNCS. Springer-Verlag,
Apr. 1994, pp. 296-320.

ABADI, M., AND CARDELLI, .. A theory of primi-
tive objects: second-order systems. In Proc. Furopean
Symposium on Programming (New York, N.Y., 1994),
D. Sannella, Ed., Lecture Notes in Computer Science
788, Springer Verlag, pp. 1-25.

ABADI, M., AND CARDELLI, .. An imperative ob-
ject calculus. In TAPSOFT’95: Theory and Prac-
tice of Software Development (May 1995), P. D.
Mosses, M. Nielsen, and M. I. Schwartzbach, Eds., Lec-
ture Notes in Computer Science 915, Springer-Verlag,
pp. 471-485.

ANconNa, D., AND Zucca, E. An algebraic approach
to mixins and modularity. In Proc. Conference on Alge-
braic and Logic Programming (Berlin, 1996), M. Hanus
and M. Rodriguez-Artalejo, Eds., Lecture Notes in
Computer Science 1139, Springer Verlag, pp. 179-193.

Bracua, G. The Programming Language Jigsaw: Miz-
ins, Modularity and Multiple Inheritance. Ph.D. thesis,
Dept. of Computer Science, University of Utah, Mar.
1992.

BracuA, G., AND Cook, W. Mixin-based inheritance.
In Proc. Joint ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications and the
Furopean Conference on Object-Oriented Programming
(Oct. 1990).

BracuaA, G., AND LINDSTROM, G. Modularity meets
inheritance. In Proc. IEFEE Computer Society Interna-
tional Conference on Computer Languages (Washing-
ton, DC, Apr. 1992), IEEE Computer Society, pp. 282—
290.

Cook, W. R. A Denotational Semantics of Inheri-
tance. Ph.D. thesis, Department of Computer Science,
Brown University, Providence, RI, May 1989.

DrossopPoLOU, S., AND EISENBACH, S. Java is typesafe
— probably. In Proc. Furopean Conference on Object
Oriented Programming (June 1997).

[10] DucourNaAU, R., HaBiB, M., HucHARD, M., AND
MuGNIER, M. .. Monotonic conflict resolution mech-
anisms for inheritance. In Proc. Conference on Object-
Oriented Programming Systems, Languages, and Appli-

cations (Oct. 1992), pp. 16-24.



[11]

[12]

[13]

[14

[lame

[15]

[16]

[17]

[18

[t

[19]

[20]

[21

[h—

[22]

[23]

[24]

[25]

Errric, J., SMITH, S., TRIFONOV, V., AND ZWARICO,
A. Application of OOP type theory: State, decid-
ability, integration. In Proc. Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications (Oct. 1994), pp. 16-30.

FeLLEISEN, M. Programming languages and lambda
calculi.
URL: www.cs.rice.edu/ "matthias/411web/mono.ps.

FELLEISEN, M., AND HieEB, R. The revised report on
the syntactic theories of sequential control and state.
Tech. Rep. 100, Rice University, June 1989. Theoretical
Computer Science, volume 102, 1992.

FinDLER, R. B., FrLaNvagaN, C., FraTtT, M., KRISH-
NAMURTHI, S., AND FELLEISEN, M. DrScheme: A ped-
agogic programming environment for Scheme. In Proc.
International Symposium on Programming Languages,
Implementations, Logics, and Programs (1997).

FratT, M. PLT MzScheme: Language manual. Tech.
Rep. TR97-280, Rice University, 1997.

FraTT, M., KRISHNAMURTHI, S., AND FELLEISEN, M.
Classes and mixins. Tech. Rep. TR97-293, Rice Uni-
versity, 1997.

GamMMA, E., HeELM, R., JoHNSON, R., AND VLISSIDES,
J.  Design Patterns: FElements of Reusable Object-
Oriented Software. Addison Wesley, Massachusetts,
1994.

Gosuing, J., Joy, B., AND STEELE, G. The Java

Language Specification. The Java Series. Addison-Wes-
ley, Reading, MA, USA, June 1996.

HARPER, R., AND STONE, C. A type-theoretic seman-
tics for Standard M1, 1996. Submitted for publication,
1997.

KaMmin, S. Inheritance in SMALLTALK-80: a denota-
tional definition. In Proc. Conference on Principles of
Programming Languages (Jan. 1988).

KessLER, R. R. LISP, Objects, and Symbolic Program-
ming. Scott, Foresman and Company, Glenview, I,

USA, 1988.

KoscaMAaNN, T. The Common LISP Companion. John
Wiley and Sons, New York, N.Y., 1990.

Mason, I. A., anND TaLcoTT, C. L. Reasoning about
object systems in VTLoE. International Journal of
Foundations of Computer Science 6, 3 (Sept. 1995),
265-298.

REDDY, U. S. Objects as closures: Abstract seman-
tics of object oriented languages. In Proc. Confer-
ence on Lisp and Functional Programming (July 1988),
pp. 289-297.

REMY, D. Programming objects with MI.-ART: An ex-
tension to ML, with abstract and record types. In Theo-
retical Aspects of Computer Software (New York, N.Y.,
Apr. 1994), M. Hagiya and J. C. Mitchell, Eds., Lec-
ture Notes in Computer Science 789, Springer-Verlag,
pp. 321-346.

13

[26]

[27]

[28]

[29]

Rossie, J. G., FrRIEDMAN, D. P., AND WaND, M.
Modeling subobject-based inheritance. In Proc. Fu-
ropean Conference on Object-Oriented Programming
(Berlin, Heidelberg, and New York, July 1996),
P. Cointe, Ed., Lecture Notes in Computer Science
1098, Springer-Verlag, pp. 248-274.

SNYDER, A. Inheritance and the development of encap-
sulated software components. In Research Directions

in Object-Oriented Programming. MIT Press, 1987,
pp. 165-188.
SYME, D. Proving Java type soundness. Tech. Rep.

427, University of Cambridge, July 1997.

WriGHT, A., AND FELLEISEN, M. A syntactic ap-
proach to type soundness. Tech. Rep. 160, Rice Univer-
sity, 1991. Information and Computation, volume 115,
1994.



