
DrScheme� A Pedagogic Programming
Environment for Scheme

Robert Bruce Findler� Cormac Flanagan� Matthew Flatt�
Shriram Krishnamurthi� and Matthias Felleisen

Department of Computer Science
Rice University

Houston� Texas ����������

Abstract� Teaching introductory computing courses with Scheme el�
evates the intellectual level of the course and thus makes the subject
more appealing to students with scienti	c interests
 Unfortunately� the
poor quality of the available programming environments negates many
of the pedagogic advantages
 To overcome this problem� we have devel�
oped DrScheme� a comprehensive programming environment for Scheme

It fully integrates a graphics�enriched editor� a multi�lingual parser that
can process a hierarchy of syntactically restrictive variants of Scheme�
a functional read�eval�print loop� and an algebraically sensible printer

The environment catches the typical syntactic mistakes of beginners and
pinpoints the exact source location of run�time exceptions

DrScheme also provides an algebraic stepper� a syntax checker and a
static debugger
 The 	rst reduces Scheme programs� including programs
with assignment and control e�ects� to values �and e�ects
 The tool is
useful for explaining the semantics of linguistic facilities and for studying
the behavior of small programs
 The syntax checker annotates programs
with font and color changes based on the syntactic structure of the pro�
gram
 It also draws arrows on demand that point from bound to binding
occurrences of identi	ers
 The static debugger� roughly speaking� pro�
vides a type inference system with explanatory capabilities
 Preliminary
experience with the environment shows that Rice University students
	nd it helpful and that they greatly prefer it to shell� or Emacs�based
systems


Keywords� Programming Environments� Scheme� Programming� Ped�
agogy� Algebraic Evaluation� Static Debugging
 Teaching programming
to beginning students




� Problems with Teaching Scheme

Over the past ten years� Scheme ��� has become the most widely used functional
programming language in introductory courses� A United States�wide count in
���� put Scheme in fourth place with ��	� behind Pascal 
��	�� Ada 
��	��
and CC�� 
��	� 
when grouped together� ���� ���� SML ���� is the only other
functional language listed� at �	� Scheme�s success is primarily due to Abel�
son and Sussman�s seminal book ��� on their introductory course at MIT� Their
course proved that introductory programming courses can expose students to
the interesting concepts of computer science instead of listing the syntactic con�
ventions of currently fashionable programming languages�

When Rice University implemented an MIT�style course� the instructors en�
countered four signi�cant problems with Scheme and its implementations ��� ���
��� ����

�� Since the syntax of standard Scheme is extremely liberal� simple notational
mistakes produce inexplicable results or incomprehensible error messages�

�� The available implementations do not pinpoint the source location of run�
time errors�

�� The Lisp�style output syntax obscures the pedagogically important connec�
tion between program execution and algebraic expression evaluation�

�� The hidden imperative nature of Scheme�s read�eval�print loop introduces
subtle bugs that easily frustrate students�

In contrast to experienced Scheme programmers who have� often unconsciously�
developed work�arounds for these problems� students are confounded by the
resulting e�ects� As a result� some students dismiss the entire mostly�functional
approach to programming because they mistake these environmental problems
for �aws of the underlying functional methodology�

To address these problems we have built DrScheme� a Scheme environment
targeted at beginning students� The environment eliminates all problems men�
tioned above by integrating program editing and evaluation in a semantically
consistent manner� DrScheme also contains three additional tools that facilitate
teaching functional programming� The �rst one is a symbolic stepper� It mod�
els the execution of functional and imperative Scheme programs as algebraic
reductions of programs to answers and their e�ects� The second tool is a syn�
tax checker� It annotates programs with font and color changes based on the
syntactic structure of the program and permits students to explore the lexical
structure of their programs with arrows overlaid on the program text� The third
auxiliary tool is a static debugger that infers what set of values an expression
may produce and how values �ow from expressions into variables� It exposes
potential safety violations and� upon demand� explains its reasoning by drawing
value �ow graphs over the program text�

The second section of this paper discusses the pedagogy of Rice University�s
introductory course� and motivates many of the fundamental design decisions of
DrScheme but it should be skipped on a �rst reading if the reader is familiar



Data Description� A list of numbers is either�
�
 null �the empty list� or
�
 �cons n lon where n is a number and lon is a list of numbers

End

�de�ne �length a�lon
�cond
��null� a�lon ��
��cons� a�lon �add� �length �cdr a�lon�

�de�ne �fahrenheit�celsius d
�� ��� �� d ��

Fig� �� The design of a function

with teaching Scheme� The third section presents DrScheme and explains how
it solves the above problems� especially in the context of Rice University�s intro�
ductory course� The fourth section brie�y explains the additional tools� The last
three sections discuss related work� present preliminary experiences� and suggest
possible uses in the functional programming community�

� Rice University�s Introductory Computing Course

Rice University�s introductory course on computing focuses on levels of abstrac�
tion and how the algebraic model and the physical model of computation give
rise to the �eld�s fundamental concerns� The course consists of three segments�
The �rst segment covers functional program design and algebraic evaluation�
The second segment is dedicated to a study of the basic elements of machine
organization� machine language� and assembly language� The course ends with
an overview of the important questions of computer science and the key elements
of a basic computer science curriculum�

The introduction to functional program design uses a subset of Scheme� It
emphasizes program design and the connection between functional programming
and secondary school algebra� In particular� the course �rst argues that a pro�
gram 
fragment� is a function that consumes and produces data� and that the
design of programs 
or fragments� must therefore be driven by an analysis of
these sets of data� The course starts out with the design of list�processing func�
tions� without relying on the fact that lists are a built�in type of data� Students
quickly learn to describe such data structures rigorously and to derive functions
from these descriptions� see �gure ��

Once the program is designed� students study how it works based on the
familiar laws of secondary school algebra� Not counting the primitive laws of



arithmetic� two laws su�ce� 
�� the law of function application and 
�� the
law of substitution of equals by 
provably� equals� A good �rst example is an
application of the temperature conversion function from �gure ��


fahrenheit�celsius 
� ��� ����
� 
fahrenheit�celsius ���
� 
� ��� 
� �� ����
� �

Students know this example from their early schooling and can identify with it�

For examples that involve lists� students must be taught the basic laws of
list�processing primitives� That is� 
cons v l� is a value if v is a value and l a
list� 
car 
cons v l�� � v and 
cdr 
cons v l�� � l � for every value v and list l �
From there� it is easy to illustrate how the sample program works�


length 
cons �� 
cons �� null���
� 
add� 
length 
cdr 
cons �� 
cons �� null�����
� 
add� 
length 
cons �� null���
� 
add� 
add� 
length 
cdr 
cons �� null�����
� 
add� 
add� 
length null���
� 
add� 
add� ���
� �

In short� algebraic calculations completely explain program execution without
any references to the underlying hardware or the runtime context of the code�

As the course progresses� students learn to deal with more complex forms
of data de�nitions� non�structural recursion� and accumulator�style programs�
At the same time� the course gradually introduces new linguistic elements as
needed� Speci�cally� for the �rst three weeks� students work in a simple functional
language that provides only function de�nitions� conditional expressions� and
basic boolean� arithmetical� and list�processing primitives� Then the language
is extended with a facility for de�ning new data constructors� and parallel and
recursive local de�nitions� The �nal extension covers variable assignment and
data mutation� With each extension of the language� the course also introduces
a set of appropriate design recipes and rewriting rules that explain the new
language features ��� ��� ����

At the end of the segment on program design� students understand how to
construct programs as 
collections of� functions and as 
object�oriented� history�
sensitive procedures� They can evaluate programs by reducing them algebraically
to their values and e�ects� and understand how to use these evaluations to reason
about the correctness and complexity of their designs�

� The Programming Environment

DrScheme runs under Microsoft Windows ��� Windows NT� MacOS� and the X



Fig� �� The DrScheme window �Windows ���NT version

Window System� When it starts up� it presents the programmer with a menubar�

and a window consisting of three pieces� the control panel� the de�nitions 
upper�
window� and the interactions 
lower� window 
see �gure ��� The control panel has
buttons for important actions� e�g�� Save and Help� The de�nitions window is an
editor that contains a sequence of de�nitions and expressions� The interactions
window� which provides the same editing commands as the de�nitions window�
implements a novel read�eval�print loop�

DrScheme�s menubar provides �ve menus� File� Edit� Show� Scheme� and Lan�
guage� The File and Editmenus contain the standard menu items� In addition� the
latter provides the EditjInsert Image			menu item� which allows the programmer
to insert images into the program text� Images are treated as ordinary values�
like numbers or symbols�

The Show menu controls the visibility of the sub�windows� The Scheme menu
allows programmers to indent� comment� and uncomment regions of text in the
de�nitions window� The Language menu allows the student to choose which sub�
languages of Scheme the syntax checker and evaluator accept�

The control panel contains six buttons� Save� Check Syntax� Analyze� Exe�
cute� Break and Help� The Save button saves the de�nitions from the de�nitions
window as a �le� Clicking the Check Syntax button ensures that the de�nitions
window contains a correctly formed program� and then annotates the program
based on its syntactic and lexical structure 
see section ����� The Analyze but�
ton invokes the static debugger 
described in section ���� on the contents of the

� Under Windows and X� the menubar appears at the top of the window� under MacOS�
the menubar appears at the top of the screen




de�nitions window� The Execute button executes the program in the de�nitions
window� The Break button stops the current computation� and the Help button
summons the on�line help facility for DrScheme�

The de�nitions and interactions windows contain editors that are compatible
with typical editors on the various platforms�Under X� the editor has many of the
Emacs ���� key bindings� The Windows and MacOS versions have the standard
key bindings and menu items for those platforms�

The remainder of this section motivates and describes the new aspects of the
core programming environment� In particular� the �rst subsection describes how
DrScheme can gradually support larger and larger subsets of Scheme as students
gain more experience with the language and the functional programming phi�
losophy� The second subsection describes how the de�nitions window and the
interactions window 
read�eval�print loop� are coordinated� Finally� the third
subsection explains how DrScheme reports run�time errors via source locations
in the presence of macros� The remaining elements of DrScheme are described
in section ��

��� Language Levels

Contrary to oft�stated claims� learning Scheme syntax poses problems for be�
ginning students who are used to conventional algebraic notation� Almost any
program with matching parentheses is syntactically valid and therefore has some
meaning� For beginning programmers that meaning is often unintended� and as
a result they receive inexplicable results or incomprehensible error messages for
essentially correct programs�

For example� the author of the program


de�ne 
length l�

cond
�
null
 l� ��
�else � � 
length 
cdr l�����

has lapsed into algebraic syntax in the second clause of the cond�expression�
Since the value of a cond�clause is the value of its last expression� this version
of length always returns � as a result� puzzling any programmer� and especially
beginning programmers�

Similarly� the program


de�ne 
length l�

cond
�null
 
l� ��
�else 
� � 
length 
cdr l������

is syntactically valid� Its author also used algebraic syntax� this time in the �rst
cond�clause� As a result� this version of length erroneously treats its argument�
e�g�� 
list � � ��� as a function and applies it to no arguments� The resulting error
message �apply� �list � � �� not a procedure� is useless to beginners�



While these programs are �awed� their student authors should receive en�
couragement since the �aws are merely syntactic� They clearly understand the
inductive structure of lists and its connection to the structure of recursive pro�
grams� Since Scheme�s response does not provide any insight into the actual
error� the students� learning experience su�ers� A good pedagogic programming
environment should provide a correct and concise explanations of the students�
mistakes�

Students also write programs that use keywords� that they have not yet been
taught� as identi�ers� It is not the students� fault for using those keywords in�
correctly� A programming environment should limit the language to the pieces
relevant for each stage of a course rather than leaving the entire language avail�
able to trap unwary students�

For example� a student might write�


de�ne 
length l start�

cond
�
null
 l� start �
�else 
length 
cdr l� 
add� begin�����

This program is buggy� it has an unbound identi�er begin� But� it generates
a strange syntax error� �compile� illegal use of a syntactic form name

in� begin�� The student cannot understand that they have uncovered a new
part of the programming language�

Eager students also attempt to use features that they have not yet seen
in class� For example� they might try to use local de�nitions before scope is
described in class� Many students try to return more than one value from a
function by juxtaposing several expressions behind lambda� Students with prior
experience in C or Pascal might solve a simple functional exercise with imperative
features� Again� a good pedagogic programming environment should protect the
student from using language features that are inconsistent with the pedagogic
goals of a phase of the course�

A natural solution for all of these problems is to stratify the programming
language into several levels� Each level should provide enough power to teach
a new set of constructs and programming paradigms� and it must not allow
irrelevant language features to interfere with the goals of a teaching unit� In
short� a pedagogic programming environment must be able to grow along with
the students through a course�

DrScheme implements this strati�cation with four language levels ����� The
student can choose the appropriate language level via the LanguagejCon�gure
Language			menu item� Choosing LanguagejCon�gure Language			 opens a window
with a choice dialog item that displays the current language level� The choice
dialog item mirrors the student�s language level� A language consists of several
independent settings� which are normally hidden from the student� Clicking on
the Show Details button enlarges the dialog� bringing a panel with all of the
language settings into view� Figure � shows the enlarged dialog�

The description of a language level consist of three parts� input syntax� safety
properties� and output syntax� The input syntax is speci�ed through the Case



Fig� �� DrScheme�s language con	guration dialog box �X version

Sensitive
 check box and a vocabulary� a set of syntactic forms� The four pre�
de�ned vocabularies are� Beginner� Intermediate� Advanced� and Quasi�R�RS�
Each vocabulary corresponds to a stage in Rice University�s introductory course�

Beginner includes de�nitions� conditionals and a large class of functional prim�
itives�

Intermediate extends Beginner with structure de�nitions and the local binding
constructs� local� let� let�� and letrec�

Advanced adds support for variable assignments� data mutations� as well as
implicit and explicit sequencing�

Quasi�R�RS subsumes the Scheme language ��� ��� ����

The �rst three blocks of the table in �gure � specify the exact syntactic content
of the various language levels� The last block describes other properties of the
four language levels�

The safety properties of DrScheme allow the student to choose between con�
formance with R�RS and more sensible error reporting� They can be speci�ed
with four check boxes�

� Allow improper lists
�

� Allow set� on unde�ned identi�ers
�

� Unmatched cond�case is an error
� and

� Signal unde�ned variables when �rst referenced
�



Beginner Intermediate Advanced Quasi�R�RS

de�ne
p p p p

lambda
p p p p

cond� if
p p p p

quote�d symbols
p p p p

de�ne�struct
p p p

local� let� let�� letrec p p p

delay� force
p p p

set�
p p

begin� begin�
p p

implicit begin
p p

named let� recur
p p

quote�d lists
p p

quasiquote
p p

unquote
p p

call�cc�let�cc
p p

when� unless
p p

if without else
p p

scheme primitives
p p p p

case sensitive
p p p p

sharing in values
p

Allow improper lists�
p

Allow set� on unde	ned identi	ers
p

Unmatched cond�case is an error�
p

Fig� 	� Language Level Quick Reference

When the Allow improper lists
 is unchecked� cons can only be used to construct
lists� its second argument must always be either null or a cons cell� The check box
Allow set� on unde�ned identi�ers
 controls whether set� creates a new name at
the top�level or signals an error for unbound identi�ers� If Unmatched cond�case
is an error
 is on� the implicit else clause in cond and case expressions signal a
run�time error� If it is o�� the implicit else clause returns a dummy value�

The Signal unde�ned variables when �rst referenced
 check box controls the lan�
guage�s behavior when evaluating potentially circular de�nitions� Scheme evalu�
ates recursive binding expressions by initializing all identi�ers being bound to a
special tag value� and then evaluating each de�nition and rebinding each iden�
ti�er� If the checkbox is on� an error is signaled when a variable still bound to
one of the tag values is evaluated� and if o�� errors are only signaled if the initial
value �ows into a primitive function�

The output syntax is determined by the Show sharing in values
 check box
and the Printing choice� When the Show sharing in values
 is on� all sharing
within data structures is displayed in the output� The Printing choice provides



three alternatives� constructor style� quasiquote style or R�RS style� Under con�
structor style� the list containing the numbers �� �� and � prints out as 
list �
� ��� Because it mirrors the input syntax for values� constructor style output
is useful for general programs and mandatory for pedagogic programming 
see
section ����� In contrast� quasiquote style is a compromise between the construc�
tor style output and the standard Scheme output style ���� Like the former� the
quasiquote�style output matches quasiquote input syntax� But� by dropping the
leading quasiquote� the output can also be used as program text� just like the
output of the standard Scheme printer�

��� Interactive Evaluation

Many functional languages support the interactive evaluation of expressions via a
read�eval�print loop 
repl�� Abstractly� a repl allows students to both construct
new programs and evaluate expressions in the context of a program�s de�nitions�
A typical repl implements those operations by prompting the students to input
programs fragments� The fragments are then evaluated� and their results are
printed�

Interactivity is primarily used for program exploration� the process of evaluat�
ing expressions in the context of a program to determine its behavior� Frequent
program exploration during development saves large amounts of conventional
debugging time� Programmers use interactive environments to test small com�
ponents of their programs and determine where their programs go wrong� They
also patch their programs with the repl in order to test potential improvements
or bug �xes by rebinding names at the top�level�

While interactive repls are superior to batch execution for program develop�
ment� they can introduce confusing bugs into programs� Since they allow ad�hoc
program construction� repls cause problems for the beginner and experienced
programmer alike� For example� a student who practices accumulator�style trans�
formations may try to transform the program


de�ne 
length l�

length�helper l ���


de�ne 
length�helper l n�

cond
�
null
 l� n�
�else 
length�helper 
cdr l� 
add� n�����

into a version that uses local de�nitions�


de�ne 
length l�

letrec 
�helper 
lambda 
l n�


cond
�
null
 l� n�
�else 
length�helper 
cdr l� 
add� n�������


helper l ����

Unfortunately� the student has forgotten to change one occurrence of length�
helper to helper � Instead of �agging an error when this program is run� the



traditional Scheme repl calls the old version of length�helper when length is
applied to a non�empty list� The new program has a bug� but the confusing
repl semantics hides the bug�

Similar but even more confusing bugs occur when students program with
higher�order functions� Consider the program�


de�ne 
make�adder n�

lambda 
m�

� m n���


de�ne add�� 
make�adder ����

A student will quickly discover the bug by experimenting with add�� � replace the
primitive � with � and reevaluate the de�nition of make�adder � Unfortunately�
the repl no longer re�ects the program� because add�� still refers to the old
value ofmake�adder � Consequently add�� will still exhibit the bug� confusing the
student� The problem is exacerbated when higher�order functions are combined
with state�

Experienced functional programmers have learned to avoid this problem by
using their repl in a batch�oriented fashion� They exit� restart and re�load a
program �le after each change� This action clears the state of the repl� which
eliminates bugs introduced by ghosts of old programs� Unfortunately� manually
restarting the environment is both time�consuming and error�prone�

DrScheme provides and enforces this batch�oriented style of interactive pro�
gram evaluation in a natural way� When the student is ready to test a program�
a click on the Execute button submits the program to the interactions window�
When the student clicks on Execute� the repl is set to its initial state and the
text from the de�nitions window is evaluated in the fresh environment� Thus� the
repl namespace exactly re�ects the program in the de�nitions window� Next�
the student evaluates test expressions in the repl� After discovering an error�
the student edits the de�nitions and executes the program again to test the new
de�nitions� In short� after every change to the program� the student starts the
program afresh� which eliminates the problems caused by traditional repls�

��� Error Reporting

A pedagogic programming environment must provide good run�time error re�
porting� it is crucial to a student�s learning experience� The programming en�
vironment must catch errors as soon as they occur and provide meaningful ex�
planations for them� The explanations must include the run�time values that
caused the errors as well as the source location of the misapplied primitives�

Traditional Scheme programming environments fail in this regard for two
reasons� First� with the exception of EdScheme ����� Scheme compilers and inter�
preters only implement a simplistic read�eval�print loop� If this repl is executed
in a plain command shell� it is impossible to relate errors to source locations in
general� The historical solution is to execute the repl in an Emacs bu�er� This



Fig� 
� DrScheme� with a run�time error highlighted �X Motif version

solution� however� does not truly integrate the repl and its editing environment�
so that the graphical capabilities of modern displays remain unexploited�

Second� Scheme�s macro facility ���� ��� tremendously complicates the map�
ping from a run�time error to its source location ���� Since Scheme�s macro lan�
guage allows arbitrary mappings on program text during compilation� preserving
the original source locations for pieces of program text is di�cult� For example�
Scheme�s let� macro expands to a sequence of nested let expressions� and those
let expressions then expand into lambda expressions� Other macros duplicate
or delete portions of source text�

DrScheme overcomes all three problems� The underlying Scheme implementa�
tion is safe and completely integrated into the editing environment� Furthermore�
the front�end of the Scheme implementation maintains a correlation between the
original program text and its macro�expanded version ����� This correlation al�
lows DrScheme to report the source location of run�time errors�

Consider the example in �gure �� The student has written an erroneous ver�
sion of length� When it is applied to 
list � � � � ��� it recurs down the list� and is
applied to null� The function then returns null� which �ows into the primitive ��
generating a run�time error� Then� the run�time error is caught by DrScheme�
and the source location of the misapplied primitive is highlighted� With a little
e�ort� any beginning student can now �x the bug�



� Tools

Thus far we have seen how DrScheme strati�es Scheme into pedagogically use�
ful pieces� improves the read�eval�print loop and provides better error report�
ing� This section focuses on the additional program understanding tools that
DrScheme provides�

��� Supporting Reduction Semantics� Printing and The Stepper

As discussed in section �� Rice University�s introductory course emphasizes the
connection between program execution and algebraic expression evaluation� Stu�
dents learn that program evaluation consists of a sequence of reductions that
transform an expression to a value in a context of de�nitions�

Unfortunately� traditional Scheme implementations do not reinforce that con�
nection ����� They typically use one syntax for values as input and a di�erent
syntax for values as output� For example the expression�


map add� 
list � � ���

evaluates to


� � ��

which gives students the mistaken impression that the original expression has
evaluated to an application of � to � and ��

DrScheme uses an output syntax for values called constructor syntax that
matches their input syntax� Constructor syntax treats the primitives cons�� vec�
tor� box� etc�� as constructors� Thus� when a value is printed the initial construc�
tor shows which subset contains the value�

So� in the the above example� DrScheme prints the value of�


map add� 
list � � ���

as


list � � ��

DrScheme�s printer produces the same syntax for the values that Scheme�s re�
duction semantics produces�

More importantly� DrScheme also includes a tool that enables students to
reduce a program to a value step by step� This symbolic stepper is based on
Felleisen and other�s work on reduction semantics for Scheme� and ML�like lan�
guages ��� ��� ��� and can deal with all the features used in Rice University�s
course� including the entire functional sub�language� structure de�nitions� vari�
able assignment� data structure mutation� exceptions� and other control mecha�
nisms�

A student invokes the stepper by choosing ToolsjStepper�� By default� the
stepper shows every reduction step of a program evaluation� While this is useful

� list is used as shorthand for consecutive conses ending in null

� The stepper is not available in DrScheme version ��




Fig� �� The stepper �X version

for a complete novice� a full reduction sequence contains too much information in
general� Hence the stepper permits the student to choose which reduction steps
are shown or which sub�expressions the stepper is to focus on� At each step� the
student can change these controls to view a more detailed reduction sequence�

The stepper window always displays the original program expression and
de�nitions together with the current state of the evaluation as a program 
see
�gure ��� For each step� the stepper explains its action before it proceeds� In the
�gure� it indicates that it is about to lookup length and replace it with its value�
If reduction rules for imperative language facilities require memory allocations�
they are introduced as global de�nitions� To focus students� attention� these
auxiliary de�nitions are hidden until mutated� Students may also choose to view
them at intermediate stops�

Students use the stepper for two purposes� First� they use it to understand
the meaning of new language features as they are introduced in the course� A
few sessions with the stepper illustrates the behavior of new language constructs
better than any blackboard explanation� Second� students use the stepper to �nd
bugs in small programs� The stepper stops when it encounters a run�time error
and permits students to move backwards through the reduction sequence� This
usage quickly explains the reasons for bugs and even suggests �xes�



Fig� �� DrScheme�s syntax checker �MacOS version

��� Syntax Checking

Beginning programmers need help understanding the syntactic and lexical struc�
ture of their programs� DrScheme provides a syntax checker that annotates the
source text of syntactically correct programs based on the syntactic and lexical
structure of the program� The syntax checker marks up the source text based on
�ve syntactic categories� primitives� keywords� bound variables� free variables�
and constants�

On demand� the syntax checker displays arrows that point from bound iden�
ti�ers to their binding occurrence� and from binding identi�ers to all of the their
bound occurrences� see �gure �� Since the checker processes the lexical structure
the program� it can also be used to ��rename bound identi�ers� If a student
checks a syntactically incorrect program� the �rst incorrect portion of the text
is highlighted� and an error message is printed�

��� Static Debugging

The most advanced DrScheme tool is MrSpidey� a static debugger ��� ���� which
subsumes the syntax checker� but is computationally far more expensive� It an�
alyzes the current program� using a new form of set�based analysis ���� ���� for
potential safety violations� That is� the tool infers constraints on the potential
value �ow in the Scheme program� similar to the equational constraints of a
Hindley�Milner type checker� and builds a value �ow graph for the program�
For each primitive� the static debugger determines whether or not the potential
argument values are legal inputs�

Based on the results of the analysis� the static debugger annotates the pro�
gram with font and color changes� Primitive operations that may be misapplied
are highlighted in red� and those that the static debugger can prove are always
correctly applied are highlighted in green� In print and on monochrome displays�
all primitives are boldfaced� and red primitives are underlined� On demand� the
static debugger annotates each program point with�



Fig� � MrSpidey� The static debugger �X version

� its inferred value set� and
� arrows describing the inferred �ow of values that produced the value set�

Using these mark�ups� a student can browse the invariants that approximate the
dynamic behavior of a program to identify which operations are not provably
safe� The student can evaluate the coverage of the set of program test cases� and
tune the program to improve the accuracy of the generated invariants�

For an illustration� consider the program in the top of �gure �� After the
static debugger completes its analysis� it opens a window containing the analyzed
program� with each primitive colored either red or green� In this example add�
is colored red� which indicates that the static debugger cannot prove that the
argument will always be a number� The student� using a pop�up menu� can
now display the value set of add��s argument� The static debugger responds by
inserting a box that contains the value set for the argument to the right of the
argument�s text as in the top of �gure �� This value set contains null� which is
why the static debugger concluded that add� may be misapplied� To see how
null can �ow into the argument of add�� the static debugger can also annotate
the program with an arrow pointing from the argument of add� to the source
of null� as in the bottom of �gure �� Since a recursive application of length can
trigger the �ow of null into add� 
as discussed in section ���� the static debugger



has given the student the information needed to uncover the bug�

� Related Work

DrScheme seamlessly integrates a number of ideas that are important for teach�
ing courses with functional languages� especially at the introductory level� well�
de�ned simple sub�languages� a syntax checker with lexical scope analysis� a
read�eval�print loop 
repl� with transparent semantics� precise run�time error
reporting� an algebraic printer� an algebraic stepper and a full��edged static
debugger� The restriction of the full language to a hierarchy of simpli�ed sub�
languages� the syntax checker� the algebraic stepper for full Scheme� the trans�
parent repl� and the static debugger are novel environment components that
no other programming environment provides�

In lieu of source locations for run�time errors� other Scheme implementations
provide tracers� stack browsers� and conventional breakpoint�oriented debuggers�
In our experience� these tools are too complex to help novice students� Worse�
they encourage students with prior experience in Pascal or C�� to fall back into
the tinker�until�it�works approach of traditional imperative program construc�
tion�

Other functional language environments provide some of the functionality of
DrScheme� Speci�cally� SMLNJ provides a repl similar to the one described
here for the module language of SML ��� ���� Unfortunately this is useless for
beginners� who mostly work with the core language� Also� CAML ����� ML�
Works ����� and SMLNJ ��� have good source reporting for run�time errors but�
due to the uni�cation�based type inference process� report type errors of pro�
grams at incorrect places and often display incomprehensible messages�

Commercial programming environments ��� ��� ��� for imperative program�
ming languages like C�� incorporate a good portion of the functionality found
in DrScheme� Their editors use on�line real�time syntax coloring algorithms� the
run�time environments trap segmentation faults and highlight their source loca�
tion� which is much less useful than catching safety violations but still superior
to stand�alone repls of Scheme and other functional languages� Indeed� their
debuggers serve as primitive repls� though with much less �exibility than the
repls that come with Scheme or SML� None of them� however� provides lan�
guage levels� full��edged algebraic printers� steppers� or static debuggers� which
we have found to be extremely useful for teaching purposes�

� User Experiences

All four of the professors who teach the introductory computer science course at
Rice University 
three of whom are independent of the development group� use
DrScheme for the course� DrScheme is used in the course on a weekly basis for
both the tutorials and the homework assignments� Also� the programming lan�
guages course at Rice uses DrScheme for the weekly programming assignments�



Unfortunately� we do not have any quantitative data for comparing DrScheme to
other programming environments� since all sections of the introductory course
and the programming languages course use DrScheme� Still� students who know
both Emacs�based Scheme environments and DrScheme typically prefer the lat�
ter�

We have also received enthusiastic reports from professors and teachers in
several countries of North America and Europe who use DrScheme in their
classes� Our announcement mailing list consists of nearly one hundred people
in academia and industry who use DrScheme and its application suite� We are
also aware of several commercial e�orts that are incorporating portions of our
suite into their products�

Most of the complaints about DrScheme fall into two categories� First� run�
ning DrScheme requires at least �� megabytes of memory on most operating sys�
tems and machines� If a machine has less than the required minimum� DrScheme
is extremely slow and may even crash� Second� since the development team only
uses a small subset of the supported platforms� small platform�dependent errors
can go undetected for some time� We expect to eliminate both problems with
future research�

� Conclusion

The poor quality of programming environments for functional languages dis�
tracts students from the study of computer science principles� The construction
of DrScheme overcomes these problems for Scheme�

Many aspects of DrScheme apply to functional languages other than Scheme�
Any functional language becomes more accessible to the beginner in an environ�
ment that provides several well�chosen language levels� a functional read�eval�
print loop� accurate source highlighting for run�time errors� and a stepping tool
that reinforces the algebraic view of computation� In addition� typed languages
can bene�t from graphical explanations of type errors like those of the static
debugger� In general� we hope that DrScheme�s success with students and teach�
ers around the world inspires others to build programming environments for
functional languages based on pedagogic considerations�

DrScheme is available on the web at http���www�cs�rice�edu�CS�PLT��

Acknowledgments

We greatly appreciate valuable feedback from R� Cartwright and D�P� Friedman
on early drafts of this paper�

References

�
 Abelson� H
� G
 J
 Sussman and J
 Sussman
 Structure and Interpretation of Com�
puter Programs
 MIT Press� ����


�
 AT�T Bell Labratories
 Standard ML of New Jersey� ����




�
 Blume� M
 Standard ML of New Jersey compilation manager
 Manual accompa�
nying SML�NJ software� ����


�
 Borland
 Borland C��� ����� ����

�
 Bourdoncle� F
 Abstract debugging of higher�order imperative languages
 In ACM

SIGPLAN Conference on Programming Language Design and Implementation�
pages ������ ����


�
 Cadence Research Systems
 Chez Scheme Reference Manual� ����

�
 Clinger� W
 and J
 Rees
 The revised� report on the algorithmic language Scheme


ACM Lisp Pointers� ���� July ����

�
 Dybvig� R
 K
� R
 Hieb and C
 Bruggeman
 Syntactic abstraction in Scheme
 Lisp

and Symbolic Computation� ������������ December ����

�
 Felleisen� M
 An extended ��calculus for Scheme
 In ACM Symposium on Lisp

and Functional Programming� pages ������ ����

��
 Felleisen� M
 On the expressive power of programming languages
 Science of

Computer Programming� ��������� ����

��
 Felleisen� M
 and R
 Hieb
 The revised report on the syntactic theories of sequential

control and state
 In Proceedings of Theoretical Computer Science� pages ��������
����


��
 Findler� R
 B
 and M
 Flatt
 PLT MrEd� Graphical toolbox manual
 Technical
Report TR������� Rice University� ����


��
 Flanagan� C
 and M
 Felleisen
 Componential set�based analysis
 In ACM SIG�
PLAN Conference on Programming Language Design and Implementation� ����


��
 Flanagan� C
� M
 Flatt� S
 Krishnamurthi� S
 Weirich and M
 Felleisen
 Catching
bugs in the web of program invariants
 In ACM SIGPLAN Conference on Pro�
gramming Language Design and Implementation� pages ������ May ����


��
 Flatt� M
 PLT MzScheme� Language manual
 Technical Report TR������� Rice
University� ����


��
 Francez� N
� S
 Goldenberg� R
 Y
 Pinter� M
 Tiomkin and S
 Tsur
 An environ�
ment for logic programming
 SIGPLAN Notices� ������������� July ����


��
 Hanson� C
� The MIT Scheme Team and A Cast of Thousands
 MIT Scheme
Reference� ����


��
 Harlequin Inc
 MLWorks� ����

��
 Harper� R
� P
 Lee� F
 Pfenning and E
 Rollins
 Incremental recompilation for

Standard ML of New Jersey
 Technical Report CMU�CS�������� Carnegie Mel�
lon University� ����


��
 Heintze� N
 Set based analysis of ML programs
 In ACM Symposium on Lisp and
Functional Programming� ����


��
 Hsiang� J
 and M
 Srivas
 A Prolog environment
 Technical Report ������� State
University of New York at Stony Brook� Stony Brook� New York� July ����


��
 Kohlbecker� E
 E
� D
 P
 Friedman� M
 Felleisen and B
 F
 Duba
 Hygienic macro
expansion
 In ACM Symposium on Lisp and Functional Programming� pages ����
���� ����


��
 Kohlbecker Jr� E
 E
 Syntactic Extensions in the Programming Language Lisp

PhD thesis� Indiana University� August ����


��
 Komorowski� H
 J
 and S
 Omori
 A model and an implementation of a logic pro�
gramming environment
 SIGPLAN Notices� ������������� July ����


��
 Koschmann� T
 and M
 W
 Evens
 Bridging the gap between object�oriented and
logic programming
 IEEE Software� �������� July ����


��
 Krishnamurthi� S
 Zodiac� A framework for building interactive programming
tools
 Technical Report TR������� Rice University� ����




��
 Lane� A
 Turbo Prolog revisited
 BYTE� �������������� October ����

��
 Leroy� X
 The Objective Caml system� documentation and user�s guide� ����

��
 Metrowerks
 CodeWarrior� ���������

��
 Microsoft
 Microsoft Developer Studio� ����

��
 Milner� R
� M
 Tofte and R
 Harper
 The De�nition of Standard ML
 MIT Press�

����

��
 Reid� R
 J
 First�course language for computer science majors
 Posting to

comp�edu� October ����

��
 EdScheme� A Modern Lisp� ����

��
 Schemer�s Inc
 and Terry Kaufman
 Scheme in colleges and high schools
 Available

on the web

URL� http���www�schemers�com�schools�html


��
 Stallman� R
 GNU Emacs Manual
 Free Software Foundation Inc
� ��� Mass
 Ave
�
Cambridge� MA ������ ����


��
 Texas Instruments
 PC Scheme User�s Guide � Language Reference Manual	
Student Edition� ����


��
 Wadler� P
 A critique of Abelson and Sussman� or� why calculating is better than
scheming
 SIGPLAN Notices� ����� March ����


This article was processed using the LATEX macro package with LLNCS style


