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A Programmable Programming Language

MATTHIAS FELLEISEN, ROBERT BRUCE FINDLER, MATTHEW FLATT, SHRIRAM KRISHNAMURTHI,
ELI BARZILAY, JAY MCCARTHY, SAM TOBIN-HOCHSTADT
In addition to libraries and packages, programmers develop and use em-
bedded problem-speci�c languages as building blocks of so�ware systems.
�ese languages help developers state solutions for the various aspects of the
problem in appropriate terms. Complete so�ware systems compose these
partial solutions into a coherent whole. Sadly, this form of work is conducted
without real support from the underlying programming language.

What this emerging development method calls out for, then, are program-
ming languages that make the creation and use of embedded languages as
convenient as the creation of libraries. Implementing this kind of program-
ming language has been the goal of our 20-year-old Racket project. �is
paper presents the state of the project and sketches how it will proceed.

CCS Concepts: •So�ware and its engineering→ Language types; Con-
text speci�c languages; Development frameworks and environments;
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1 PROBLEMS VS PROGRAMMING LANGUAGES
In the ideal world, so�ware developers ought to analyze each prob-
lem in the language of its domain and then articulate solutions
in matching terms. �ey could thus easily communicate with do-
main experts and separate problem-speci�c ideas from the details of
general-purpose languages and speci�c program design decisions.

In reality, however, programmers use a mainstream programming
language that someone else picked for them. To compensate for this
con�ict, they resort to—and on occasion build their own—domain-
speci�c languages embedded within the chosen language (eDSLs).
For example, JavaScript programmers employ j�ery for interacting
with the DOM and React for dealing with events and concurrency.
As developers solve their problems in appropriate eDSLs, they com-
pose these solutions into one system. In short, developers e�ectively
write multi-lingual so�ware in a common host language.1

Sadly, multi-lingual eDSL programming currently rests on an ad
hoc basis and is rather cumbersome. To create and deploy a lan-
guage, programmers must usually step outside the chosen language
to set up con�guration �les, run compilation tools, and link in the
resulting object-code �les. Worse, the host languages fail to sup-
port the proper and sound integration of components in di�erent

1�e numerous language-like libraries in scripting languages (JavaScript, Python,
and Ruby), books such as Fowler and Parson’s [20], and web sites such as Tomass-
e�i’s [tomassetti.me/resources-create-programming-languages/, last visited
May 21, 2017] are evidence for the desire of programmers to use and develop eDSLs.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 ACM. XXXX-XX/2017/0-ART0 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

eDSLs. Finally, most available IDEs do not even understand eDSLs
or perceive the presence of code wri�en in eDSLs.

�e goal of the Racket project is to explore this emerging idea of
language-oriented programming (LOP)

at two di�erent levels. At the practical level, our goal is to build
a programming language that enables language-oriented so�ware
design. �is language must facilitate the easy creation of eDSLs,
the immediate development of components in these newly created
languages, and the integration of components in distinct eDSLs.
At the conceptual level, the case for LOP is analogous to the

ones for object-oriented programming or for concurrency-oriented
programming [3]. �e former arose from making the creation and
manipulation of objects syntactically simple and dynamically cheap,
the la�er from Erlang’s inexpensive process creation and message
passing. Both of these innovations enabled new ways of developing
so�ware and triggered research projects. �e question is how we
will realize LOP and how this will a�ect the world of so�ware.

�e decision to develop a new language, Racket, is partly a his-
torical artifact and partly due to our desire to free ourselves from
any unnecessary constraints of industrial mainstream languages
while we investigate LOP. �e next section spells out how Racket
got started, how we honed in on LOP, and what this idea implies.

2 THE PRINCIPLES OF RACKET
�e Racket project dates back to January 1995, when we started
it as a language for experimenting with pedagogic programming
languages [15]. Working on these languages quickly taught us that
a language itself is a problem-solving tool. We then soon found
ourselves developing di�erent languages for di�erent parts of the
project: one (meta-) language for expressing many pedagogic lan-
guages; another one for specializing the DrRacket IDE [15]; and a
third for managing con�gurations. In the end, our so�ware was a
multi-lingual system—just as described in the introduction.

Racket’s guiding principle re�ects the insight we gained:
Empower programmers to create new programming
languages easily and to add them with a friction-free
process to a code base.

With “language” we mean a new syntax, a static semantics, and a
dynamic semantics, which usually maps the new syntax to elements
of the host language and possibly external languages via an FFI.
For a concrete example, take a look at �gure 1. It displays a dia-

gram of the architecture of a recently developed pair of scripting
languages for video editing [2].2 �eir purpose is to assist peo-
ple who turn recordings of conference presentations into YouTube
videos and channels. Most of their work is repetitive—adding pre-
ludes and postludes, concatenating playlists, and superimposing

2�e video language, including an overview of the implementation, is available as a
use-case artifact at ccs.neu.edu/racket/pubs/#icfp17-acf.
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0:2 • Felleisen et. al.

video typed/video

video/ffi turnstile

syntax-parse

racket

builds on

builds on builds on

builds on builds on

builds on builds on

extends

Fig. 1. LOP, a small example

audio—and only a small number of steps demand manual interven-
tion. �e task calls for a domain-speci�c scripting language, and
video is a declarative eDSL that meets this need.

�e typed/video language adds a type system to video. Clearly,
the domain of type systems comes with its own language of exper-
tise; typed/video’s implementation therefore uses turnstile [6],
an eDSL created for expressing type systems. Similarly, the im-
plementation of video’s rendering facility calls for bindings to a
multimedia framework. Ours separates the binding de�nitions and
the repetitive details of FFI calls into two parts: an eDSL for multime-
dia FFIs, dubbed video/ffi, and a single program in it. Finally, in
support of creating all these eDSLs, Racket comes with the syntax-
parse eDSL [7], which targets the domain of eDSL creation.
�e LOP principle implies two subsidiary guidelines:
(1) Enable creators of a language to enforce its invariants.

A programming language is an abstraction, and abstrac-
tions are about integrity. Java, for example, comes with
memory safety and type soundness. When a program con-
sists of pieces in di�erent languages, values �ow from one
context into another and need protection from operations
that might violate their integrity. See section 4.

(2) Turn extra-linguistic mechanisms into linguistic constructs.
A LOP programmer who resorts to extra-linguistic mecha-
nisms e�ectively acknowledges that the chosen language
lacks expressive power [13].3 �e numerous external lan-
guages required to deal with Java projects—a con�gura-
tion language, a project description language, a make�le
language—represent symptoms of this problem. We treat
such gaps as challenges. See section 5.

�ese principles have been developed in a feedback loop that in-
cludes DrRacket [15] plus typed [36], lazy [4], and pedagogical
languages [15].

3 LIBRARIES AND LANGUAGES RECONCILED
Racket is an heir to Lisp and Scheme. Unlike its ancestors, Racket
emphasizes functional over imperative programming without en-
forcing an ideology. Racket is agnostic when it comes to surface

3Like many Programming Language researchers, we subscribe to a weak form of the
Sapir-Whorf hypothesis.

syntax, accommodating even conventional variants such as Algol
60.4 Like many languages, Racket comes with “ba�eries included.”

Most distinctively, Racket eliminates the hard boundary between
library and language, overcoming a seemingly intractable con�ict.
In practice, this means new linguistic constructs are as seamlessly
imported as functions and classes from libraries and packages. For
example, Racket’s class system and for loops are imports from plain
libraries, yet most programmers use these constructs without ever
noticing their nature as user-de�ned concepts.
Racket’s key innovation is a modular syntax system [17, 26], an

improvement of Scheme’s macro system [11, 24, 25], which in turn
improves on Lisp’s tree-transformation system. A Racket module
provides services such as functions, classes, and linguistic con-
structs. To implement these services, a module may require the
services of other modules. In this world of modules, creating a new
language simply means creating a module that provides the services
for a language. Such a module may subtract linguistic constructs
from a base language, re-interpret some others, and add a few new
ones. A language is rarely built from scratch.
Like Unix shell scripts, which specify their dialect on the �rst

line, every Racket module speci�es its language on the �rst line, too.
�is language speci�cation refers to a �le that contains a language-
de�ning module. Creating this �le is all it takes to install a language.
Practically speaking, a programmer may develop a language in one
tab of the IDE, while another tab may be a module wri�en in the
language of the �rst. Without ever leaving the IDE to run compilers,
linkers, or any other tools, the developer can modify the language
implementation in the �rst tab and immediately experience this
modi�cation in the second. In short, language development is a
friction-free process in Racket.

In the world of shell scripts, the �rst-line convention eventually
opened the door to a slew of alternatives to shells: Perl, Python,
Ruby, etc. �e Racket world is experiencing a similar phenome-
non, with language libraries proliferating within its eco-system:
racket/base, the Racket core language; racket, the “ba�eries in-
cluded” variant; and typed/racket, a typed variant. Some lesser-
known examples are datalog and a web-server language [27, 30].
When precision is needed, we use the lower-case name of the lan-
guage in typewriter font; otherwise we use just “Racket.”

#lang racket/base demo

(provide
;; type MaxPath = [Listof Edge]
;; Natural -> MaxPath
walk-simplex)

(require "constraints" graph)

;; Natural -> MaxPath
(define (walk-simplex timing)
· · · (maximizer #:x 2) · · · )

Fig. 2. A plain Racket module

4See docs.racket-lang.org/algol60/ [last visited May 24, 2017] as well as
hashcollision.org/brainfudge [last visited Feb 6, 2017], which shows how Racket
copes with obscure syntax.
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A Programmable Programming Language • 0:3

Figure 2 is an illustrative module. Its �rst line—pronounced “hash
lang racket base”—says that it is wri�en in racket/base. �e mod-
ule provides a single function, walk-simplex. �e accompanying
line comments—introduced via semicolons—informally state a type
de�nition and a function signature in terms of this type de�nition;
�gure 5 shows how developers can use typed/racket to replace
such comments with statically checked types. To implement this
function, the module imports functionality from the "constraints"
module in �gure 3. �e last three lines of �gure 2 sketch the de�ni-
tion of the walk-simplex function, which refers to the maximizer
function imported from "constraints".

�e "constraints" module in �gure 3 expresses the implemen-
tation of its only service in a domain-speci�c language because
it deals with simplexes, which are naturally expressed with a sys-
tem of inequalities. �e module’s simplex language inherits the
line-comment syntax from racket/base but uses in�x syntax other-
wise. As the comments state, the module exports a single function,
maximizer, which consumes two optional keyword parameters.
When called as (maximizer #:x n)—as in �gure 2—it produces
the maximal y value of the system of constraints. As the lower half
of �gure 3 shows, these constraints are speci�ed with conventional
syntax.

#lang simplex constraints

;; implicitly provides synthesized function maximizer:
;; #:x Real -> Real
;; #:y Real -> Real

#:variables x y

3 * x + 5 * y <= 10
3 * x - 5 * y <= 20

Fig. 3. A module for describing a simplex shape

In support of this kind of programming, Racket’s modular syn-
tax system bene�ts from several key innovations. A particularly
illustrative one is the ability to incrementally re-de�ne the meaning
of existing language constructs via the module system. �is ability
allows eDSL creators to ease their users into a new language by
reusing familiar syntax, re-interpreted.
Take lambda expressions, for example. Suppose a developer

wishes to equip a scripting language such as video with functions
that check whether their arguments satisfy speci�ed predicates.
Figure 4 shows the basic idea:
line 01 �e module uses the racket language.
line 03 It exports a de�ned compile-time function, new-lambda,

under the name lambda, which is overlined to mark its
origin as this module.

line 05 Here the module imports tools from a library for creating
robust compile-time functions conveniently [7].

line 07 �e comment says a function on syntax trees follows.
line 08 While (define (f x) . . . ) introduces an ordinary

function f of x, (define-syntax (c stx) . . . ) creates
the compile-time function c whose single argument is stx.

01 #lang racket new-lam

02
03 (provide (rename-out [new-lambda lambda]))
04
05 (require (for-syntax syntax/parse))
06 ...
07 ;; Syntax -> Syntax
08 (define-syntax (new-lambda stx)
09 (syntax-parse stx
10 [(new-lambda (x:id (˜literal ::) predicate:id) body:expr)
11 (syntax
12 (lambda (x)
13 (unless (predicate x)
14 (define name (object-name predicate))
15 (error 'lambda "˜a expected, given: ˜e" name x))
16 body))]))
17 ...

Fig. 4. lambda, re-defined

line 09 Likemany functional languages, Racket comeswith pa�ern-
matching constructs. �is one uses syntax-parse from
the above-mentioned library. Its �rst piece speci�es the
to-be-matched tree (stx); the remainder speci�es a series
of pa�ern-responses clauses.

line 10 �is pa�ern matches any syntax tree whose �rst token is
new-lambda followed by a parameter speci�cation and a
body. �e annotation :id demands that the pa�ern vari-
ables x and predicatematch only identi�ers in the respec-
tive positions. Similarly, :expr allows only expressions to
match the body pa�ern variable.

line 11 A compile-time function synthesizes new treeswith syntax.
line 12 �e generated syntax tree is a lambda expression. Speci�-

cally, the function generates an expression that uses lambda.
�e underline marks its origin as the ambient language:
here, racket.

others Wherever the syntax system encounters the pa�ern vari-
ables x, predicate, and body, it inserts the respective sub-
trees that match x, predicate, and body.

When another module uses "new-lam" as its language, the com-
piler elaborates the surface syntax into the core language like this:
(lambda (x :: integer?) (+ x 1))
–elaborates to−→ (lambda (x :: integer?) (+ x 1))
–elaborates to−→ (new-lambda (x :: integer?) (+ x 1))
–elaborates to−→ (lambda (x)

(unless (integer? x)
<elided error reporting>)

(+ x 1))

�e �rst elaboration step resolves lambda to its imported mean-
ing [18], which is lambda. �e second one reverses the “rename on
export” instruction. Finally, the new-lambda compile-time function
translates the given syntax tree into a racket function.

In essence, �gure 4 implements a simplistic pre-condition system
for one-argument functions. Next, the language developer might
wish to introduce multi-argument lambda expressions, add a po-
sition for specifying the post-condition, or make the annotations

, Vol. 0, No. 0, Article 0. Publication date: 2017.
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0:4 • Felleisen et. al.

optional. Naturally, the compile-time functions could then be modi-
�ed to check some or all of these annotations statically, eventually
resulting in a language that resembles typed/racket.

4 SOUND COOPERATION BETWEEN LANGUAGES
A LOP-based so�ware system consists of multiple, cooperating com-
ponents, each wri�en in domain-speci�c languages. Cooperation
means that the components exchange values, while “multiple lan-
guages” implies that these values are created in distinct languages.
In this se�ing things can easily go wrong, as �gure 5 demonstrates
with a toy scenario. On the le�, a module wri�en in typed/racket
exports a numeric di�erentiation function. On the right, a mod-
ule wri�en in racket imports this function and applies it in three
di�erent ways, all illegal. If such illegal uses of the function were
to go undiscovered, developers would not be able to rely on type
information for designing functions or for debugging, nor could
compilers rely on them for optimizations. In general, cooperating
multi-lingual components must respect the invariants that each
participating language establishes.

#lang typed/racket TR

(provide diff)

(: diff
((Real -> Real)
->
(Real -> Real)))

(define (diff f)
(lambda (x)
(define lo (f (- x eps)))
(define hi (f (+ x eps)))
(/ (- hi lo)

(* 2 eps))))

#lang racket RR

(require "TR.rkt")

;; scenario 1
(diff 1)
;; scenario 2
(define (f-bool x)

#true)
(diff f-bool)
;; scenario 3
(define (f-char x)

(string x x))
(diff f-str)

Fig. 5. Protecting invariants

In the real world, programming languages satisfy a spectrum
of guarantees about invariants. For example, C++ is unsound. A
running C++ program may apply any operation to any bit pa�ern
and, as long as the hardware does not object, the program execution
continues. �e program may even terminate “normally,” printing
all kinds of output a�er the misinterpretation of the bits. By con-
trast, Java does not allow the misrepresentation of bits; but it is
only somewhat more sound than C++ [1]. ML improves on Java
again and is completely sound; no value is ever manipulated by any
inappropriate operation.
Racket aims to mirror this spectrum of soundness at two lev-

els: the level of language implementation itself and the level of
cooperation between two components wri�en in di�erent embed-
ded languages. Consider the soundness of languages �rst. As the
literature on domain-speci�c languages suggests [20], these lan-
guages normally evolve in a particular manner, and this is true
for the Racket world, too. A �rst implementation is o�en a thin
veneer over an e�cient C-level API. Racket developers create this
kind of veneer with a foreign interface that allows parenthesized
C-level programming [5]. Programmers can refer to a C library,

import functions and data structures, and wrap these imports in
Racket values. Figure 6 illustrates the idea with the sketch of a mod-
ule; video’s initial implementation consisted of just such a set of

racket/base
with ffi/unsafe

racket/base

racket/base
with contracts

typed/racket

������

������

������

bindings to a video-rendering framework.
Of course, when a racket/basemodule im-
ports the ffi/unsafe library, the language
of the module is unsound.

A language developer that starts with the
unsound eDSL is likely to make it sound as
the second step. To this end, the language
is equipped with run-time checks similar to
those found in dynamically typed scripting
languages to prevent the �ow of bad values
to unsound primitives. Unfortunately, this
form of protection is ad hoc, and unless de-

velopers are hyper-sensitive, the error messages may originate from
inside the library, blaming some racket/base primitive operation.
To address this form of problem, Racket comes with higher-order
contracts [16]. With those, language developers may uniformly
protect the API of a library from bad values. For example, the
video/ffi language provides language constructs for making the
bindings to the video-rendering framework safe. In addition to plain
logical assertions, Racket’s developers are also experimenting with
contracts for checking protocols, especially temporal ones [9]. �e
built-in blame mechanism of the contract library ensures sound
blame assignment [10].
Finally, a language developer may wish to check some logical

invariants before the programs run. Checking simple types is one
particular example, but checking other forms of types is also possible.
�e typed/video language illustrates this point with a type system
that checks the input and output types of functions and also numeric
constraints on the integer arguments; as a result, no script can
possibly render a video of negative length. Similarly, typed/racket
is a typed variant of (most of) racket.

#lang racket/base ffi

(provide
;; [Vectorof [Vectorof Real]] -> [Vectorof Real]
simplex)

(require ffi/unsafe)

(define (simplex M)
· · · (ffi-simplex-set · · · ) · · · )

(define lib-simplex (ffi-lib "./coin-Clp/lib/libClp"))

(define ffi-simplex-set
(get-ffi-obj "simplex" lib-simplex (_fun _bytes -> _void)))

Fig. 6. A Racket module using the foreign-function interface

Now consider the soundness of cooperating languages. As be-
fore, it is up to the language developer to anticipate how programs
in this language interact with others. For example, the creator of
typed/video provides no protection for its programs. By contrast,
the creators of typed/racket intended the language to be used

, Vol. 0, No. 0, Article 0. Publication date: 2017.
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A Programmable Programming Language • 0:5

in a multi-lingual context. �erefore typed/racket compiles the
types of exported functions into the above-mentioned higher-order
contracts. When, for example, an exported function must always
be applied to integer values, the generated contract inserts a check
that ensures the “integerness” of the argument at every application
site for this function; there is no need to insert such a check for
the function’s return points, because the function is statically type
checked. For a function that consumes an integer-valued function,
the contract must ensure that the function argument always re-
turns an integer. In general, a contract wraps exported values with
a proxy [31] that controls access to the value. �e idea is due to
Ma�hews and Findler [29], while Tobin-Hochstadt and Felleisen’s
Blame �eorem [35] shows that if something goes wrong with such
a mixed system, the run-time exception points to two faulty compo-
nents and their boundary as the provable source of the problem [10].
In general, Racket supplies a range of protection mechanisms, and
a language creator can use these mechanisms to implement a range
of soundness guarantees for cooperating eDSLs.

5 UNIVERSALITY VS EXPRESSIVENESS
Just because a general purpose language can compute all partial-
recursive functions, programmers cannot necessarily express all
their ideas about programs in this language [13]. �is point is best
illustrated with an example. Imagine the problem of building an IDE
for a new programming language in the very same language. Like
any modern IDE, it is supposed to enable users to compile and run
their code. If the code goes into an in�nite loop, the user must be
able to terminate it with a mouse click. To implement this capability
in a natural5 manner, the language must internalize the idea of a
controllable process, a thread. If it does not, the implementor of the
IDE must step outside the language and somehow re-use processes
from the underlying operating system.
For a programming language researcher, “stepping outside the

language” signals a failure. Or, as Dan Ingalls [21] phrases it, “[an]
operating system is a collection of things that don’t �t into a lan-
guage[; there] shouldn’t be one.” Hence, we have worked to identify
services that Racket borrows from the surrounding operating sys-
tem and to assimilate such extra-linguistic mechanisms into the
language itself [19]. Here are three sample constructs for which
programmers used to step outside of Racket but no longer need to:

sandboxes: which restrict access to resources;
inspectors: which control re�ective capabilities;
custodians: which manage resources (e.g., threads, sockets).

To understand how the inclusion of such services helps language
designers, let us turn to a recent example, the shill language [32].
Roughly speaking, shill is a secure scripting language in Racket’s
eco-system. With shill, a developer articulates �ne-grained secu-
rity and resource policies—say, which �les a function may access
or which binaries the script may run—and the language ensures
that these constraints are satis�ed. To make this concrete, consider
a homework server to which students can submit programs. �e
instructor might wish to run an auto-grade process for all the sub-
missions. Using a shill script, the homework server can execute

5An alternative is to rewrite the entire program before handing it to the given compiler,
which is exactly what distinguishes “expressiveness” from “universality.”

student programs that cannot successfully a�ack the server, poke
around in the �le system for solutions, access external connections
to steal other students’ solutions, and so on. Naturally, shill’s
implementation makes extensive use of Racket’s means for running
code in sandboxes and harvesting resources via custodians.

6 THE STATE OF AFFAIRS
�e preceding sections explain how Racket enables programmers

(1) to create languages via linguistic reuse for speci�c tasks
and aspects of a problem;

(2) to equip a language with almost any conventional level
of soundness (as found in ordinary language implementa-
tions); and

(3) to exploit a variety of internalized operating-system ser-
vices for the construction of run-time libraries for these
embedded languages.

What makes this form of language-oriented programming work is
incrementality. If conventional syntax is not a concern, developers
can create new languages from old ones, one construct at a time.
Similarly, they do not have to deliver a sound and secure product
all at once. �ey can create a new language as a wrapper around an
existing C-level library, gradually tease out more of the language
from the interface, and make the language as sound or secure as
time permits or a growing user based demands.
Furthermore, the entire process takes place within the Racket

eco-system. A developer creates a language as a Racket module
and installs it by “importing” it into another module. �is tight
coupling has two implications. First, the development tools of the
eco-system can be used for the creation of language modules and
their clients. Second, the language becomes available for creating
more languages. Large projects o�en employ a tower involving a
few dozen languages—all of which helps manage the huge degree
of complexity in modern so�ware systems.
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Fig. 7. A sketch of an industrial example

Sony’sNaughty Dog game studio has created such a large project—
actually, a framework for creating projects. Roughly speaking, their
Racket-based architecture provides languages for describing scenes,
transitions between scenes, the scores for scenes, and so on. Domain
specialists use these languages to describe pieces of a game. �e
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Racket implementation composes these domain-speci�c programs
and then compiles them into dynamically linked libraries for a C-
based game engine. Figure 7 sketches the arrangement graphically.
Racket’s approach to language-oriented programming is by no

means perfect. To start with, recognizing when a library should
become a language requires a tasteful judgment call. �e next steps
require good choices in terms of linguistic constructs, syntax, and
run-time primitives.
As for concrete syntax, Racket currently has strong support for

the typical, incremental Lisp-style syntax development. It comes
with merely traditional support for conventional syntax, i.e., gener-
ating lexers and parsers. While traditional parsing introduces the
above-mentioned natural separation between surface syntax and
meaning, it also means that the development process is no longer
incremental. �e proper solution would be to inject Racket ideas
into a context where conventional syntax is the default.6

As for static checking, Racket currently forces language designers
to develop such checkers wholesale, not on an incremental basis. �e
type checker for typed/racket, for example, looks like the type
checker for any conventionally typed language; it is a complete
recursive-descent algorithm that traverses the module’s representa-
tion and algebraically checks types. What Racket developers really
want is a way to a�ach type checking rules to linguistic constructs,
so that such algorithms can be synthesized as needed.

Chang et al.’s recent work is probably a �rst step toward a solution
of this problem [6]. �us far, they have demonstrated how their
approach can equip a DSL with any structural type system in an
incremental and modular manner. A fully general solution will also
have to cope with sub-structural type systems, such as Rust’s, and
static program analyses, such as those found in most compilers.

As for dynamic checking, Racket su�ers from two problems. On
one hand, it provides the building blocks for making language coop-
eration sound, but developers must create the necessary soundness
harnesses on an ad hoc basis. To facilitate the composition of compo-
nents in di�erent languages, we need both a theoretical framework
and abstractions for the partial automation of this task.
On the other hand, the available spectrum of soundness mecha-

nisms lacks power at both ends, and how to integrate these pow-
ers seamlessly is unclear. To achieve full control over its context,
Racket probably needs access to assembly languages on all possible
platforms—from hardware to browsers. To realize the full power
of types, typed/racket will have to be equipped with dependent
types. For example, when a Racket program uses vectors, its corre-
sponding typed variant type-checks what goes into these vectors
and what comes out, but like ML or Haskell, indexing is le� to a
(contractual) check in the run-time system. Tobin-Hochstadt and
his Typed Racket group are currently working on �rst steps in this
direction, focusing on numeric constraints [23], similar to Xi and
Pfenning’s work [37].
As for security, the Racket project calls for a signi�cant break-

through. While the shill team was able to construct the language
6Language workbenches, such as Spoofax [22], deal with conventional syntax for
DSLs but do not support the incremental modi�cation of existing languages. A recent
report [12] suggests, however, that these tool chains are also converging toward the
idea of language creation as language modi�cation. We conjecture that, given su�cient
time, the development of Racket and language workbenches will arrive at similar
designs and the la�er will then support DSL integration, too.

inside the Racket eco-system, their work exposed serious gaps be-
tween Racket’s principle of language-oriented programming and its
approach to enforcing security policies. �e team had to alter many
of Racket’s security mechanisms and invent new ones. Clearly,
Racket must make this step much easier, meaning more research is
needed to turn security into an integral part of language creation.
Finally, LOP poses brand new challenges for tool builders. An

IDE typically provides tools for a single programming language
or a family of related languages, among them debuggers, tracers,
and pro�lers. Good tools communicate with developers on the
terms of the source language. By its very nature, LOP calls for
customization of such tools to many languages, their abstractions,
and their invariants. We have partially succeeded in building a tool
for debugging programs in the syntax language [8]; we have the
foundations of a debugging framework[28]; and we have started to
explore how to infer scoping rule and high-level semantics for newly
introduced, language-level abstractions [33, 34]. Customizing such
tools automatically to newly created (combinations of) languages
remains a wide-open challenge.
In sum, programming language research has stopped short of

the ultimate goal, namely, to provide so�ware developers with
tools to formulate solutions in the languages of problem domains.
Racket is one a�empt to continue the search for proper linguistic
abstractions. While the project has achieved remarkable success in
this direction, it also shows that programming language research
has many problems to solve before the vision of language-oriented
programming becomes reality.
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