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This paper documents a year-long experiment to “pro�le” the process of learning a programming language:

gathering data to understand what makes a language hard to learn, and using that data to improve the learning

process. We added interactive quizzes to The Rust Programming Language, the o�cial textbook for learning

Rust. Over 13 months, 62,526 readers answered questions 1,140,202 times. First, we analyze the trajectories of

readers. We �nd that many readers drop-out of the book early when faced with di�cult language concepts

like Rust’s ownership types. Second, we use classical test theory and item response theory to analyze the

characteristics of quiz questions. We �nd that better questions are more conceptual in nature, such as asking

why a program does not compile vs. whether a program compiles. Third, we performed 12 interventions into

the book to help readers with di�cult questions. We �nd that on average, interventions improved quiz scores

on the targeted questions by +20%. Fourth, we show that our technique can likely generalize to languages

with smaller user bases by simulating our statistical inferences on small # . These results demonstrate that

quizzes are a simple and useful technique for understanding language learning at all scales.
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1 INTRODUCTION

Teaching prospective users is an inescapable part of programming language adoption. Yet, teaching
a �� is more art than science. �� learning resources are designed based on the intuitions of their
authors. Feedback on these resources only comes at the macro-scale, such as whether programmers
end up successfully adopting a language. This disconnect is becoming more salient as the learning
curves for modern languages grow ever steeper. For instance, user surveys within the communities
of OCaml [OCaml Software Foundation 2022], Haskell [Fausak 2022], Rust [The Rust Survey Team
2020], Scala [Scala Center Team 2022], Clojure [Randolph 2022], and even Go [Merrick 2023] all
report that the language’s learning curve is a signi�cant problem for the language’s users.

Heeding the call of Meyerovich and Rabkin [2013] to build a scienti�c foundation for “socio-���,”
we set out to gather data about how people learn a new programming language, and to develop a
generalizable methodology for improving �� learning resources. This paper reports on a year-long
experiment to pro�le the process of �� learning within an online textbook. We use “pro�le” in the
same sense as performance pro�ling for software — our goal was to gather �ne-grained data to help
identify “hot-spots” where learners are struggling. Concretely, we studied The Rust Programming
Language (����) [Klabnik and Nichols 2022], the o�cial textbook for learning Rust. We chose to

Authors’ address: Will Crichton; Shriram Krishnamurthi, Department of Computer Science, Brown University, Providence,

Rhode Island, 02912, USA, wcrichto@brown.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART95

https://doi.org/10.1145/3649812

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 95. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8639-6541
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://doi.org/10.1145/3649812
https://orcid.org/0000-0001-8639-6541
https://orcid.org/0000-0001-5184-1975
https://doi.org/10.1145/3649812


95:2 Will Crichton and Shriram Krishnamurthi

study Rust both because the Rust community has been exceptionally open to facilitating educational
research, and because many people were seeking to learn Rust in 2022-23.

The central idea of the experiment is to add interactive quizzes to each chapter of ����, a total of
221 questions. The quizzes acted as pro�ling probes that gathered data about individual challenges
faced by learners. From September 2022 to October 2023, we gathered 1,140,202 answers from
62,526+ participants. The contribution of this paper is analyzing this data to answer four questions:

RQ1. What kinds of trajectories do readers take through the book? (Section 3.1)
We �nd that the vast majority of readers do not reach the end of the book, consistent with data
from ����s. We also �nd that di�cult language concepts in early chapters (speci�cally, ownership
in the case of Rust) serve as a common drop-out point for many readers.

RQ2. What are the characteristics of a high-quality PL quiz question? (Sections 3.2 and 3.3)
We use both classical test theory (Section 3.2) and item response theory (Section 3.3) to model the
di�culty and discrimination of each question. We �nd that the most discriminative questions focus
on conceptual understanding over syntax or rote rules. In particular, questions about discerning
well-typed vs. ill-typed programs were often not discriminative.

RQ3. How can a learning pro�le be used to improve a PL learning resource? (Section 4)
We used ����’s learning pro�le to identify di�cult questions, and then we created 12 interventions
(small edits to the book) to help readers based on our theory of their misconceptions. We evaluated
these interventions by comparing question scores before and after each intervention, �nding that
10/12 interventions had a statistically signi�cant e�ect with an average improvement of +20%.

RQ4. How applicable is this methodology to languages with smaller user bases? (Section 5)
We test whether the quizzing methodology could work with languages that have user bases smaller
than Rust’s. We use random sampling and power analysis to simulate the above analyses for smaller
# . We �nd that estimating reader drop-o�, question characteristics, and intervention e�cacy have
relatively low error around # = 100, while estimating question discrimination requires larger # .

We �rst describe our experiment design (Section 2), and then analyze each ��. We discuss threats
to validity (Section 6), related work (Section 7), and implications for future research (Section 8).

2 EXPERIMENT DESIGN

To begin, we will describe the general setup of the learning platform used in the experiment.

2.1 Design Goals

Our general goal in the experiment was to identify patterns in how people learn a new programming
language, and to use these patterns to improve the learning process. This general goal was guided by
three design goals. These design goals are con�icting in several ways, so our experiment represents
one point in a broader trade-o� space of experimental designs. The goals are:

• Richness of data: the experiment should generate data that provides a depth of understanding
about the learning process, so as to improve the quality of the insights. For example, we consider
that only tracking the time a learner spends on a given task would be insu�ciently rich data.

• Scale of participation: the experiment should include as many participants as possible from
a wide range of backgrounds, so as to make the results more statistically robust and more
likely to re�ect general trends than niche patterns. For example, we consider that analyzing a
classroom of students at one university would be an insu�ciently large scale of participation.
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• Simplicity of infrastructure: the setup for the experiment should require as little cost and
complexity as possible, to help authors of other learning resources replicate our methodol-
ogy. For example, methods that require expensive servers or complex backends would be
insu�ciently simple.

One immediate consequence of these goals is that they rule out methods which require compen-
sation for participants. Compensation is neither scalable on an academic budget, nor is it logistically
simple to disburse to a global audience. Instead, we sought to �nd an experiment design which
would intrinsically motivate people to participate.

2.2 Selecting a Learning Environment

The foundation for the experiment is a programming language learning environment, or a place
where language learning regularly occurs such that we can study the process. To maximize scale of
participation, we looked for widely-used web-based learning environments. As of 2023, surveys sug-
gest that online textbooks are the most popular long-form learning resource for developers [JetBrains
2022; Stack Over�ow 2023], so it is a natural environment for study. We chose to study The Rust
Programming Language (����) [Klabnik and Nichols 2022], the o�cial textbook for learning Rust.
Rust is an up-and-coming language for safe systems programming, and Rust is an especially good
candidate for study because its learning curve has been consistently reported as a major barrier for
adoption [Fulton et al. 2021; The Rust Survey Team 2020; Zeng and Crichton 2019; Zhu et al. 2022].
���� consists of 20 chapters that cover Rust from the basics (variables, control �ow) to interme-

diate topics (ownership, traits) to advanced topics (macros, unsafe code). ���� is oriented at readers
with some programming experience — the book “assumes that you’ve written code in another
programming language but doesn’t make any assumptions about which one” [2022, Introduction].
���� is an open-source textbook written in Markdown using the mdBook framework. mdBook

converts Markdown chapters into ���� �les linked by a shared table of contents, similar to
tools such as Sphinx and Scribble. mdBook is also used by other textbooks such as Theorem
Proving in Lean 4 [Avigad et al. 2023] and Comprehensive Rust [Google 2023]. We forked the GitHub
repository for ���� on October 22, 2022 and set up a web page hosting our forked version at the
���: https://rust-book.cs.brown.edu/. Because mdBook does not require a backend service (unlike
e.g., a ���� platform), we only needed to �nd a ��� to distribute the static �les generated by
mdBook. We chose to use GitHub Pages because it is both robust and free of charge as of 2023.

2.3 Adding�iz�estions

The baseline ���� environment does not provide any data on a reader’s learning process, so we
needed to enrich the environment with learning probes. We decided to add frequent, short quizzes
throughout the textbook. Figure 1b shows an example quiz question as it appears in our ����
fork. Quiz questions satisfy each of our design goals: questions provide rich data through content-
tailored probes of a reader’s knowledge. Questions incentivize participation for readers who seek
an interactive learning experience. And questions are simple to write and deploy at scale.

We designed both the quiz questions and the quizzing tool from scratch for this experiment. Of
course, our quiz questions are similar to what any experienced educator might think to create, and
our tool is in part just a reimplementation of a standard quizzing interface. But we still want to
highlight some key ways in which the questions and the tool relate to our design goals.

2.3.1 �iz questions. The core of our experimental materials is the set of 88 quizzes consisting of
213 questions that we wrote for ����. We added at least one quiz to every section (i.e., standalone
web page) of ����, except for sections that were extremely short (e.g., Section 3.4 “Comments”) or
sections that were intended as worked examples rather than introduction of new material (e.g.,
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[[questions]]

id = �1665d1ef-961f-4451-a988-ec46121531f9�

type = �MultipleChoice�

prompt.prompt = ���

Which call to �find_until� function will

cause a runtime panic?

���

fn find_until(

v: &Vec<i32>, n: i32, til: usize

) -> Option<usize> {

for i in 0 .. til {

if v[i] == n {

return Some(i);

}

}

return None;

}

���

���

answer.answer =

��find_until(&vec![1, 2, 3], 4, 4)��

prompt.distractors = [

��find_until(&vec![1, 2, 3], 0, 0)��,

��find_until(&vec![1, 2, 3], 3, 3)��,

��find_until(&vec![1, 2, 3], 1, 4)��

]

context = ���

If �til = 4�, then for a vector of length 3,

the for-loop will attempt to index the vector

with �i = 3�, which is out of bounds. This

function does not panic if �n = 1� because

it returns before reaching the out-of-bounds

index.

���

(a) The TOML format for authoring questions.
Metadata like id is used for telemetry.

(b) The answer review screen shown to readers a�er at-
tempting to answer a question.

Fig. 1. An example question about vectors and bounds-checking. 83% of readers answer this question correctly.

Section 2 “Programming a Guessing Game”). The questions were evenly spread throughout the
book, with an average of 2.4 questions per quiz. The �rst author wrote all questions, and we estimate
that the authoring process took roughly 50 person-hours of e�ort.

The questions can be decomposed along three dimensions: format (the structure of a question),
complexity (the number of steps in solving a question), and content (what a question is about).

Format. We chose to only use close-ended questions so readers could get immediate feedback on
their answers, providing additional incentive to participate in the experiment. (Future work may
consider either crowd-sourcing or machine learning for evaluation of open-ended responses, but
that is outside the scope of the present work.) Speci�cally, we used three question types:

• Multiple choice: A question with one correct answer and multiple incorrect answers, or
distractors. Readers select one answer from a list of all options. The order of options is ran-
domized by default. mdbook-quiz also supports multiple-select questions that have potentially
multiple correct answers, and users must select the subset of options that are correct.

• Short answer: A question with an answer that is a precise string, and readers must respond
with that string (usually modulo whitespace and case-sensitivity). In practice, we use the short
answer type for either syntax questions (e.g., “what is the keyword for declaring a function?”)
or for numeric questions (e.g., “how many allocations could occur in this program?”).
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• Tracing: A question about the semantics of a particular program (in this experiment, Rust).
Readers are given a program and asked: does this program compile1? If so, what does it print
to stdout? Like with short-answer, readers must provide the stdout string precisely modulo
whitespace and casing.

Complexity. Our general philosophy was to test for what educational psychologists call near
transfer [Perkins and Salomon 1994], or the application of knowledge to “closely related contexts”
compared to the context of learning. For the most part, we avoided questions that ask readers to
simply repeat back a de�nition or formula contained verbatim in the text. Conversely, we also
avoided questions that require paragraphs of setup with many moving parts. We sought a middle
ground that asked readers to apply the book’s concepts to slightly novel situations. For instance, the
question in Figure 1 asks readers to apply the concepts of range-based iteration and bounds-checked
indexing in a program that is not similar to any within the section on vectors.

Content. Most of our questions can be categorized based on the taxonomy of programming
language concepts in common use within �� research: syntax (concrete and abstract), semantics
(static and dynamic), and pragmatics. We wrote questions to test whether readers understood a
given language feature (e.g., algebraic data types, traits, etc.) at each level of the taxonomy. For
instance, these are a few common question archetypes:

• Concrete syntax: “what is the keyword for a given feature?”

• Abstract syntax: “which binding does this variable refer to?”

• Static semantics: “which of these programs will compile?” or “what kind of compiler error
would you expect to get for this program?”

• Dynamic semantics: “what is the output of running this program?” or “which of these
programs will cause unde�ned behavior?” or “which lines of code can cause a heap allocation?”

• Pragmatics: “which of these type signatures best matches this prose speci�cation?” or “which
of these changes to a broken function is the most idiomatic?”

2.3.2 �iz Tool. To integrate into ����, we developed mdbook-quiz, a plugin that extends md-
Book with support for interactive quizzes. To use mdbook-quiz, an author �rst writes quiz ques-
tions as a ���� �le like in Figure 1a. Within their mdBook, the author then adds a directive like
{{#quiz ../quizzes/my-quiz.toml}}. The mdbook-quiz preprocessor replaces the directive with an
���� element containing the quiz schema as metadata. When a reader loads a page containing a
quiz, then mdbook-quiz injects an interactive quiz at each such ���� element. The quiz component
is implemented in Javascript using React. The notable elements of its design are:

Session tracking. It is important for rich data to track when a single reader is answering multiple
questions, as that enables analysis of reader-level accuracy. However, we did not want to require
readers to register accounts (disincentivizing participation), or to build the services needed to
maintain account information (complex infrastructure). As a trade-o�, we use cookies to associate
a reader with a random ����, stored in the browser’s localStorage. This �� requires no input from
users, but we can lose continuity if a reader switches devices/browsers or clears their cookies.

1Early in the experiment, tracing-type questions also asked: if the program does not compile, what line does the compiler

report as the main source of the error? We ultimately removed this portion of the question because many readers did not

understand the distinction between the point at which the error occurred versus a line that is involved in the error. The notion

of a “main source” is also somewhat arbitrary in certain cases. Nonetheless, we still hope to eventually �nd a version of this

question that elicits a next level of depth about why a program failed to compile.
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Telemetry. When a reader completes a quiz, the quiz sends telemetry to a server. The telemetry
includes the reader’s answers, a timestamp, the commit hash of the ���� fork (to know which
version of the book an answer corresponds to), and the reader’s ��. For the remote server, we setup
a small Google Cloud �� that streams the telemetry to a ���ite database. This server is the only
component of the experiment that cost us money, a relatively small $15/month at 2022-23 rates.

Mobile support. To maximize participation, we must support the popular modes for web browsing.
Many ���� readers visit the book on their phones, so we took strides in mdbook-quiz to support
non-desktop devices. mdbook-quiz uses responsive styles to ensure that the quizzes remain legible
at all resolutions. We also ensure that interactions work with both touch and click inputs.

Question validation. Faulty questions lead to faulty data, so it is important to correct mistakes as
soon as possible. We used two mechanisms to detect bad questions:

• Schema checking: the mdbook-quiz tool checks at book-generation-time that all questions
adhere to the expected schema. This includes semantic checks for tracing-type questions,
where the expected answer (i.e. compiles with output �� fails to compile) is compared against
the Rust compiler’s actual results.

• Bug reporting: Every question is annotated with a bug button as shown in the upper right
of Figure 1b. Readers can provide open-ended feedback, which we have found valuable in
catching issues such as typos, confusing problem wording, and faulty questions. To date,
readers have made 2,026 reports. Throughout the experiment, we continuously monitored
these reports and patched questions when needed.

Reducing external in�uence. A challenge with a public-facing textbook is the quizzing environ-
ment is largely uncontrolled, so participants could easily use external resources (the textbook,
Google, ChatGPT, etc.). To combat this threat to data richness, we took two steps. First, when a
reader begins a quiz, the quiz component takes over the entire page, preventing readers from easily
using the textbook while answering questions. Second, we instruct readers to not use external
resources while answering questions. While this relies on voluntary compliance, our readers also
have little incentive to cheat considering the quizzes are solely for personal edi�cation.

Retries. After giving an initial answer to all the questions in a quiz, readers are o�ered the chance
to retry missed questions. For the analysis in this paper, we only look at answers from readers’ �rst
attempt on a quiz. But it worth noting that when o�ered the option, readers chose to retry a quiz
in 55% of cases, suggesting that readers appreciate the opportunity to correct their mistakes.

Answer justi�cation. To provide richer data for particular questions, authors can optionally enable
an “answer justi�cation mode” for a given question. In this mode, after answering a question and
before seeing the correct answer, a reader will be prompted to explain how they chose their answer
in 1-2 sentences. This justi�cation is then sent with the telemetry.

2.4 Recruiting Participants

Once the quiz questions were deployed to our ���� fork, the �nal step was to recruit participants.
Our primary recruitment channel was the o�cial ����, where the ���� authors graciously agreed
to include the following ad: “Want a more interactive learning experience? Try out a di�erent
version of the Rust Book, featuring: quizzes, highlighting, visualizations, and more: https://rust-
book.cs.brown.edu/”

On August 25, 2022, we soft-launched the experiment by announcing the ��� on the �rst author’s
Twitter account. On November 1, 2022, the advertisement for our experiment went live in the
o�cial web version of ����. The advertisement remained there throughout the experiment and
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Fig. 2. Histogram of the number of questions
answered per reader.

Fig. 3. Histogram of chapter of a reader’s last answered,
broken down by triers vs. dabblers.

continues to drive tra�c as of October 9, 2023. Since the ad went live, our website has received at
an average of 439 visitors per day.
Again following from the goal of increasing scale of participation, we did not gather any de-

mographic data from our participants. Our dataset is fully anonymized except for the ���� that
accompanies all telemetry. This has the bene�t of encouraing privacy-conscious readers to partici-
pate in the experiment, but has the drawback of reducing data richness because we cannot slice the
data based on demographic factors like a reader’s level of programming experience.
When prospective readers �rst visit our ���� fork, they are provided a consent form which

explains the purpose of the experiment and the kind of data collected from their interactions.
Readers must provide consent in order to proceed to the book proper. Our methodology was
evaluated by our institution’s ���, which determined that the project did not require institutional
review due to the study’s purpose and safeguards to ensure anonymity.

3 DATA ANALYSIS

Using the ���� fork described in Section 2, we gathered reader responses to quiz questions for 13
months. In total, 62,526 people answered questions 1,140,202 times. In this section, we will analyze
the reader-level and question-level trends in the data to answer our �rst two research questions.

3.1 Reader Analysis

First, we will get to know the readers of ���� in answering ���: what kinds of trajectories do
readers take through the book? We will start by looking at the amount of e�ort put in by each
reader. The best proxy for e�ort in our dataset is the number of questions answered.
Figure 2 shows a histogram of the number of questions answered per reader, revealing two

insights. Figure 2 shows that many readers answer a small number of questions. As expected for
a public resource, many people try learning brie�y and then move on. We de�ne a reader as a
“dabbler” if they answered fewer than the median number of questions (6). Conversely, a reader is a
“trier” if they answered 6 or more questions. By this de�nition, our dataset contains 33,013 triers.

Figure 2 shows that even the most voracious readers answered fewer than 100 questions, which
is less than half of the total number of questions in the book. This observation could be explained
in a number of ways: readers give up early, readers skip around in the book, or readers change
browsers/devices and lose their session ��. To explore the �rst explanation further, we can look at
the last chapter where a reader answered a quiz question.
Figure 3 shows a histogram of the number of readers whose last answered question was on a

given chapter, broken down by triers vs. dabblers. One observation is that the vast majority of
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dabblers gave up on Chapter 1 while most triers gave up on Chapters 3 and 4. This data supports
the dabbler vs. trier dichotomy as most dabblers gave up immediately while triers read further.

Another observation about Figure 3 is that even for triers, most did not make it past Chapter 4. For
context, Chapter 4 is the chapter on ownership, which is Rust’s approach to memory management.
Ownership is fundamental to Rust’s design, but prior work also suggests that ownership is one of the
language’s more di�cult concepts to learn [Fulton et al. 2021; The Rust Survey Team 2020]. Figure 3
is consistent with this �nding, as Chapter 4 is a signi�cant drop-o� point for triers. Interestingly,
the drop-o� does not change linearly — once readers make it past Chapter 4, the distribution of
drop-o�s is roughly uniform over the remaining chapters.
Finally, Figure 3 shows that very few readers make it to the end of the book. Out of 62,526

readers, only 1,220 (2%) answered a question in Chapter 19. Again, several possible explanations
could apply. One is that most people simply do not want to put in the e�ort to read the entire
book. The 2% number is comparable to drop-out rates in ����s [Jordan 2014], so this may re�ect
a “natural” e�ort distribution for online learning resources. Another explanation is that readers
do not intend to read the book cover-to-cover. One could easily imagine a programmer reading
enough of the book to write a nontrivial Rust program, and then only visiting later chapters as
needed for reference. The data does not allow us to easily distinguish between these explanations,
but it does point to a research question for later investigation.

Takeaway: The vast majority of readers will only read the �rst few chapters and then give
up. Focus on reducing learning obstacles in the �rst few chapters.

Takeaway: Di�cult language concepts that appear early on will serve as a natural drop-o�
point. Consider spreading out the di�culty, or perhaps motivating readers to
continue reading even with a partial understanding of the di�cult concept.

3.2 CTT�estion Analysis

Next, we will analyze ���: what are the characteristics of a high-quality �� quiz question? “Quality”
is a naturally subjective term, but we can initially orient our analysis by looking at how researchers
study quiz questions in other disciplines. The �eld of psychometrics has long studied the quality of
questions within contexts such as standardized tests and surveys [Raykov and Marcoulides 2011].
Within psychometric item analysis, there are three key concepts: an item (i.e., a question), an

instrument (i.e., a set of items), and a latent trait. The general idea is that the goal of an instrument
is to measure this latent (or unobservable) trait in an individual. In educational settings, the latent
trait is usually how well a person understands a particular concept or topic, often short-handed as
“ability.” Within this framework, a question is often evaluated in terms of two properties:

• Di�culty: the level of ability required to correctly answer a question.

• Discrimination: how well a question distinguishes between high and low ability readers.

For example, a question in ���� like “which number between 1 and 10 am I thinking of?” would be
high di�culty (only about 10% of people should answer correctly) and low discrimination (correctly
answering this question has nothing to do with Rust). Note that di�culty and discrimination are
not mathematical quantities by de�nition, but rather theoretical constructs which are realized by
speci�c mathematical models. In this paper, we will consider two models: classical test theory (���)
based on a frequentist analysis of descriptive statistics, and item response theory (���) based on a
Bayesian analysis of a probabilistic model.

In ���, a reader’s ability is the average of their raw scores on all questions. A question’s di�culty
is the average of reader’s raw scores on the question. A question’s discrimination is the correlation
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Fig. 4. Distribution of ��� reader ability. Fig. 5. Distribution of ��� question di�iculty.

Question Type: Tracing

fn foo(x: &i32) {

println!(�{x}�);

}

fn main() {

let x = null;

foo(x);

}

DOES compile
Does NOT

compile

(a) A low-di�iculty question with an aver-
age accuracy of 99.5%.

Question Type: Multiple Select

Which of the following are situations where using unsafe code (or a

safe wrapper around unsafe code) is an idiomatic method for working

around the borrow checker?

Getting two mutable refer-

ences to disjoint indices in an

array

Allowing values to be unini-

tialized when they are not

being read

Having a reference to one

�eld of a struct sit in another

�eld of the same struct

Returning a pointer to a

stack-allocated variable out

of a function

(b) A high-di�iculty question with an average accuracy of 6.9%.

Fig. 6. Examples of low and high di�iculty questions in the dataset.

(Pearson’s A ) between reader’s scores on that question and their overall score. The advantage of
��� is that the statistics are simple and interpretable, so we do not run the risk of “torturing” the
data. The disadvantage of this approach is that the simplicity loses nuance, such as the idea that
a reader correctly answering a di�cult question should indicate a higher ability than correctly
answering an easy question. Note that in this section, we will only analyze responses from triers,
as we care most about the learning patterns of readers who seriously attempted the book. We will
use “reader” synonymously with “trier” in Sections 3.2 and 3.3.

3.2.1 CTT Ability and Di�iculty. Figure 4 shows the distribution of reader ability and Figure 5
shows the distribution of question di�culty using ���metrics. Reader abilities are roughly normally
distributed with mean 0.70 (f = 0.16). Question di�culties are more spread out with mean 0.63
(f = 0.24). The reader distribution in Figure 4 seems appropriate for the ���� setting. Questions
should be di�cult enough to be engaging, but not so di�cult as to potentially disincentivize readers
from continuing; Figure 4 is consistent with that philosophy. The left tail of the question di�culty
distribution is more concerning, as any question with less than a 20-30% average indicates a likely
problem with the question, with the text, or with the underlying concept.

Placing these numbers in context, Figure 6 shows examples of low and high di�culty questions
in the dataset. The low di�culty question in Figure 6a tests whether a reader understands that
(safe) Rust does not have null pointers, and 99.5% of readers correctly identify the program does not
compile. This seems like a good result, but the near-absence of failure suggests that the question

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 95. Publication date: April 2024.



95:10 Will Crichton and Shriram Krishnamurthi

Fig. 7. Distribution of ��� question discrimination. Fig. 8. Highest correlation of a subset of questions
of size : = 1 to 6.

may be too easy due to meta-textual cues. For instance, the fact that null does not get syntax-
highlighted hints that it is not a language keyword. Additionally, it’s not clear what the stdout
would be if the program were executed, so a person may also infer that the question only makes
sense if it does not compile. A better version of this question would ideally eliminate these cues.

The high di�culty question in Figure 6b tests whether a reader understands the purpose of the
unsafe feature in Rust. The answers includes two situations that are described in the textbook
(mutable array indexing and returning pointers to the stack), and it asks readers to transfer their
understanding to the other two novel situations (which are both reasonable cases to use unsafe).
94% of readers select the array option and 16% of readers select the stack-reference option, which
is good. The failure mode is that only 25% and 34% of readers select the uninitialized data and
self-referential struct options, respectively. In total, only 6.9% of readers select the correct subset of
options — quite close to the accuracy of random guessing (6.25%). This suggests that the book can
improve in helping readers transfer their understanding of unsafe into these novel situations.

3.2.2 CTT Discrimination. Figure 7 shows the distribution of question correlations. Questions
range from A = 0.06 to A = 0.40. No questions had a negative correlation, which is a good sign.
To better understand the characteristics of low/high discrimination questions, we performed a
thematic analysis [Braun and Clarke 2012] of the top 20 and bottom 20 questions by discrimination.
We coded each question with labels that categorized the question such as “unde�ned behavior” and
“traits.” We coded in multiple iterations, applying new labels and merging similar labels each time.

One notable trend we observed is that 6/20 low-discrimination questions were tracing-type ques-
tions where the answer was “does not compile” due to a type error, while 0/20 high-discrimination
questions used this format. Figure 9 contrasts two questions with low and high discrimination that
both involve a type error. The low-correlation question posits that a program might compile, and
a reader must deduce that the program does not compile (because v[0] moves the string out of
the vector, which Rust disallows). The high-correlation question posits that a program does not
compile, and a reader must deduce why the program does not compile. We interpret this result
as meaning: type-error questions that function as “gotchas” questions (you thought this would
compile — but it doesn’t!) are signi�cantly less useful in evaluating a reader’s understanding of the
type system than type-error questions that probe for deeper reasoning (why doesn’t this compile?).

Another use of discrimination is in the design of instruments: what is the smallest set of questions
that would make an e�ective test of Rust knowledge? For instance, one could use this data to
construct a pre-test for a Rust course, or to construct a job interview for Rust professionals. To
investigate, we ran an exhaustive combinatorial search for : = 1 to 6 to �nd the :-sized subset with
the highest correlation between user’s average scores on the subset and their average scores on
the entire dataset. (: = 6 is the highest we could compute in under a day on an M1 Macbook Pro.)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 95. Publication date: April 2024.



Profiling Programming Language Learning 95:11

Question Type: Tracing

fn main() {

let v = vec![

String::from(�Hello �)

];

let mut s = v[0];

s.push_str(�world�);

println!(�{s}�);

}

DOES compile
Does NOT

compile

(a) A low correlation type-error ques-
tion with A = 0.12.

Question Type: Multiple Choice

fn get_or_default(arg: &Option<String>) -> String {

if arg.is_none() {

return String::new();

}

let s = arg.unwrap();

s.clone()

}

If you tried to compile this function, which of the following best describes

the compiler error you would get?

cannot move out of arg in

arg.unwrap()

cannot call arg.is_none()

without dereferencing arg

arg does not live long enough
cannot return s.clone() which

does not live long enough

(b) A high correlation type-error question with A = 0.37.

Fig. 9. Examples of high and low correlation questions about type errors.

Figure 8 shows the highest A for each : . At : = 6 we can reach A = 0.91, showing that only a small
number of questions is needed to achieve remarkably high discrimination. Appendix A.1 shows the
six questions in this subset. This method of test construction is not foolproof given the issues with
discrimination discussed in Section 6.2, but it o�ers one signal for designing tests from quiz data.

Takeaway: The distributions of reader averages and question averages provide a useful
signal to check whether outliers are too extreme, e.g., if some questions are too
easy or if some readers are struggling too much.

Takeaway: Asking why a program has a given semantics is likely more discriminative than
asking which of several semantics a program could have.

3.3 IRT�estion Analysis

An alternative approach tomodeling question di�culty and discrimination comes from the paradigm
of item response theory (���) [Baker 2001]. The basic idea of ��� is that ability, di�culty, and
discrimination can be incorporated into a single probabilistic model which is then �t to data. By
�tting all parameters simultaneously, the resultant model can account for nuances which were
missing with the ��� approach, such as the fact that multiple-select questions are harder to guess
than multiple-choice questions due to the relative sizes of the combinatorial answer space.

3.3.1 Background. Formally, for some question 8 and reader 9 , let 8 9 be an indicator random
variable for whether 9 answers 8 correctly. Let I8 be the properties of question 8 and \ 9 be the
properties of reader 9 . ��� de�nes a family of functions 5 (I, \ ) that describe the probability of 8 9 :

% [ 8 9 ] = 5 (I8 , \ 9 )

In this paper, we will use the standard three parameter logistic model where I8 = (U8 , V8 , _8 ) : R
3

represents a question’s discrimination, di�culty, and baseline. \ 9 : R is a reader’s ability score. The
model’s probability function is de�ned as follows (where f is the sigmoid function):

5 ((U8 , V8 , _8 ), \ 9 ) = _8 + (1 � _8 ) · f (U8 (\ 9 � V8 ))
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Fig. 10. Simulated item characteristic curves that demonstrate the influence of the discrimination parameter
U , the di�iculty parameter V , and the baseline parameter _.

A question 8 with parameters I8 has an item characteristic curve that describes the probability
of getting 8 correct as a function of \ (essentially, 5 curried on I). Figure 10 shows how the item
characteristic curve changes in response to di�erent values of U, V , and _. The latter two parameters
are straightforward: a higher di�culty (V) shifts the curve right, meaning readers need a higher
ability to answer correctly. A higher baseline (_) shifts the curve upward, meaning the overall
probability of answering correctly is increased due to factors like random guessing.
The discrimination parameter U a�ects the slope of the curve. At U = 0, the curve is a �at line.

This means that all readers are equally likely to answer correctly regardless of their ability. As U
approaches in�nity, the curve approaches a vertical line with an x-intercept based on the di�culty.
The ��� model of discrimination therefore has a di�erent interpretation than the ��� correlation
model: a more discriminative question will more accurately distinguish between readers of a given
level of ability, as opposed to generally distinguishing between high and low ability readers. We
will see the implications of this distinction in the analysis to follow.

To �t the ��� model to data, we used the py-irt library [Lalor et al. 2019]. py-irt uses the Pyro
probabilistic programming language [Bingham et al. 2019] to de�ne the ��� model, and it uses
Pyro’s facilities for stochastic variational inference to train the model. We used py-irt’s default
hyperparameters and trained the model for 2,000 epochs. The �nal output is a set of question
parameters I8 for every question in the ���� dataset and a set of ability scores \ 9 for every reader.

3.3.2 Analysis. ��� discrimination (A ) and ��� discrimination (U) were least correlated at the
extremes of the di�culty distribution. Questions in the middle decile of di�culty had a correlation
between A and U of 0.90, while questions in the 1st and 10th deciles had a correlation of 0.60 and 0.01,
respectively. Put another way, U provides the most distinct signal compared to A at the highest and
lowest di�culties. To explore this phenomenon, we performed another thematic analysis focused
on the question: at the tail ends of the di�culty distribution, what characteristics distinguish low-U
questions from high-U questions? Speci�cally, we qualitatively analyzed all questions in the top
and bottom deciles of di�culty, sorted by U .
In our analysis, the clearest distinction between low and high U questions was the quality of

the distractors for multiple-choice questions. (This is a “soft” interpretation that is di�cult to put
into numbers, but you also can review the same data yourself in the artifact accompanying the
paper.) By “quality,” we mean that good distractors represented plausible misconceptions about
Rust, while bad distractors represented either implausible misconceptions about Rust or plausible
beliefs about Rust that could arguably be valid conceptions.

For instance, compare the low and high discrimination questions in Figure 11. The most common
incorrect answer to Figure 11a was to include “Your macro requires an entire item as input” as
a reason to use a procedural macro over a declarative macro. We considered this incorrect in
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Question Type: Multiple Select

Which of the following are valid reasons for imple-

menting a macro as a procedural macro instead of a

declarative macro?

You want to integrate

with Rust’s derive

system

Your macro requires

nontrivial analysis

of the macro user’s

syntax

You want to gener-

ate variable-length

sequences of code

Your macro requires

an entire item as

input, not just an

expression

(a) A low-discrimination di�icult question with
U = 0.55

Question Type: Multiple Select

Say we have a function that moves a box, like this:

fn move_a_box(b: Box<i32>) {

// This space intentionally left blank

}

Below are four snippets which are rejected by the Rust com-

piler. Imagine that Rust instead allowed these snippets to

compile and run. Select each snippet that would cause unde-

�ned behavior, or select "None of the above" if none of these

snippets would cause unde�ned behavior.

let b = Box::new(0);

let b2 = b;

move_a_box(b);

let b = Box::new(0);

move_a_box(b);

println!(�{}�, b);

let b = Box::new(0);

move_a_box(b);

let b2 = b;

let b = Box::new(0);

let b2 = b;

println!(�{}�, b);

move_a_box(b2);

None of the above

(b) A high-discrimination di�icult question with U = 1.31

Fig. 11. Low and high discrimination questions in the highest decile of di�iculty, as measured by U . Above is
the question text, below is the item characteristic curve.

designing the question because declarative macros can possibly take items as input, although it is
more common for procedural macros to be applied to items. The low discrimination of this question
could be re�ecting the fact that this distractor is not an unreasonable perspective for a Rust user. By
contrast, we carefully designed all the distractors in Figure 11b to test di�erent kinds of unde�ned
behavior involving moves and double-frees. The most common incorrect answer is to exclude
one of the correct options, suggesting that this question has high discrimination because only the
highest ability Rust learners correctly interpret each situation.

��� also provides a theoretically more accurate model of reader ability (\ ) compared to the reader’s
raw test scores in ���. A reader who makes trivial mistakes on easy questions but always aces the
hard questions would have a higher estimated ability than a reader in the opposite situation with the
same raw score. For instance, consider the case of reader 59df64e6-08a0-4638-8399-bcdd138b8d71,
or “Alice” for short. Alice has \ = 1.10, which is in the 90th percentile of abilities in the dataset, but
Alice has a raw score of G = 0.625, which is in the 20th percentile of raw scores. Alice sometimes
makes typos, such as answering [#test] when the answer is #[test]. Alice’s most common
mistakes are on tracing-type questions, when she tries to give an output for programs that do
not compile (reinforcing the takeaway in Section 3.2). But Alice correctly answered many di�cult
questions, and hence was calibrated to a high ability.
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Fig. 12. Screenshot of the data monitoring interface. �iz-level and question-level statistical summaries are
show in tables on the top. Selecting a question brings up the question text and the distribution of incorrect
answers. The question in Figure 11a is selected.

Takeaway: Distractors for multiple-choice questions should be carefully designed to elicit
common misconceptions, improving question discrimination.

Takeaway: Item response theory can provide a more accurate model of reader ability than
raw scores by accounting for the relative di�culty of each question.

4 INTERVENTIONS

Section 3 demonstrates one possible methodology for analyzing a language learning pro�le. In
practice, we imagine that this methodology would exist in an active feedback loop — authors deploy
a text and questions, readers consume the text and answer questions, authors analyze the responses
and update the text, and so on. This section describes our attempt to realize this feedback loop in
answering ���: how can a learning pro�le be used to improve a �� learning resource?

4.1 Methodology

During the deployment of our ���� fork, we monitored the incoming quiz data to identify par-
ticularly di�cult questions using the dashboard shown in Figure 12. After identifying a di�cult
question, we would analyze two key things: (1) the distribution of incorrect responses, and (2)
the text surrounding the question in ����. From this, we would generate a hypothesis about why
readers were answering incorrectly, and then encode that hypothesis into a modi�cation to ����.

Figure 13 shows one such intervention. We observed 23% accuracy on the question in Figure 13a
about the memory layout of references and slices. The key facts being tested are that (a) an &String
reference is di�erent from an &str reference, and (b) that an &str reference is a special “fat” pointer
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Question Type: Multiple Choice

Consider the variables s2 and s3 in the following program. These two

variables will be located in memory within the stack frame for main.

Each variable has a size in memory on the stack, not including the size

of pointed data. Which statement is true about the sizes of s2 and s3?

fn main() {

let s = String::from(�hello�);

let s2: &String = &s;

let s3: &str = &s[..];

}

s3 has more bytes than s2
s3 has the same num-

ber of bytes as s2
s3 has fewer bytes than s2

(a) A quiz question with observed high di�iculty, only 23% accuracy pre-intervention.

(b) A diagram illustrating the memory layout of
string slices in the original ����.

(c) Our modified diagram that includes a &String
reference and a second &str reference.

Fig. 13. Anatomy of an intervention: a�er observing poor performance on the question in Figure 13a, we
modified the diagram in Figure 13b to become Figure 13c. This intervention improved performance on the
question by 20% (3 = 0.41).

that carries the length of the data it points to. We observed that 51% of readers would incorrectly
say s3 and s2 have the same number of bytes, and 26% would say that s3 has fewer bytes than s2.

After reading through the surrounding text (Section 4.3, “The Slice Type”), we hypothesized that
one factor a�ecting question performance was the diagram in Figure 13b. This diagram visualizes
the state of memory containing an owned string s: String and a string slice world: &str.
However, this diagram does not visualize a reference to an owned string &String. Our theory was
that the two incorrect answers could be explained as follows:

• “&str has the same number of bytes as &String”: a reader had not internalized that &str
pointers are special fat pointers. The diagram did not help because it did not visualize both a
fat pointer and a non-fat pointer.

• “&str has fewer bytes than &String”: a reader may recall the diagram and remember “the
String in the diagram was larger than the &str”, con�ating a String with an &String.
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Table 1. E�ects of interventions on question accuracy. ?-values are bolded if they are under the 0.05 signifi-
cance threshold. ?-values are corrected formultiple comparisonswith the Benjamini–Hochbergmethod [1995].

Description Before T After T � d p

Semver dependency deduplication 0.18 593 0.70 543 0.52 1.24 <0.001

Rust lacks inheritance 0.29 234 0.74 3511 0.45 1.03 <0.001

Match expressions and ownership 0.39 522 0.74 4970 0.35 0.78 <0.001

Send vs. Sync 0.25 639 0.49 538 0.24 0.52 <0.001

String slice diagram 0.23 575 0.43 7188 0.20 0.41 <0.001

Heap allocation with strings 0.13 265 0.27 3636 0.14 0.32 <0.001

Rules of lifetime inference 0.26 177 0.40 2887 0.14 0.29 <0.001

Traits vs. templates 0.38 234 0.49 3511 0.11 0.21 0.002

Trait objects and type inference 0.09 654 0.18 544 0.09 0.27 <0.001

Refutable patterns 0.17 549 0.25 499 0.08 0.21 0.001

Declarative macros take items 0.19 340 0.23 312 0.04 0.09 0.253
Derefencing vector elements 0.15 311 0.18 4001 0.03 0.07 0.253

Grand average: 0.20 0.45

We addressed these hypothesized issues by changing the diagram to Figure 13c. To emphasize that
String is distinct from &str, we added a second string slice hello that points to the beginning of
the string. To emphasize that &String is distinct and smaller than &str, we added a string reference
s2 that points to s.

Evaluating an intervention is straightforward: we compare performance on the question before
and after deployment of an intervention, like a kind of temporal �/� test. Our methodology is
di�erent from a traditional �/� test where users are randomly assigned to one of two conditions —
in our case, at a given point in time, all ���� readers saw the same textbook. Consistent with our
goals in Section 2.1, this approach minimizes the complexity of infrastructure because we do not
need to have persistent accounts for readers (otherwise, a reader might run the risk of seeing a
di�erent book on their phone and their computer!). However, the downside is that this methodology
makes an i.i.d assumption about the temporal stream of readers to draw valid statistical inferences —
we discuss this issue more in Section 6. In the case of Figure 13, the string slice diagram intervention
was successful — after deployment, performance on the Figure 13a question improved from 23%
to 43%, which is explained by an 11% decrease in the “same number of bytes” answer and a 9%
decrease in the “fewer bytes” answer.

In total, we designed 12 interventions. We selected places to intervene by looking at the most di�-
cult questions (those with sub-30% accuracy), and then analyzing the text surrounding the question
to see if we could formulate a hypothesis that explains the poor performance. Each intervention
consisted of a relatively small change to a localized portion of ����, usually adding or editing
1-2 paragraphs. Only two interventions consisted of a new subsection. The interventions were
designed in two batches that were deployed on November 29, 2022 and June 2, 2023, respectively.

4.2 Results

Table 1 shows the statistical e�ects of each intervention. Out of 12 interventions, 10 had a statistically
signi�cant di�erence (as measured by a two-tailed C-test, after adjusting for multiple comparisons)
between the distribution of scores on the associated question before and after the intervention.
The average increase in scores is +20% with an average e�ect size of Cohen’s 3 = 0.45. Three
interventions initially did not have a statistically signi�cant e�ect, which we contextualize below.
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“Match expressions and ownership”. This failed intervention was caused by a simple mistake
— we placed the intervention after the location of the relevant quiz, so readers did not observe
the intervention before taking the quiz. A reader alerted us to this issue with the quiz feedback
mechanism. We rearranged the quiz and text, and ultimately the intervention was successful.

“Dereferencing vector elements”. The relevant question asks readers to trace a program that
involves the following lines of code:

1 let mut v = vec![1, 2, 3];

2 let mut v2 = Vec::new();

3 for i in &mut v { v2.push(i); }

4 *v2[0] = 5;

When asked what the values of *v2[0] and v[0] are, many readers will say 5 and 1, even though
the correct answer is 5 and 5. We hypothesized that readers needed a better explanation of how
references to vector elements worked, so we added a paragraph about it to the section on vectors.
However, this intervention had no e�ect. Upon seeing this lack of e�ect, we enabled the “answer
justi�cation” �ag described in Section 2.3.2 to better understand readers’ reasoning for the 5 and 1
response. We received a number of justi�cations in this vein like “the contents of v are copied into
v2” and “I think v2 is a deep copy of v.”

Based on these responses, we realized that many readers were inferring the type of v2 to be
Vec<i32> (a vector of integers) instead of Vec<&mut i32> (a vector of mutable references to integers).
The goal of the question is not for readers to mentally perform type inference, so in response we
modi�ed the question to include type annotations for v and v2. After modifying the question, scores
increased by +9% (? < 0.001). We do not count this subsequent change as an intervention in Table 1
because the question itself was changed. Nonetheless, this question is a good example of how to
use a question’s pro�le to recognize and �x an issue in its presentation.

“Declarative macros take items”. This intervention relates to the question in Figure 11a about
declarative versus procedural macros. We added a sentence emphasizing the fact that declarative
macros can take items as input to the section onmacros, but this had no statistically signi�cant e�ect
on the question. We are still in the process of investigating why this intervention was unsuccessful.

4.3 Analysis

We provided one example of successful interventions (“string slice diagram”), but this raises
the broader question: what are the properties of a successful intervention? Our sample size of
10 successful interventions is relatively small so we cannot yet draw con�dently generalizable
conclusions, but we can make at least a few preliminary observations.
The two most e�ective interventions (“semver dependency deduplication”, “Rust lacks inher-

itance”) were cases where we realized the question addressed a concept that was not explicitly
brought up in the relevant section. The section on Cargo never explicitly said how Cargo uses
semantic versioning, and the section on traits never explicitly said that traits do not support special-
ization of any kind. This fact was revealed by poor performance on questions that tested whether
readers would correctly infer these facts from the baseline text, which apparently they would not.
Both questions were addressed by adding one paragraph that explains the relevant concept.
Most of the other successful interventions, including “string slice diagram,” could best be de-

scribed as clarifying or enhancing existing content. For instance, the “heap allocation with strings”
question asks readers to determine the worst-case number of heap allocations that could occur in a
program involving string addition. Readers were consistently underpredicting the number, which
we hypothesized was caused by the explanation in Figure 14a which does not make clear that string
appending could allocate. The edited explanation in Figure 14b improved performance by +14%.
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Second, we can see in the signature that

add takes ownership of self, because self

does not have an &. This means s1 in List-

ing 8-18 will be moved into the add call

and will no longer be valid after that. So al-

though let s3 = s1 + &s2; looks like it

will copy both strings and create a new one,

this statement actually takes ownership of

s1, appends a copy of the contents of s2,

and then returns ownership of the result.

In other words, it looks like it’s making a

lot of copies but isn’t; the implementation

is more e�cient than copying.

(a) Explanation of allocations with string
addition in baseline ����.

Second, we can see in the signature that add takes ownership

of self, because self does not have an &. This means s1 in

Listing 8-18 will be moved into the add call and will no longer

be valid after that. So although let s3 = s1 + &s2; looks like

it will copy both strings and create a new one, this statement

instead does the following:

(1) add takes ownership of s1,

(2) it appends a copy of the contents of s2 to s1,

(3) and then it returns back ownership of s1.

If s1 has enough capacity for s2, then no memory allocations

occur. However, if s1 does not have enough capacity for s2,

then s1 will internally make a larger memory allocation to �t

both strings.

(b) Explanation of allocations with string addition a�er our
intervention.

Fig. 14. Example of the “heap allocation with strings” intervention.

One should be cautious in interpreting these interventions as categorically making ���� “better.”
Most of these interventions made the book longer, and readers’ attention is in short supply as we
saw in Figure 3 — the statistics indicate whether an intervention helped with a particular learning
outcome, but the author must ultimately decide if an intervention is worth the investment. We
discuss additional caveats in Section 6.1.

Takeaway: Quiz questions can provide a useful pro�ling framework for iteratively identify-
ing areas of improvement and then evaluating changes.

Takeaway: A key factor of a successful intervention is drawing the reader’s attention to the
right concept at the right time in their learning process.

5 SMALL-N SIMULATIONS

Our goal is to develop a methodology for pro�ling language learning that is not just applicable to
Rust. Clearly, the concept of asking quiz questions can be generalized — the question templates
described in Section 2.3.1 would be valid for the syntax and semantics of most languages. The less
obvious aspect of generality is sample size. Rust in 2023 is a popular language, so within a single
year, we had tens of thousands of people participate in our experiment. That raises the question in
���: how applicable is the question pro�ling methodology to languages with smaller user bases?
To answer this question, we will revisit a key statistical inference that was part of answering

each of the last three ��s. We will use a combination of random sampling and power analysis to
simulate how the statistical inference would change at smaller # .

5.1 Simulating Reader Analysis

For ���, we consider Figure 3 which visualized the proportion of triers who left the book at a given
chapter, showing that Chapters 3 and 4 served as a drop-o� point for triers. We will explore: with
fewer readers, how would our estimation of the chapter-level drop-o� rates change? To answer
this question, we will use the same kind of simulation for both ��� and ���.
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(a) Error in the raw drop-o� of each chapter. (b) Error in the drop-o� rank of each chapter.

Fig. 15. Error in the simulated estimates of the per-chapter drop-out rates used in Figure 3 for ���. The
shaded region indicates one standard deviation away from the estimated mean at each sample size. The
rightmost point in each graph represents the full dataset, and hence has zero error.

Algorithm 1 Estimating metric error

G  5 (()

A  ranks(G)
for : 2 {10, 100, ..., |( |} do

for 8 2 0, 1, ..., 1000 do

repeat

( 0  sample(( , :)
until ( 0 is valid for 5
G 0  5 (( 0)

A 0  ranks(G 0)
store |G � G 0 | and |A � A 0 |

end for

end for

Let ( be the set of all triers, and let 5 : P(() ! R= be
a function that computes a vector of metrics for some =,
such as = = “the number of chapters in ����” and 5 =

“the fraction of readers who drop o� at each chapter”. Let
ranks : R= ! N

= return the rank-order of each element
in the input. Then our simulation follows the pseudocode
on the right.
For several sample sizes : , we run 1,000 simulations

that compare the metric 5 on a :-sized random sample
against the same metric on the full dataset. Each 5 has a
validity condition on the input subset (e.g., every chapter
must appear at least once in the sample), so we repeatedly
sample until the validity condition is met (i.e., a Las Vegas
algorithm). Then we compute the metric error on the
sample in terms of both di�erence in the raw value of
the metric (G ) and di�erent in terms of the rank order of
the = items (A ). The idea is that both raw error and rank error may be relevant depending on the
analysis task — for instance, an author trying to analyze a speci�c question would care about the
raw error, while an author trying to �nd the hardest question would care about the rank error.
Concretely for ���, = is the number of chapters in ���� and 5 is the fraction of triers who

drop-out at a given chapter. The validity condition is that every chapter must appear at least once
in the sample. We draw : from a logarithmic range from 100 to |( | = 32, 159 (we exclude : < 100

for ��� because there are very few valid subsets of that size).
Figure 15 shows the results of the simulation for ���. Both plots show the estimated error for a

given : at each dot, as well as ±1 standard deviation of the estimate in the shaded region. The raw
error is relatively low, being an estimated 0.02 at  = 100. However, because many chapters have
a relatively similar drop-o� rate (as shown in Figure 3), the rank error is much larger at small : ,
being an estimated 0.13 with standard deviation 0.12.

Our interpretation is that if an author wants to identify individual chapters with an high absolute
drop-out rate, then this result suggests that the author needs relatively few readers to do so. If an
author wants to understand the speci�c rank order of chapters by drop-out rate, then this method
does not generalize to small # .
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(a) Error in the raw di�iculty of each question. (b) Error in the di�iculty rank of each question.

(c) Error in the raw discrimination of each question. (d) Error in the discrimination rank of each question.

Fig. 16. Error in the simulated estimates of per-question ��� di�iculty and discrimination statistics used in
Figure 5 and Figure 7 for ���.

5.2 Simulating�estion Analysis

For ���, we repeat a similar analysis as for ��� except where = is the number of questions in
Chapters 3 and 4, and 5 is the ��� di�culty and discrimination of each question. (We limit our
focus to Chapters 3 and 4 because the majority of responses are to those questions, so we can more
reliably estimate the error of small-N simulations.) For di�culty, a subset ( 0 is valid if there exists
at least one answer for all questions by a reader in ( 0, and we start with : = 10. For discrimination,
a subset ( 0 is valid if it is possible to compute A for all questions (i.e. there are at least two answers
for a given question, and the answers are not all 0 or 1), and we start with : = 100.
Figure 16 shows the results of the simulation for di�culty (top) and discrimination (bottom).

At : = 10, di�culty has high error in both raw metric (estimated 0.22) and rank (estimated 0.20).
At : = 100, the error is reduced to an average of 0.07, and further reduced at : = 1000 to 0.02.
Discrimination has higher error (both raw and rank) at all : compared to di�culty. Even at : = 1000,
the average discrimination raw error is 0.08 and rank error is 0.18.
Our interpretation is that estimates of question di�culty are likely useful for both relative and

absolute comparisons at around : = 100, but only precise at : = 1000. Estimates of question
discrimination seem to require at least an order of magnitude more data to be su�ciently precise.

5.3 Simulating Interventions

For ���, we explore the question: for a statistically signi�cant intervention, what is the smallest
number of readers needed to determine that the intervention is statistically signi�cant? This
question is a straightforward application of power analysis, where one estimates the sample size
needed to demonstrate an e�ect for a given e�ect size. For a common statistical test like the C-test,
there is a closed-form function that takes as input an e�ect size 3 , a signi�cance level U , and a
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Fig. 17. Power analysis of the 10 statistically sig-
nificant interventions in Table 1. Each point is the
sample size required to detect (with statistical sig-
nificance, at an 80%) probability) an e�ect with the
given e�ect size.

Fig. 18. Average score of all readers by week from
the start to the end of the experiment. The shaded
region represents a 95% confidence interval on the
estimated average for a given week.

test power V (commonly V = 0.8, which we use here). The power analysis returns a sample size #
required to identify the e�ect 3 at the given signi�cance level U with at least probability V .
We apply the C-test power analysis to the 10 statistically signi�cant interventions in Table 1

based on their computed e�ect sizes. Figure 17 plots the e�ect size on the G-axis against the number
of samples required on the ~-axis, including a marginal distribution of both variables on the top
and right. The median required sample size for our interventions is 246. For e�ect sizes 3 > 0.4,
our interventions would have required at most 200 readers (that is, 100 before and 100 after the
intervention) to demonstrate statistical signi�cance (with 80% probability). For e�ect sizes 3 < 0.4,
our interventions needed between 303 and 745 readers to demonstrate statistical signi�cance.
We interpret these results as promising for generality to small # — an e�ective intervention

(i.e., one with a large e�ect) does not need thousands of readers, and authors would presumably be
trying to make e�ective interventions. It is true that more data would be needed to measure subtle
e�ects, but we expect that type of e�ect to be more the domain of researchers than practitioners.

Takeaway: Estimating chapter drop-out rates and question di�culty can be done with low
error at : ⇡ 100, while estimating question discrimination requires more data.

Takeaway: The more e�ective an intervention, the fewer readers needed to detect statistical
signi�cance — our most e�ective interventions needed fewer than 200.

6 THREATS TO VALIDITY

Next, we will discuss threats to validity of the results. The main threat to external validity is whether
these methods scale to languages with smaller user bases, which we analyze extensively in Section 5.
In this section, we focus on internal validity (Section 6.1) and construct validity (Section 6.2).
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6.1 Internal Validity

Across all ��s, a key threat to internal validity is the uncontrolled quizzing environment. We had
no control over the population of participants, and we had limited control over the conditions
under which a participant took a quiz. This raises a few concerns:

What if di�erent kinds of readers answered questions at di�erent times? For instance, if all the
C++ engineers at a company decided to learn Rust at the same time, that could improve quiz
scores during a speci�c period, which could a�ect the temporal �/� testing used in ���. We believe
that this is likely not a serious concern at our scale of data collection — for instance, Figure 18
shows that the average score over time has been remarkably stable since November 2022, when
our advertisement went live in ����.

What if readers used external resources while answering questions? A reader’s response to a
question may not truly re�ect their understanding of Rust if they used the Rust compiler, Google,
ChatGPT, a friend, or other external resources. We address this threat by isolating the quiz-taking
environment, as discussed in Section 2.3.2.

Are the interventions really causing learning gains by improving the textbook? An intuitive reading
of the interventions in Section 4 is something like: “I changed the text, my changes caused readers
to develop a better mental model than before, and therefore my intervention is good.” But we must
be careful in causally attributing observed learning gains to explanation quality. For instance, the
act of focusing a reader’s attention on a particular concept may itself be su�cient to improve
learning outcomes regardless of the explanation’s quality [VanLehn et al. 2003]. Put another way,
interventions are a form of teaching to the test. If an intervention is too tailored to the speci�c
question being targeted, then learners are likely not forming a robust mental model.
We managed the issue of learning-from-attention by making interventions have a close to net-

zero change in the book’s length, which we strove for in our interventions (but did not always
achieve). We managed teaching-to-the-test by ensuring that interventions did not change the
textbook to trivialize the problems under question, e.g., by adding the answer verbatim to the book.

What if some parts of the experiment interfered with other parts? Our experiment was essentially
many small experiments running simultaneously. For instance, several interventions were deployed
at the same time, and one intervention could theoretically a�ect other interventions. On one hand,
this re�ects how we expect a learning resource author to use our methodology in practice — no
one would make a single small change and wait a year until making the next change. On the other
hand, we cannot easily disentangle the complex web of in�uence.

It is important to note that all of the interventions described in this paper were relatively small,
but the experiment described by Crichton et al. [2023] was running concurrently in the same ����
fork as ours. Crichton et al. deployed a much larger intervention that replaced the entire ownership
chapter (Chapter 4) with an alternative based on a new conceptual model of ownership types. This
intervention did a�ect speci�c questions on ownership (as documented by Crichton et al.), but it
did not a�ect overall question accuracy (as shown in Figure 18).

6.2 Construct Validity

Several of the statistics in this paper have a relatively uncomplicated relationship to the construct
they represent, such as question di�culty (either ��� or ���) and how hard a reader would �nd a
given question. But there are two constructs in particular worth discussing:

Are question scores a good proxy for language understanding? A fundamental assumption in this
paper is that the quiz questions provide a pro�le of language learning, meaning a reader’s answer
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to a quiz question re�ects some aspect of the mental model they are constructing of a language.
Of course, a bad question does not test anything useful, and hence we devote Section 3.2 and
Section 3.3 to the analysis of question quality. But more fundamentally, our format of quiz questions
is limited to problems that are small, self-contained, and answerable in under a minute. Deep
expertise in a programming language is most evident in the design of complex systems over long
time-scales. Quiz questions test for small slices of theoretical understanding, as opposed to the
practical knowledge of working with a tool every day. In that sense, we see quiz questions as
complementary to other sources for language usability evaluation.

Are the discriminationmetrics a good proxy for question quality? While discrimination is commonly
used in psychometrics for item analysis, it is not a �awless metric of quality. Discrimination metrics
reveal correlation more than causation, and correlation can easily miss unmeasured causal factors.
For instance, a question may be highly discriminative because it tests whether a learner comes from
a particular background, as opposed to whether the learner understands a textbook well [Masters
1988]. To that end, we tried to provide a balanced look at discrimination in this paper by considering
two di�erent models. Discrimination should be best understood a useful signal for �ltering data,
but not an ultimate objective to be fully optimized.

7 RELATED WORK

Methodologically, our experiment is most related to computing education research on e-books and
item analysis. Philosophically, our experiment is most aligned with human factors research on the
adoption of programming languages. We focus on the former here, and save the latter for Section 8.
Many educators and researchers have developed e-books for teaching both computer science

generally and programming languages speci�cally, usually targeting the introductory level. Most
similar to our work is Runestone [Ericson and Miller 2020], an e-book platform used to teach
various �� courses with support for interactive content such as quizzes. The research performed
with Runestone is complementary to ours — for instance, Ericson et al. [2022] found that doing
well on multiple-choice questions in the e-book was strongly correlated with midterm performance.
Our research can hopefully inform the development of content on platforms like Runestone. Our
results also provide additional insight for the deployment of interactive e-books “in the wild,” as
opposed to school contexts where students are required to read to the end of the book.
CS education researchers frequently use item analysis, and often speci�cally item response

theory, to analyze (or “validate”) tests of programming knowledge [Kong and Lai 2022; Porter et al.
2019]. For instance, [Xie et al. 2019] use ��� discrimination to identify and eliminate problematic
questions on a test of introductory �� knowledge. We extend this line of work with data from amuch
larger scale on programming problems aimed at a more experienced audience of programmers.
Our goal is to treat Rust only as an exemplar of language learning writ large, but our results

nonetheless are complementary to the growing body of research on the usability of Rust. Re-
searchers have used surveys [Fulton et al. 2021], social media [Zeng and Crichton 2019], and
StackOver�ow [Zhu et al. 2022] to analyze Rust’s learning curve, similarly �nding that ownership
is a frequent challenge for learners. Crichton et al. [2023] demonstrated one example of a successful
intervention in ���� limited to ownership. Our work goes beyond it in several ways. First, we
analyze ���� at a much broader scope than a single chapter, enabling us to examine reader drop-o�
and question discrimination. Second, we expand beyond classical test theory to incorporate the
nuanced ��� model of readers and questions. Most of all, our hope is to design a methodology that
can work for languages that do not enjoy Rust’s scale; Section 5 shows that we appear to succeed.
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8 DISCUSSION

A decade ago, Meyerovich and Rabkin [2013] demonstrated the value of using surveys to understand
programmers’ attitudes towards programming language adoption, arguing that “these methods
will be increasingly valuable going forward, especially given the popularity of the Internet and
online courses.” History has supported their argument — as we cited in the introduction, one can
now �nd survey data for dozens of programming language communities.

We believe that programming language learning is in need of an analogous set of techniques for
peeking into the minds of programmers. In this paper, we propose the method of pro�ling language
learners via interactive quizzes embedded in learning resources. We analyzed over 1,000,000 quiz
responses from a year of data collection from The Rust Programming Language. We identi�ed several
interesting aspects of Rust language learning, such as where readers drop-out of the book and
which kinds of questions were most and least discriminative of Rust ability. We showed how to use
this quiz data in an iterative loop to improve learning outcomes with targeted interventions.

This method is simple: the infrastructure is easy to setup, and all one needs to do is write some
quiz questions and pay for a telemetry server. This method is engaging: many readers voluntarily
opt to use text with quizzes when given the choice. Readers only spend a median of 29 seconds per
question. This method is generalizable: the question format works with any language, and most of
the statistical inferences only need a few hundred readers to be accurate. We encourage authors of
language learning resources to try adding quizzes to your book; if you already use mdBook, then
you can try out our free and open-source quiz plugin: https://github.com/cognitive-engineering-
lab/mdbook-quiz

The goal of this paper is to provide a simple and replicable blueprint, so many questions are left
unanswered about how people learn programming languages. Avenues for future work include:

How can quiz data inform �� design? In this work we treat the language (Rust) as an artifact
with �xed rules that must be conveyed as-is to learners. Incorrect answers are treated strictly
as misconceptions. But for language designers, an incorrect answer could also be a statement
of preference: I thought the language should work this way, but it doesn’t seem to. These types of
insights can in�uence language design — for instance, the lifetime analysis within Rust was made
�ow-sensitive for this reason. According to Matsakis [2017]:

“Part of the reason that Rust currently uses lexical scopes to determine lifetimes is
that it was thought that they would be simpler for users to reason about. Time and
experience have not borne this hypothesis out: for many users, the fact that borrows
are “arti�cially” extended to the end of the block is more surprising than not.”

Future work should investigate how pro�ling learning can meaningfully inform �� design. However,
this process will inevitably require good judgment, as programmers are not necessarily consistent
in their beliefs about language design [Tunnell Wilson et al. 2017].

Does adding quizzes to �� textbooks facilitate learning per se? Previous studies have reported that
interspersing questions into educational materials has improved learning outcomes [Andre 1979;
Rothkopf and Bisbicos 1967]. Intuitively, answering a question will prompt a learner to engage
further with the material covered by the question, and we should expect �� quiz questions to be
no di�erent. But the speci�c learning outcomes are contingent on the types of questions asked,
and future work ought to investigate what types of questions are most bene�cial to learning. (As
Section 3.2.2 shows, we can likely rule out “does-it-compile” questions.)

What is the right balance of e�ort to payo� for �� quizzes? Quiz questions likely give diminishing
returns to both the learner and educator as they increase in either quantity or di�culty. Unlike
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a classroom setting, a �� textbook cannot mandate its readers to answer a set of questions. It is
essential therefore to �nd the sweet spot that maximizes both learning outcomes (for the learner)
and insight into the learning process (for the educator).

Why do learners drop out of a �� textbook? All improvements in learning outcomes are for naught
if a learner ultimately gives up on a language. It would be valuable to understand the speci�c
factors that cause learners to stop reading a �� textbook. Is it the language’s perceived di�culty or
complexity? Perhaps a perceived lack of utility or relevance to the learner? Or perhaps the learner
is not giving up at all, and simply feels they have learned enough to attempt their current task.
Future work can consider some form of lightweight “exit survey” to capture these attitudes.

DATA-AVAILABILITY STATEMENT

The book, quizzes, raw data, and data analyses are all available in our Zenodo artifact [Crichton
and Krishnamurthi 2024].
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