
A Core Calculus for Documents

Or, Lambda: The Ultimate Document

WILL CRICHTON and SHRIRAM KRISHNAMURTHI, Brown University, USA

Passive documents and active programs now widely comingle. Document languages include Turing-complete

programming elements, and programming languages include sophisticated document notations. However,

there are no formal foundations that model these languages. This matters because the interaction between

document and program can be subtle and error-prone. In this paper we describe several such problems, then

taxonomize and formalize document languages as levels of a document calculus. We employ the calculus as a

foundation for implementing complex features such as reactivity, as well as for proving theorems about the

boundary of content and computation. We intend for the document calculus to provide a theoretical basis for

new document languages, and to assist designers in cleaning up the unsavory corners of existing languages.

CCS Concepts: • Applied computing! Document scripting languages; • Theory of computation!

Type theory.

Additional Key Words and Phrases: document languages, markup, templates

ACM Reference Format:

Will Crichton and Shriram Krishnamurthi. 2024. A Core Calculus for Documents: Or, Lambda: The Ultimate

Document. Proc. ACM Program. Lang. 8, POPL, Article 23 (January 2024), 28 pages. https://doi.org/10.1145/

3632865

1 INTRODUCTION

We live in a golden age of document languages. We have time-tested methods for authoring stylized
content, such as the widely-used Markdown language. Moreover, new commercially-backed lan-
guages like Typst [Mädje 2022], Markdoc (markdoc.dev), Quarto (quarto.org), and MDX (mdxjs.com)
are providing ever more powerful ways of authoring documents. These languages are built within
a rich tradition established by venerable systems like TEX [Knuth and Bibby 1986] and Scribe [Reid
1980], and continuing with recent languages like Scribble [Flatt et al. 2009] and Pandoc (pandoc.org).

Many of these systems are as much programming languages as document languages. Docu-
ment authors want to systematically format data collections, abstract over similar text, create
abbreviations, hide text for anonymous review, and so on. These tasks bene�t from programmatic
control over the document. Conversely, the lack of programmability in languages like HTML has
generated a cottage industry of document metalanguages, often called template languages. For
example, general-purpose languages with templates include PHP, Javascript (with JSX), and Lisp
(via quasiquotes). Specialized template languages include Jinja for Python and Liquid for Ruby.

This proliferation of document languages raises foundational questions. What are the common
characteristics of document languages? How do they relate? Are existing languages well-designed,
or can we identify what appear to be �aws in their design? Given that documents are programs,
can we reason about them? Our goal in this work is to shed light on these questions through the

Authors’ address: Will Crichton; Shriram Krishnamurthi, Department of Computer Science, Brown University, Providence,

Rhode Island, 02912, USA, wcrichto@brown.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART23

https://doi.org/10.1145/3632865

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8639-6541
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://doi.org/10.1145/3632865
https://doi.org/10.1145/3632865
https://markdoc.dev/
https://quarto.org/
https://mdxjs.com/
https://pandoc.org/
https://orcid.org/0000-0001-8639-6541
https://orcid.org/0000-0001-5184-1975
https://doi.org/10.1145/3632865

23:2 Will Crichton and Shriram Krishnamurthi

design of a core calculus for documents — that is, a formal model for the essential computational

features of a document language. This paper describes the document calculus in four parts:

(1) We motivate the work with case studies about issues in the semantics of existing

document languages (Section 2). We show how document languages from both academia and
industry can lead to unexpected behavior when composing content and computation. The case
studies demonstrate the need to carefully study features like templates and interpolation.

(2) We incrementally describe the formal semantics of the document calculus (Section 3).
We construct the semantics in eight levels of the document language design space drawn
from two key dimensions: document domain (strings or trees) and document constructors
(literals, programs, template literals, template programs). We show how our choice of semantics
corresponds to real-world document languages and also mitigates the issues in Section 2.

(3) We demonstrate how the document calculus can provide a foundation for modeling

complex document features (Section 4).We extend the calculus with three features: references,
reforestation, and reactivity. Each feature is common to many document languages and stresses
a di�erent computational aspect of the calculus.

(4) We use the document calculus to formally reason about document programs (Section 5).
We formalize two useful theorems involving the document calculus. First, we show that our
choice of template semantics produces well-typed terms. Second, we prove the correctness of a
strategy for e�ciently composing references and reactivity.

We conclude with related work (Section 6) and implications for language design (Section 7).

2 DOCUMENT LANGUAGES: THE BAD PARTS

The foundational concept of all document languages is the template. Templates are a kind of
generalized data literal. Templates interleave computation (like expressions and variable bindings)
into content (like strings and trees). The good part of a template is its brevity — with appropriate
concrete syntax, a template can be more concise than a equivalent program without templates.
This section is about the bad parts: when templates go wrong.

We present a series of case studies about how particular designs for template semantics cause
problems at the boundary of content and computation. In each case study, we present a reasonable-
looking program that works as expected. Then we show how a small change can quickly produce
unreasonable results. These issues are not fatal �aws in the language; each has a workaround that
would likely be known to seasoned users. Rather, we are simply drawing attention to common
points of friction that could be both clari�ed and improved with a formal semantics.

2.1 PHP and the Global Mutable Bu�er

PHP (www.php.net) is a popular programming language for web servers. A PHP program is itself a
document, as any text placed outside a <? tag ?> is emitted to the client. However, templates in
PHP are not pure. They do not construct values, but rather write to a global output bu�er. This
impure semantics requires that functions must be called in exactly the right place.

1 <? function mkelems($list) {

2 foreach ($list as $x) { ?>

3 <?= $x ?>

4 <? }}

5 function mklist($list) { ?>

6 <? mkelems($list) ?>

7 <? }

8 mklist([�Hello�, �World�]) ?>

For example, consider a PHP program that fac-
tors a bulleted-list generator into two functions.
On the left, the function mklistwraps the result
of mkelems in a ul tag. The mkelems function
loops through the list and generates an li for
each element. Text within a function but outside
the question-mark-delimited ranges is emitted
to the global bu�er when the function is called.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://www.php.net/

A Core Calculus for Documents 23:3

Now, say the programmer wants to extend
mkelems to return data about $list that is added
as an attribute to the ul inside mklist. The pro-
grammer can easilymodify mkelems to return e.g.
the list length. But how should the programmer
modify mklist? They must call mkelems before
generating the ul in order to access the return
value. But they also must call mkelems after gen-
erating the opening tag in order to position the
list elements correctly.

1 <? function mkelems($list) {

2 foreach ($list as $x) { ?>

3 <?= $x ?>

4 <? }

5 return count($list);

6 }

7 function mklist($list) {

8 $n = mkelems($list); ?>

9 <ul data-n=�<?= $n ?>�> ??

10 <? }

11 mklist([�Hello�, �World�]) ?>

The programmer cannot easily compose the template mechanism with other concerns like
returning auxiliary information. It is possible to work around this limitation through careful use
of PHP’s output bu�ering facilities, but those APIs are also stateful and hence prone to errors.
The key takeaway: an impure semantics for templates can restrict the ability of authors to design
easily-composable document abstractions.

2.2 React and the Unresponsive Component

React (reactjs.com) is a popular Javascript framework for writing reactive interfaces in the browser. A
React program is a tree of components that encapsulate the state and view for a visual object. Ideally,
React re-renders a component when its dependencies update. However, the kinds of components
used in documents cannot always express their dependencies in terms understood by the framework.

1 function Toc() {

2 let [hdrs, setHdrs] = useState(()=>[]);

3 useEffect(() => {

4 let h1s = Array.from(

5 document.querySelectorAll(�h1�));

6 setHdrs(h1s.map(node =>

7 node.textContent));

8 }, []);

9 return

10 {hdrs.map(text => {text})}

11 ;

12 }

Say a programmer wants to implement a table
of contents. A naïve implementation would be
the program on the left. The headings array con-
tains a list of the headings in the document, ini-
tially empty. The function useEffect indicates
that the provided callback should execute after
the component renders. The callback uses the
browser’s DOM API to �nd all headers in the
document. It extracts their text content and saves
that array as local state. The returned template
creates a bulleted list with a bullet per heading.

Here is an example application that uses the
component. The App component creates a lo-
cal boolean state show that is initialized to false.
Then the template returns both a persistent
header and a conditional header. A button is ren-
dered that changes the condition on click, and
then the table of contents is rendered.

1 function App() {

2 let [show, setShow] = useState(false);

3 return <><Toc />

4 <h1>Introduction</h1>

5 {show ? <h1>Appendix</h1> : null}

6 <button onClick={()=>setShow(!show)}>

7 {show ? �Hide� : �Show�} Appendix

8 </button></>;

9 }

rerender
1 Introduction

Hide Appendix

• Introduction

2 Appendix

1 Introduction

Show Appendix

• Introduction This application will correctly render on the �rst
pass, showing a table of contents with one bul-
let for “Introduction”. However, when the user
clicks on the toggle button, the appendix header
will appear, but the table of contents will not
update, indicated by the dotted red rectangle.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://reactjs.com/

23:4 Will Crichton and Shriram Krishnamurthi

The issue is that the header-query computation in the Toc component is not legible to the
reactive runtime — React simply cannot express the concept that a component is dependent on
the content of other components’ views. Therefore, React does not know to re-render the table
of contents when App changes its heading structure. And this issue is not a chance mistake — as
of September 2023, the top �ve results on Google for “react table of contents” are tutorials that
all recommend this strategy. ToC implementations in other reactive frameworks like Svelte work
similarly (janosh/svelte-toc). The key takeaway: computations over documents can have subtle
dependency structures, which easily leads to bugs when combined with reactivity.

2.3 Scribble and the Improper Loop

Scribble [Flatt et al. 2009] is a document-oriented dialect of Racket. Scribble provides a template
language that can interpolate computation via @-expressions, which desugar into standard Racket
code. This desugaring can produce unexpected interactions with macros. For example, this program
uses the for/list macro to map over a list of pairs:

1 @(define pairs

2 (list (list �A� �B�) (list �C� �D�)))

3 @itemlist{

4 @for/list[([p pairs])]{

5 @item{@(car p) @(cadr p)}

6 }

7 }

In this example, the @itemlist represents the
list container, and @item represents a bullet in
the list. The for-loop produces one bullet for each
pair, creating the list:

• A B

• C D

Now say that the programmer wanted to change
the code to �atten the list. A programmer might
expect that factoring the car and cadr into sep-
arate @items should accomplish this task. How-
ever, Scribble instead drops the �rst bullet from
each iteration, producing this list:

• B

• D

1 @(define pairs

2 (list (list �A� �B�) (list �C� �D�)))

3 @itemlist{

4 @for/list[([p pairs])]{

5 @item{@(car p)}

6 @item{@(cadr p)}

7 }

8 }

The cause of the bug is more apparent in this expression within the desugared Racket code:

1 (for/list ([(p pairs)])

2 (item (car p)) ��\n� (item (cadr p)))

The issue is that for/list permits a “body” of s-expressions, where only the �nal s-expression
becomes the value for each iteration. Scribble’s @-expression desugaring directly “pastes” the
sequence of template elements into the for/list body, causing most of the template elements to
be dropped. Notably, Racket’s web-server library uses Scribble’s @-expressions, and its documen-
tation cites this bug as a common “gotcha” for users [McCarthy 2022, §7.3.2]. The key takeaway:
the desugaring of templates to terms requires careful scrutiny to understand how it composes with
other language features.

3 THE DOCUMENT CALCULUS

Section 2 shows that the complexity of a document language lies in more than its syntax: its
semantics a�ect how well parts of the language compose together. However, a challenge in concep-
tualizing document language semantics is that there exists no formal foundations for describing

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://github.com/janosh/svelte-toc/blob/cc7f3d86b047c66b22547dabf9c0b34f32fa158c/src/lib/Toc.svelte#L50

A Core Calculus for Documents 23:5

Table 1. Taxonomy of document languages based on the document calculus. A level is given as a particular

pair document domain and document constructors. Each level corresponds to a specific family of existing

document languages, with hyperlinks to the corresponding section of the paper. Example real-world languages

in the family are provided along with a sample syntax from one of those languages (indicated with italics).

Domain Ctors Model Example Languages Example Syntax

String

Literal D
String

Lit
Text �les, quoted strings �Hello World�

Program D
String

Prog
PLs with string APIs, such

as Javascript

�Hello� + � World�

Template
Literal

D
String

TLit
C printf, Python f-strings,

Javascript template literals,

Perl interpolated strings

let world = �World�;

�Hello ${world}�

Template
Program

D
String

TProg
C preprocessor, PHP, La-

TeX, Jinja (Python), Liquid

(Ruby), Handlebars (Js)

{% set world = �World� %}

Hello {{ world }}

Article

Literal DArticle
Lit

CommonMark Markdown,

Pandoc Markdown, HTML,

XML

- Hello **World**

Program DArticle
Prog

PLs with document APIs,

such as Javascript
var ul =

document.createElement(�ul�);

// ...

Template
Literal

DArticle
TLit

JSX Javascript, Scala 2,

VB.NET, Scribble Racket,

MDX Markdown, Lisp

quasiquotes

@(define world �World�)

@itemlist{@item{

Hello @bold{@world}}}

Template
Program

DArticle
TProg

Typst, Razor C#, Svelte

Javascript, Markdoc Mark-

down

#let world = [World]

- Hello *#world*

how a document language works. Our work aims to establish such a foundation by designing a
document calculus, or a formal semantics for the core computational aspects of document languages.

First, we will establish a scope by asking: what is a document, and what is a document language?
Within this paper, we consider a document to be “structured prose,” that is, plain text optionally aug-
mented with styles (e.g., bold or italics) or hierarchy (e.g., paragraphs or sections) and interspersed
with �gures (e.g., images or tables). This de�nition includes objects like academic papers and news
articles, and it excludes objects like source code, spreadsheets, and computational notebooks. It is
useful to restrict the scope of documents because (a) many languages are often used to generate
objects in the former set, and (b) those languages have commonalities which have not yet been
carefully scrutinized via the lens of PL formalism, unlike e.g. spreadsheets [Bock et al. 2020]. We
will give a formal de�nition of structured prose in the ensuing sections.

A document language, then, is a programming language that is commonly used to generate
documents. Some document languages are specially designed for documents, such as Markdown,
while others are general-purpose but commonly used to generate documents, such as PHP. In

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:6 Will Crichton and Shriram Krishnamurthi

reviewing the space of existing document languages, our key insight is that the design space can
be decomposed along two dimensions:

• Document domain: the type of document generated by a document language. There are two
main document domains: plain strings, and annotated trees of strings (which we call “articles”).
Formally, we write this as:

DomainM ::= String | Article

• Document constructors: the expressiveness of the operations for constructing a value in
the document domain. There are four categories of expressiveness: literals (no computation),
programs (computation over literals), templates literals (literals with interpolation), and template
programs (literals with loops and variables). Formally, we write this as:

Constructor C ::= Lit | Prog | TLit | TProg

A language level is de�ned as an element of the cross product Domain ⇥ Constructor. This
taxonomy is useful because each level corresponds to multiple widely-used document languages,
as shown in Table 1. This taxonomy also provides a natural progression for the development of
the document calculus: starting with string literals, we can add successively more features until
reaching article template programs.

The document calculus therefore consists of 2 ⇥ 4 = 8 levels. Each level of the document calculus
is written as DM

C
, which consists of a document domain M, document expressions ExprM

C
for the

domainM with constructors C, and a semantics that relates the two. This section will present each
level by �rst giving examples of real-world document languages at that level, and then providing a
formal de�nition for the level. We also provide an OCaml implementation of these semantics in the
supplementary materials, using open functions [Löh and Hinze 2006] to match the incremental
presentation of the semantics.
As with any model, the document calculus focuses on some aspects to the exclusion of others.

For instance, concrete syntax is an essential aspect of any document language. However, our focus
is on the computational aspects, so we postpone discussion of syntax to Section 7.2. As another
example, we only model computation as interpolation, binding, conditionals, and loops. We believe
these constructs capture the core commonalities amongst the languages in Table 1. But this decision
inevitably omits various features we consider ancillary to the document language design space.
For instance, template DSLs like Liquid and Handlebars provide a special facility for accessing the
index of a loop iteration, but we do not include that feature in the document calculus.

3.1 The String Calculus

A string B 2 String is a sequence of characters 2 2 Char, such as “x” or “�” or “ ”. We will present

a sequence of document calculi D
String
• in the string domain.

3.1.1 String Literals. The �rst level is the string literal calculus D
String

Lit
. For example, text �les (left)

and string literals (right) are both examples of document languages at this level:

1 I�m suspicious of �strings�. 1 �I�m suspicious of \�strings\�.�

Formally, D
String

Lit
has no computation and therefore the simplest semantics:

Expr
String

Lit
4 ::= B

Type
String

Lit
g ::= String

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:7

3.1.2 String Programs. The next level is the string program calculus D
String

Prog
, which supports

both string-speci�c operations (like concatenation) and domain-general operations (like variable
binding). This level models general-purpose programming languages with support for strings, such
as this Javascript program (left) and Q program (right):

1 // Javascript

2 let x = �a�;

3 x + �b� + x

1 / Q

2 x: �a�

3 x, �b�, x

Formally, D
String

Prog
is System F with a base type of strings and a few features relevant for later levels.

Namely, string concatenation, �xpoints, sums, products, recursive types, and existential types:

Variable G Type Variable U Label ✓

Expr
String

Prog
4 ::= 4

String

Lit
| 41 + 42 | _(G : g). 4 | 41 42 | G | fix(G : g). 4 | let G = 41 in 42 |

{(✓ : 4✓)
⇤} | 4 .✓ | inject 4 at ✓ as g | case 4 {(✓ (G)) 4✓)

⇤}

foldg 4 | unfoldg 4 | ⇤U . 4 | 4 [g] | pack 4 as 9U .g | unpack (G,U) = 41 in 42

Type
String

Prog
g ::= g

String

Lit
| g1 ! g2 | {(✓ : g✓)

⇤} | h(✓ : g✓)
⇤i | 8U .g | `U .g | 9U .g | U

The static and dynamic semantics of all the features are standard, so we provide them in Appen-
dix A.1 for reference. But as a simple example, the “aba” program can be written as as follows:

let G = “a” in G + “b” + G
⇤
7! “aba”

Note that not all of these features are essential for dealing with strings, e.g., recursive types will
only be useful for representing tree documents. But rather than scattering this part of the language
de�nition throughout the levels, we opted to introduce all the relevant System F features here. This
enables the development of later levels to focus more on the purely document-related features.
In the remainder of the paper, we will refer to an assumed standard library of common types

and operations containing the following:

g list , `U . hnil : () | cons : {hd : g, tail : U}i

✓`U .g 4 , fold`U .g inject 4 at ✓ as g [U ! `U .g]

map : 8U, V . (U ! V) ! U list ! V list

fla�en : 8U . U list list ! U list

append : 8U . U list ! U list ! U list

join : String list ! String

3.1.3 String Template Literals. The next level is the string template literal calculus D
String

TLit
. For

example, the “aba” program can be written in Javascript (left) and Python (right) programs using
string template literals:

1 // Javascript

2 let x = �a�;

3 �${x}b${x}�

1 # Python

2 x = �a�

3 f�{x}b{x}�

String template literals are variously called “template strings”, “format strings”, and “interpolated
strings.” We speci�cally use the term “string template literals” to draw a distinction with “string
template programs”. Template literals only support positional interpolation of expressions, while

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:8 Will Crichton and Shriram Krishnamurthi

template programs support additional template-level features such as variable-bindings and loops.
This distinction is useful because both template literals and template programs can be found in
real-world systems.

Formally, templates in D
String

TLit
are a list of template parts which can be either literals (strings) or

interpolated expressions. Within an expression, a template is invoked with the strtpl operator:

Template
String

TLit
C ::= [?⇤]

TPart
String

TLit
? ::= B | 4

Expr
String

TLit
4 ::= 4

String

Prog
| strtpl C

For example, the expression �${x}b${x}� would parse into the abstract syntax strtpl [G, “b”, G].
Templates are fundamentally about providing a concise representation of document programs, as

opposed to increasing the expressiveness of the document language (in the sense used by Felleisen
[1991]). Therefore, we do not provide an operational semantics directly for templates, but rather
provide a translation from templates to the underlying calculus. (We provide a static semantics in
Section 5.1). More precisely, the translation is speci�ed as a family of functions over syntax kinds U
with the form L ·MU : U ! Expr.

Here, we arrive at a critical design question: how should templates translate to terms? As described
in the Scribble case study in Section 2.3, the particular choice of desugaring will in�uence how
well templates compose with other language features. For example, a “direct” desugaring for string
template literals might look like this:

L [?1, . . . , ?=] MTemplate
?
= L?1 MTPart + . . . + L?= MTPart

Lstrtpl C MExpr
?
= LC MTemplate

In this desugaring, a template desugars to a term of type String produced by the concatenation of
desugared template parts, and the strtpl operator is just the identity. This desugaring is, in fact,
a perfectly valid semantics for languages only supporting string template literals. For instance,
the ECMAScript 2024 speci�cation [Guo et al. 2023, §13.2.8.6] describes a roughly comparable
evaluation strategy for ECMAScript template literals.
However, this direct desugaring does not easily generalize to higher levels of the document

calculus. For instance, if a template part can be a variable binding set G = 4 , it is not obvious how
to desugar the binding under this general style of semantics. Or if we want to repurpose templates
to generate trees of strings rather than just strings, then we want the desugaring to not collapse
template parts into a single string too early.

Therefore, the D
String

TLit
semantics are carefully designed to support later levels. That semantics is

given by the following desugaring:

L [] MTemplate = []

L? :: ?B MTemplate = L? MTPart :: L?B MTemplate

LB MTPart = B

L4 MTPart = L4 MExpr

Lstrtpl C MExpr = join LC MTemplate

This desugaring represents a few key design decisions vis-à-vis the direct desugaring. First,
templates desugar to lists rather than strings. Second, the strtpl operator is now responsible for
converting the list to a string by desugaring to a join. And third, the desugaring of a template is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:9

de�ned inductively, providing the opportunity for later desugarings of template parts to access the
tail of the template.
Another possible desugaring for string template literals could follow the example of PHP by

desugaring to e�ectful commands on a global mutable bu�er. However, a pure semantics for
templates avoids the compositionality issue described in Section 2.1 because the output of a
template can be, for instance, combined with auxiliary data in a single data structure. Therefore we
consider the e�ectful desugaring an anti-pattern and focus only on pure desugarings.

3.1.4 String Template Programs. The �nal level of the document calculus in the string domain is

the string template program calculus D
String

TProg
. String template literals reduce the notation required

to concatenate strings and expressions. However, complex templates often involve interpolating
expressions which contain nested templates, requiring additional content delimiters. For example,
compare the string template literal in Javascript (left) with the string template program in Jinja
(right):

1 // Javascript

2 var l = [1, 2, 3]

3 ���

4 Examples of addition include:

5 ${

6 l.map(n => �* ${n} + 1 = ${n + 1}�)

7 .join(�\n�)

8 }

9 ���

1 {# Jinja #}

2 {% set l = [1, 2, 3] -%}

3 Examples of addition include:

4 {% for n in l -%}

5 * {{ n }} + 1 = {{ n + 1 }}

6 {% endfor %}

String template programs (more often called “template languages”) o�er concision by lifting
computations such as binding and looping into the template. Intuitively, the di�erence is that in a
normal program, content is delimited from computation, such as with quotes or backticks. In a
template program, computation is delimited from content, such as with {% percents %} in Jinja.

Formally, D
String

TProg
models this concept by adding support for if-expressions, set-statements, and

foreach-loops:

TPart
String

TProg
? ::= ?

String

TLit
| set G = 4 | if 4 then C1 else C2 | foreach 4 {G . C}

Set-statements must be desugared in the context of the rest of the template, so their desugaring
is de�ned as special case over the syntactic kind Template rather than TPart:

L (set G = 4) :: ?B MTemplate = let G = 4 in L?B MTemplate

Observe here the importance of de�ning the desugaring of a template inductively so as to permit
such special cases, as opposed to independently desugaring each template part.

The semantics of if and foreach are de�nable at the D
String

TProg
level; however, we will delay intro-

ducing them until reaching the article domain (Section 3.2.4). These template parts contain nested
templates and therefore desugar to nested lists, which requires a �attening/splicing mechanism to
un-nest. The explanation of these mechanisms will be more enlightening when contrasted against
article template programs as well as string template programs.

3.2 The Article Calculus

String template programs are the highest level of the document calculus in the domain of strings.
Therefore, we can now proceed by enriching the domain with additional structure. The most

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:10 Will Crichton and Shriram Krishnamurthi

common form of structured document is an attributed tagged tree like this:

Node = ::= text B | node (B, [(B, B)⇤],=⇤)

For example, the introduction to this paper would be modeled like this:

node (“section”, [(“id”, “intro”)], [

node (“header”, [], [text “Introduction”]),

node (“para”, [], [text “We live in a golden age of document languages.”, . . .]

])

Such trees can naturally represent many kinds of documents (e.g., HTML websites, XML data
structures). We focus on the subset of tagged trees that represent articles: a tree that consists of
block nodes (e.g., sections, paragraphs) and inline nodes (e.g., plain text, bold text). More precisely,
we de�ne an article as an attributed tagged tree that adheres to this schema:

Article 0 ::= 1⇤

Block 1 ::= node (“para”, [],^) | node (“section”, [],0)

Text ^ ::= ✓⇤

Inline ✓ ::= text B | node (“bold”, [],^)

For simplicity, this de�nition provides a minimal set of elements that are su�cient to model
interesting aspects of article languages, to the exclusion of some common elements like italicized
text and bulleted lists. We will introduce additional elements and attributes as needed, such as
when discussing references in Section 4.1.

We will present a sequence of document calculi DArticle
• in the article domain, examining how

the mechanisms previously examined for computing with strings can be lifted onto trees.

3.2.1 Article Literals. The lowest level in the article domain is the article literal calculus DArticle
Lit

,
analogous to the string literal calculus. This level models document languages like Markdown (left)
and HTML (right):

1 <!-- Markdown -->

2

3 Hello [world]!

4

5 [world]: https://example.com

1 <!-- HTML -->

2 <p>

3 Hello

4 world!

5 </p>

Formally, DArticle
Lit

just consists of article literals 0:

ExprArticleLit ::= 0

Note that even languages like Markdown are not fully literal. As in the example above, the
feature of named URLs requires interpretation to resolve named references to URL de�nitions. We
will discuss how to model this particular aspect further in Section 4.1.

3.2.2 Article Programs. The next level is the article program calculus DArticle
Prog

of programs that

construct articles through libraries in the base language. Article APIs usually look either like
imperative widget trees as in Javascript (left), or functional combinators over lists as in Elm (right):

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:11

1 // Javascript

2 let p = document.createElement(�p�);

3 let hello =

4 document.createTextNode(�Hello �);

5 let world =

6 document.createElement(�strong�);

7 world.textContent = �world�;

8 p.appendChild(hello);

9 p.appendChild(world);

1 -- Elm

2 import Html exposing (text, p, strong)

3 main = p []

4 [text �Hello �

5 , strong [] [text �world�]

6]

Formally, DArticle
Prog

is the combination of D
String

Prog
and DArticle

Lit
:

ExprArticleProg 4 ::= 4
String

Prog
| 4ArticleLit

We model articles in DArticle
Prog

as a sum of text nodes and structure nodes:

g struct-node , {name : String, a�rs : (String ⇥ String) list, children : g}

NodeTy , `U . htext : String | node : U list struct-nodei

Note that the type system of DArticle
Prog

is expressive enough to evaluate if · ` 4 : NodeTy list for

some document program 4 . However, the type system is not expressive enough to determine that 4
is actually an article, e.g., that there are no block nodes nested in an inline node. This limitation is
present in all existing document languages, except article literal languages like Markdown where
only the article subset of trees is syntactically expressible.

3.2.3 Article Template Literals. The next level is the article template literal calculusDArticle
TLit

. Article
template literals are analogous to string template literals — they are a pithy form of document
constructor with support for expression interpolation, but they evaluate to articles rather than
strings. The most common form of article template literal is either HTML syntax as in JSX Javascript
(left), or XML syntax as in Scala 2 (also left) and Visual Basic .NET (right):

1 // JSX Javascript and Scala 2

2 var items =

3 Array(�Milk�, �Eggs�, �Cheese�);

4 <article>

5 <p>Today I am going shopping for:</p>

6

7 {items.map(item =>

8 <p>{item}</p>)}

9

10 </article>

1 � VB.NET

2 Dim items() =

3 {�Milk�, �Eggs�, �Cheese�}

4 <article>

5 <p>Today I am going shopping for:</p>

6

7 <%= From item in items

8 Select

9 <p><%= item %></p>

10 %>

11

12 </article>

Observe that these syntaxes represent templates in part because all text inside the tags is undelimited,
in contrast to the examples in Section 3.2.2.
Formally, the semantics of DArticle

TLit
are quite simple given our careful setup from earlier. In

Section 3.1.3 we de�ned Template and TPart to model string templates in D
String

TLit
. We will reuse

those features, adding a new template part for tree nodes, and adding a new template expression

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:12 Will Crichton and Shriram Krishnamurthi

for articles:

ExprArticleTLit 4 ::= 4ArticleProg | 4
String

TLit
| treetpl C

TPartArticleTLit ? ::= ?
String

TLit
| node (B, [(B, 4)⇤], C)

Ltreetpl C MExpr = LC M
NodeTy

Template

LB M
NodeTy

TPart
= textNodeTy B

Lnode (B,0C, C) M
NodeTy

TPart
= nodeNodeTy {name : B, a�rs : [(B, L4 MExpr)

⇤], children : LC MTemplate}

For example, the following expression evaluates to the article containing a single paragraph with
the text “HelloWorld”:

let G = “World” in treetpl [node (“para”, [], [“Hello”, node (“bold”, [], [G])])

The key idea is that strtpl C should desugar to an expression of type String, which in turn relies

on LC M
String

Template
to desugar to an expression of type String list. For tree templates, we want treetpl C

to desugar to an expression of type NodeTy list, which in turn relies on LC M
NodeTy

Template
to desugar to

an expression of type NodeTy list. Therefore, there are two key di�erences in the desugarings of
strtpl and treetpl:

• The desugaring of strtpl wraps the template in a join, while the desugaring of treetpl does not.

• The desugaring of strtpl has string literal template parts desugar to terms of type String, while
those same parts desugar to terms of type NodeTy inside a treetpl.

To implement the latter detail, we modify the desugaring function to be context-aware, notated
with the superscript L ·Mg , where a template should desugar to a list containing elements of type g .
The treetpl desugaring enters the NodeTy context, which is assumed to be carried through where
not explicitly written out. The strtpl desugaring similar enters the String context, where string
literals are desugared according to the rule:

LB M
String

TPart
= B

3.2.4 Article Template Programs. The �nal level is the article template program calculus DArticle
TProg

of

article templates with if-expressions, set-statements and foreach-loops. Examples include Typst
(left) and Svelte Javascript (right):

1 // Typst

2 #let items = (�Milk�, �Eggs�, �Cheese�)

3

4 Today I am going shopping for:

5

6 #for item in items [

7 - #item

8]

1 // Svelte Javascript

2 <script>

3 let items = [�Milk�, �Eggs�, �Cheese�];

4 </script>

5 <article>

6 <p>Today I am going shopping for:</p>

7

8 {#each items as item}

9 <p>{item}</p>

10 {/each}

11

12 </article>

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:13

Formally, DArticle
TProg

requires no additional features, and can be generated by composing the last

level of the string calculus with the previous level of the article calculus:

ExprArticleTProg 4 ::= 4ArticleTLit | 4
String

TProg

For example, the shopping list program can be expressed as the following template (imagining
the article domain is enriched with bulleted lists and list items):

treetpl [

set items = [“Milk”, “Eggs”, “Cheese”],

node (“para”, [], [text “Today I am going shopping for”]),

node (“list”, [], [foreach items {item. [node (“item”, [], [item])]}])

]

Now we have su�cient points of reference to return to the question �rst raised in Section 3.1.4:
what are the semantics of foreach and if? The crux of the problem is that these constructs contain
nested templates, which a�ects the dimensionality of the term desugared from a template. To
explain, consider a simple desugaring of foreach into a map:

Lforeach 4 {G . C} MTPart
?
= map (_G . LC MTemplate) L4 MExpr

Then consider the behavior of the example tree template under the simple desugaring. In particular,
observe this part:

Lnode (“list”, [], [foreach items {item. [node (“item”, [], [item])]}]) MTPart

= node (“list”, [], [map (_item. [node (“item”, [], [item])]) items])

⇤
7! node (“list”, [], [[[node (“item”, [], [“Milk”])], . . .]])

Note that the child list of the “list” node is 3-dimensional! That certainly does not match the article
schema provided at the top of Section 3.2. Any document language with a foreach-loop must
somehow �atten the node list to one dimension; the key design question is where in the pipeline
this should happen. A few di�erent approaches can be found in existing languages:

Avoid nested node lists with an imperative template semantics. For example, Svelte will translate
the shopping list program into 132 lines of Javascript. Part of that translation is a function that
constructs the DOM in an imperative manner, like this:

1 insert(target, article, anchor);

2 append(article, p);

3 append(article, t1);

4 append(article, ul);

5

6 for (let i = 0; i < each_blocks.length; i += 1) {

7 each_blocks[i].m(ul, null);

8 }

While this translation avoids the issue of list dimensionality, the use of imperative template
semantics can cause issues as described for PHP in Section 2.1. In the case of Svelte, one limitation
is that templates cannot be nested inside expressions. For instance, this program is not valid Svelte:

1

2 {items.map(item => <p>{item}</p>)}

3

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:14 Will Crichton and Shriram Krishnamurthi

Avoid nested node lists with unquote-splicing. Quasiquotes are a kind of template language where
the unquote-splicing operator can be used to reduce list dimensionality. For example, the shopping
list could be written in Clojure with the Hiccup library (weavejester.github.io) like this (noting the
~@ unquote-splice):

1 (def items [�Eggs�, �Milk�, �Cheese�])

2 (def item-lis (map #(h/html [:li [:p %]]) items))

3 (eval �(h/html [:ul ~@item-lis]))

In DArticle
TProg

, this strategy is modeled by introducing unquote-splicing via a splice template part:

TPartArticleTProg ? ::= ?ArticleTLit | ?
String

TProg
| splice 4

L (splice 4) :: ?B MTemplate = append L4 MExpr L?B MTemplate

Like a set-statement, a splice desugars in context as an append of the spliced head expression to
the tail of the desugared template. Then foreach and if can be desugared into splices:

L (foreach 4 {G . C}) :: ?B M
NodeTy

Template

= L (splice fla�en (map (_G . LC MTemplate) L4 MExpr)) :: ?B MTemplate

L (if 4 then C1 else C2) :: ?B M
NodeTy

Template

= L (splice if L4 MExpr then LC1 MTemplate else LC2 MTemplate) :: ?B MTemplate

Because the desugaring generates another template (without foreach or if but with splice),
the desugaring function must be recursively invoked. We prove that this desugaring produces
well-typed terms (with well-typed inputs) in Section 5.1.

Permit nested node lists as a document IR, and �atten the IR later. For example, document systems
like Scribble, Typst, React, and ScalaTags (com-lihaoyi.github.io/scalatags) provide a document IR
that permits arbitrary levels of nesting. After a document program is interpreted to a value in the
IR, a visitor sweeps through each node and recursively �attens all node lists.

InDArticle
TProg

, this strategy can be modeled by introducing the concept of a fragment as an arbitrarily

nested list of document content:

g fragment , `U . hbase : g | children : U listi

FNode , `U . htext : String | node : U fragment struct-nodei

NodeFrag , FNode fragment

The desugaring for foreach and if can then follow the “simple” desugaring described earlier, with
some additional constructors to build terms of the appropriate type:

ExprArticleTProg 4 ::= . . . | fragtpl C

Lfragtpl C MExpr = elim-frags (childrenNodeFrag LC M
NodeFrag

Template
)

LB M
NodeFrag

TPart
= baseNodeFrag (textFNode B)

Lnode (B,0C, C) M
NodeFrag

TPart
= baseNodeFrag (nodeFNode (B,0C, LC MTemplate))

Lforeach 4 {G . C} M
NodeFrag

TPart
= childrenNodeFrag (map (_G . childrenNodeFrag LC MTemplate) 4)

Lif 4 then C1 else C2 M
NodeFrag

TPart
= childrenNodeFrag (if L4 MExpr then LC1 MTemplate else LC2 MTemplate)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://weavejester.github.io/hiccup/
https://com-lihaoyi.github.io/scalatags/

A Core Calculus for Documents 23:15

It is worth noting that these semantics would be simpler in a dynamically-typed language, as a
nested list could be expressed with the standard list type rather than a bespoke fragment type, and
all the fragment constructors would be obviated.
Under this semantics, a template C should desugar to a term of type NodeFrag. To �atten the

fragment, we introduce a function elim-frags : NodeFrag ! NodeTy list:

elim-frags (baseNodeFrag (textFNode B)) = [textNodeTy B]

elim-frags (baseNodeFrag (nodeFNode (B,0C, 5))) = [nodeNodeTy (B,0C, elim-frags 5)]

elim-frags (childrenNodeFrag ;) = fla�en (map elim-frags ;)

Both the splicing and fragment strategies are reasonable ways to deal with the template dimen-
sionality problem in a functional manner. It is ultimately a matter of taste as to which should be
used in practice. The unquote-splicing strategy seems intuitively cleaner from the perspective of
the language designer (no messy intermediate representation), although the fragment strategy
seems nicer from the perspective of the document author (no worrying about getting just the right
combination of splices).

Note as well that any of these strategies will avoid Scribble’s dropping-elements issue described
in Section 2.3. The key idea is that templates desugar to lists, and in System F a list of strings or
nodes cannot be mistaken for a sequence of expressions (unlike in Racket with its “implicit begin”).
An equivalent DArticle

TProg
program to the one in Section 2.3 would produce the expected output.

4 EXTENDING THE DOCUMENT CALCULUS

Section 3 described the semantics of the document calculus, arguing that it models the features of
popular document languages. The next two sections demonstrate how the document calculus can
provide a foundation for describing higher-level document features and for reasoning about docu-
ment programs. In this section, we extend the document calculus with three interesting document
features: references, reforestation, and reactivity. Each feature requires a non-trivial change to the
language’s semantics — references require staged computation (Section 4.1), reforestation requires
a global analysis of document structure (Section 4.2), and reactivity requires a complex runtime
(Section 4.3). We also provide an OCaml implementation of each feature in the supplemental
materials (note that these implementations are shallowly embedded so as to avoid the verbosity of
System F).

4.1 References

A common feature in document languages is to support identi�ers on nodes that can be referred
to elsewhere in a document. Speci�cally, we consider an extension to the article schema where
sections can have string identi�ers, and a ref element can refer to a section:

Block 1 ::= . . . | node (“section”, [(“id”, B)],0)

Inline ✓ ::= . . . | node (“ref”, [(“target”, B)], [])

The intended semantics are comparable to TEX’s, i.e., the displayed content of a section reference
should be the number of the referenced section. This feature brings two challenges: checking for
invalid references, and computing the content of a reference.

4.1.1 Reference Validity. As alluded to in Section 3.2.2, there are multiple conceptions of validity
when thinking about document programs. For example, one form of validity is well-typedness
of the input: a document expression 4 is valid if · ` 4 : NodeTy list. Another form of validity is

well-formedness of the output: a document expression 4 is valid if 4
⇤
7! E and E 2 Article. In the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:16 Will Crichton and Shriram Krishnamurthi

wild, validity sometimes means parseability: the CommonMark speci�cation [MacFarlane 2021] for
Markdown states that “any sequence of characters is a valid CommonMark document”.
As the document domain is enriched with additional structure, well-formedness becomes an

insu�cient criterion for document validity. In the case of references, an article is not valid if it
references an unknown identi�er, analogous to a free variable. Therefore, we need to model validity
via an auxiliary judgment that captures whether a document is valid beyond its syntactic structure.

Formally, we model reference validity �rst by constructing a identi�er context:

IdCtxt , (String ⇤ int list) list � : IdCtxt

This context maps identi�ers to section numbers. We construct � via the function:

section-ids-at-depthU : int list ! U ! IdCtxt ⇤ int list

The key case that deals with sections is as follows:

section-ids-at-depthNodeTy (: :: :⇤) (nodeNodeTy (“section”, [(“id”, 83), . . .], 2⌘8;3A4=)) =

let (�, _) = section-ids-at-depthNodeTy list (1 :: : :: :B) 2⌘8;3A4= in

let �
0
= (83,: :: :B) :: � in

(�0
, (: + 1) :: :B)

In this case, given a current section numbering : :: :B , the section’s children are analyzed with a
fresh subsection counter placed on the stack. The identi�er context is updated with the current
section’s ID, and the section number is incremented.
Let section-ids(=) = section-ids-at-depth(=, [1]) .0. Then we can de�ne a validity judgment

� ` · valid, where an article 0 is valid if section-ids(0) ` 0 valid. Two representative inference rules
are as follows:

� ` 11 valid · · · � ` 1= valid

� ` [11, . . . ,1=] valid

B 2 dom(�)

� ` nodeNodeTy (“ref”, [(“target”, B)], []) valid

The full validity judgment is provided in the OCaml implementation.
Representing references in documents has a similar �avor to representing binders in deeply

embedded languages [Cave and Pientka 2012; Licata and Harper 2009], and could in theory be ad-
dressed with similar techniques. One important di�erence is that in documents, both identi�ers and
references can be placed anywhere in the document; referential structure is not strictly hierarchical
as with lexically-scoped variables.

4.1.2 Reference Content. The validity judgment must notably be expressed in two stages — one
to collect a context of identi�ers (section-ids(0)), and one to check for validity in that context
(� ` 0 valid). Similarly, the content of a reference must be generated in two stages. In LATEX, for
example, a reference to the next section in this document like \ref{sec:reforesting} will be
replaced by the text “4.2”. This operation is non-local, because the document language cannot know
the section number of a forward reference at the point of reference. Most document languages
accomplish this task with a second pass over the document, such as the .aux �le generated by
LaTeX on a �rst-pass which is later rendered on a second-pass.
We model the generation of reference content in the document calculus as follows. Say that

· ` 4 : NodeTy list and 4
⇤
7! E . Then we compute the �nal document E 0 = render-refs(E) where

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:17

replace-refsU : IdCtxt ! U ! U is a visitor over articles, with the key case as follows:

replace-refsNodeTy (� : IdCtxt) (nodeNodeTy (“ref”, [(“target”, 83)], [],�) : NodeTy) =

textNodeTy (section-number-to-string �[83])

render-refs (3 : NodeTy) = replace-refs (section-ids 3) 3

More broadly, this extension re�ects a key aspects of computing with documents: the validity
and content of a document program’s output can be a global property of program, which requires
commensurate features for non-local computation.

4.2 Reforestation

Another instance of non-local computation in documents is reforestation. In some article document
languages, the document structure expressed by the programmer is often quite di�erent from the
�nal generated document structure. For example, languages like Typst, Scribble, and Markdown do
not require paragraphs to be explicitly wrapped in a tag like <p>; rather, paragraphs are inferred
based on line breaks. Another common operation is to permit the programmer to write sections
linearly, and then to reconstruct the section hierarchy by grouping content between pairs of headers.
In a document language with reforestation, the user writes a template program which is ini-

tially evaluated into a “raw” document tree that is not a syntactically-valid article, but where all
expressions have been reduced to a value. Then a second pass “reforests” the raw document into a
syntactically-valid article by analyzing the global document structure of the input. For example,
the decode function in Scribble [Flatt et al. 2009, p. 113] implements this functionality.
To model reforestation in the article calculus, we add a flowtpl primitive for reforested tree

templates, which desugars into a tree template wrapped in a call to a reforest function:

ExprArticleTProg 4 ::= . . . | flowtpl C

Lflowtpl C MExpr = reforest Ltreetpl C MExpr []

The key detail is the implementation of reforest : NodeTy list ! NodeTy list ! NodeTy list.
The speci�cs vary between languages, but a simple example that we can implement for DArticle

TProg

will collect inline elements into paragraphs. The function reforest iterates through a list of nodes
=⇤ with an accumulator for the current paragraph ?0A . It emits paragraphs upon encountering the
end of a list, a double newline (as in Markdown), or a block node. For example, the document on
the left would be reforested to the document on the right:

[textNodeTy “Hello”,

textNodeTy “World”,

textNodeTy “\n\n”,

nodeNodeTy (“�gure”, [], [. . .]),

textNodeTy “Post-�gure”]

[nodeNodeTy (“para”, [],

[textNodeTy “Hello”, textNodeTy “World”]),

nodeNodeTy (“�gure”, [], [. . .]),

nodeNodeTy (“para”, [], [textNodeTy “Post-�gure”])]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:18 Will Crichton and Shriram Krishnamurthi

The precise de�nition of reforest is as follows:

reforest [] ?0A = [nodeNodeTy (“para”, [], rev ?0A)]

reforest (textNodeTy “\n\n”) :: =B ?0A = (nodeNodeTy (“para”, [], rev ?0A)) :: reforest =B []

reforest ((textNodeTy B) :: =B) ?0A = reforest =B (textNodeTy B :: ?0A)

reforest (nodeNodeTy (B,0C,=B2) :: =B) ?0A =

8>>>>>><
>>>>>>:

nodeNodeTy (“para”, [], rev ?0A) ::

nodeNodeTy (B,0C, reforest =B2 []) ::

reforest =B [] if is-block B

reforest =B (nodeNodeTy (B,0C, 2B) :: ?0A) otherwise

Reforestation again demonstrates how document computation requires analysis of the global
structure of a document, such as by accumulating sequential elements into groups. The correctness
condition for the reforest function is that it must generate a valid document that adheres to the
Article schema. This condition generally assumes that the input NodeTy list also adheres to some
intermediate schema as a precondition. For instance, the implementation above assumes that the
input is already valid and does not, say, contain block nodes within inline nodes. A more aggressive
implementation could attempt to repair an invalid document by, say, reordering invalid node nests.
But in practice, document repair is most often performed during parsing rather than a later stage,
as in HTML and Markdown.

4.3 Reactivity

Modern documents, especially those in the browser, can be reactive to signals such as a timer or user
input. Such reactions include animations, interactive widgets, and explorable explanations. Many
recently-developed document languages focus on reactivity, as we discuss in Section 6.4. Therefore,
it would be valuable to model reactivity within the document calculus. This model enables us to
reason about how reactivity interacts with features like references, as we will discuss in Section 5.2.

Wemodel reactivity by blending ideas from two popular UI frameworks. First, we adopt functional
reactive programming for UIs as in Elm [Czaplicki and Chong 2013], i.e., purely functional state
management via signals. FRP is an appropriate paradigm for the document subset of UIs, and
its purely functional nature �ts well into our purely functional calculus. Second, we adopt UI
components as in React, i.e., encapsulating model and view into a single object. Most existing
reactive document languages use components (except Elm), so we re�ect that fact in the model.

At the core of the reactive model are the types of components, instances, and nodes:

(gprops, gstate) component ,

{init : gprops ! gstate,

update : Signal ⇥ gstate ! gstate,

view : gstate ! ReactNode}

instance , 9gprops, gstate.

{id : InstId,

com : (gprops, gstate) component

props : gprops,

state : gstate,

node : ReactNode}

ReactNode , `U . htext : String | node : U list struct-node | inst : instancei

A component is described by an init function that converts properties into an initial state. The
update function handles a signal (which we just assume Signal = String for simplicity) and returns
an updated state. The view function returns a reactive node for a given state.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:19

An instance is a particular rei�cation of a component. It internally maintains a local state, and
a child view, along with a unique ID that is generated by a function gen-id : () ! InstId. A
component is instantiated with the following function:

instantiate , ⇤gprops, gstate. _(2>< : (gprops, gstate) component). _(?A>?B : gprops).

let BC0C4 = 2><.init props in

let =>34 = 2><.view BC0C4 in

pack {id : gen-id (), 2><, ?A>?B, BC0C4, =>34} as instance

Finally, a reactive node ReactNode is a NodeTy with an additional case for instances. To integrate
instances into templates, we add a reacttpl expression and a component template part:

ExprArticleTProg 4 ::= . . . | reacttpl C

TPart ? ::= . . . | component 41 42

Lreacttpl C MExpr = LC MReactNodeTemplate

Lcomponent 41 42 M
ReactNode
TPart = instReactNode (instantiate 41 42)

For example, the following document uses a counter component that appends to a string every
time the component is clicked:

let counter : (String, String ⇥ String) component = {

init : _? . (?, “”),

update : _4 . _(?, B). if 4 = “click” then (?, ? + B) else (?, B),

view : _(_, B). textNodeTy B

} in

reacttpl [“The number of clicks is”, component counter “|”]

Tomake the document reactive, we must provide it a runtime. The runtime consists of two functions:

• doc-step : (InstId, Signal) map ! ReactNode ! ReactNode takes a reactive document and a
set of signals for each instance, and updates the state of each component with the signal.

• doc-view : ReactNode ! NodeTy replaces instance nodes with their children, creating the �nal
article to display.

Starting with an initial reactive document program 30, the runtime iteratively generates views and
steps in the following pattern:

30 31 31 · · ·

00 01 02

doc-view

doc-step

doc-view

doc-step

doc-view

doc-step

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:20 Will Crichton and Shriram Krishnamurthi

The key case of the step function for instances is as follows:

doc-step (B86=0;B : (InstId, Signal) map) (instReactNode 8=BC : ReactNode) =

if 8=BC .id 8 B86=0;B then instReactNode {8=BC with node = doc-step B86=0;B 8=BC .node} else

let BC0C40 = 8=BC .com.update (B86=0;B [8=BC .id]) 8=BC .state in

let =>340 = 8=BC .com.view BC0C40 in

let =>3400 = reconcile B86=0;B =>34 =>340 in

instReactNode {8=BC with BC0C4
0; 2⌘8;3A4=00}

When an instance receives a signal, then the update function generates the new state, and the
view function generates the new view. However, simply returning the new view would erase all the
state contained in child instances. Therefore, we must reconcile the old and new views, expressed
with the reconcile function. The key case is as follows:

reconcile B86=0;B (instReactNode 8) (instReactNode 8
0)

=

(
doc-step B86=0;B (instReactNode 8) if 8 .com = 80 .com ^ 8 .props = 80 .props

instReactNode 8
0 otherwise

If an instance has the same component and properties as before1, then reconciliation persists its
state and recursively steps the instance. Otherwise, the new instance is returned.

Finally, the view function eliminates all instances from the node tree, with the key case as follows:

doc-view (instReactNode 8) = doc-view 8 .node

This runtime system is su�cient to model an Elm/React-like reactive document language, in-
cluding per-component state and reconciliation on state updates. We provide an example of formal
reasoning about this system in Section 5.2.

5 REASONINGWITH THE DOCUMENT CALCULUS

Finally, we demonstrate the value of the document calculus as a formal foundation (in addition to
being a conceptual foundation) by reasoning about the semantics of document programs. Speci�cally,
we prove two theorems: �rst, we prove that the template desugaring always produces terms of
the correct type (Section 5.1). Second, we show how to design a provably correct implementation
strategy for e�ciently composing references and reactivity (Section 5.2).

5.1 Templates Desugar to Well-Typed Terms

We would like to be able to say that our particular desugaring of templates is “correct” by some
metric. For example, the foreach desugaring in Section 3.2.4 involves both a splice and a fla�en —
we should be unable to prove some correctness theorem if the desugaring omitted either construct.

One such theorem is the statement that templates desugar to well-typed terms. Speci�cally, a
sugared expression treetpl C should desugar to an expression with type NodeTy list. A sugared
expression strtpl C should desugar to an expression with type String. Of course, desugared template
terms are only well-typed if used properly. For instance, a program cannot interpolate an expression
of the wrong type, or use a unbound variable. That is to say: well-typed inputs lead templates to
desugar to well-typed terms.

To capture these ideas, we extend the type system to describe the types of templates. The typing
judgments for templates are systematically constructed from their desugaring, roughly following

1Note that because 8 and 80 are existentially-typed, it is not inherently type-safe to compare their �elds. The runtime must

provision some way of �rst determining whether the two instances have the same type.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:21

the “type resugaring” method developed by Pombrio and Krishnamurthi [2018]. To deal with the
fact that template desugaring is dependent on context, we add a new kind of fact to the typing
context that indicates the current template context:

� ::= . . . | tpl g

Then the typing rules for templates are as follows:

T�S��T��

�, tpl String ` C : String list

� ` strtpl C : String

T�T���T��

�, tpl NodeTy ` C : NodeTy list

� ` treetpl C : NodeTy list

T�N��T��

�, tpl g ` [] : g list

T�C���T��

�, tpl g ` ? : g

�, tpl g ` ?B : g list

�, tpl g ` (? :: ?B) : g list

TP�S��

�, tpl g ` B : g

TP�N���

�, tpl g ` C : g list

88 . � ` 48 : String

�, tpl g ` node (B, [(B8 , 48)⇤], C) : g

TP�S��

� ` 4 : g4
�, tpl g, G : g4 ` ?B : g list

�, tpl g ` (set G = 4 :: ?B) : g list

TP�S�����

� ` 4 : g list

�, tpl g ` ?B : g list

�, tpl g ` (splice 4 :: ?B) : g list

TP�F������

� ` 4 : g4 list �, tpl g, G : g4 ` C : g list

�, tpl g ` ?B : g list

�, tpl g ` (foreach 4 {G . C} :: ?B) : g list

TP�I�

� ` 4 : bool �, tpl g ` C1 : g list

�, tpl g ` C2 : g list �, tpl g ` ?B : g list

�, tpl g ` (if 4 then C1 else C2 :: ?B) : g list

In general, all templates desugar to terms of type g list for some element type g . The rules for each
template part lay out the conditions under which the overall template is well-typed. For example, a
foreach is well-typed if the input 4 is a list, if the nested template C is well-typed under the binding
G , and if the tail ?B is well-typed. If the rules are formulated correctly, then the following theorem
should hold:

T������ 5.1 (D��������� ��������� �����). Let 4 2 ExprArticleTProg . If � ` 4 : g then � ` L4 MExpr : g .

We give the full proof by induction over the derivation of � ` 4 : g in Appendix A.2, but here we
can provide the intuition for one case, again focusing on foreach. Recall the desugaring of foreach
in treetpl:

L (foreach 4 {G . C}) :: ?B M
NodeTy

Template
= L (splice fla�en (map (_G . LC MTemplate) L4 MExpr)) :: ?B MTemplate

= append (fla�en (map (_G . LC MTemplate) L4 MExpr)) L?B MTemplate

By the inductive hypothesis, we can assume that:

� ` L4 MExpr : g4 list �, G : g4 ` LC MTemplate : g list � ` L?B MTemplate : g list

Then the type of the desugared term can be systematically derived in standard fashion. The map

term has type g list list. The fla�en term therefore has type g list. The append term therefore has
type g list. We conclude that the sugared and desugared terms have the same type.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:22 Will Crichton and Shriram Krishnamurthi

5.2 Correctly Composing References and Reactivity

As shown in the React case study in Section 2.2, it requires careful thought to correctly compose
e�cient reactivity with document features like section references. The content of a reference is a
global property of a document based on the number of sections and the location of each section
label. This global computation is conceptually at odds with reactivity, which is oriented towards
localizing computation to components that aren’t aware of their sibling or parent components.

A simple approach to composing these extensions is to postprocess every reactively-generated
document. The simple reactive runtime looks like this:

E0 E1 E1 · · ·

00 01 02

00
0

00
1

00
2

doc-view

doc-step

doc-view

doc-step

doc-view

doc-step

render-refs render-refs render-refs

However, this strategy is needlessly ine�cient. For example, the counter component described
earlier in Section 4.3 would never a�ect the section ordering, and therefore never a�ect the content
of a reference. The IdCtxt � could be computed once on 00 and then reused for all subsequent
computations, or at least until � is invalidated. For example, if the context was persisted after the
�rst step and invalidated on the second step, then such a strategy would look like this:

E0 E1 E1 · · ·

00 01 02

�0 �1

00
0

00
1

00
2

. . .

doc-view

doc-step

doc-view

doc-step

doc-view

doc-step

section-ids

replace-refs

section-ids

replace-refs replace-refs

These two strategies can be formalized as functions simple and incr that take a given article 08
and produce a �nal article 008 . Their semantics are as follows:

simple(08) = render-refs(08)

�
incr
8 =

(
section-ids(08) if 8 = 0 _ dirty(E8�1, E8)

�
incr
8�1 otherwise

incr(08) = replace-refs(08 ,�
incr
8)

The dirty function is the key logic that determines whether � should be recomputed on a given
step. Before considering a speci�c implementation of dirty, we can �rst articulate a correctness
condition for this optimization: the incremental strategy should produce an equivalent document
as the naive strategy for all inputs. Formally:

T������ 5.2 (C���������� �� ����������� �������� ��� ������� ����������). Let 4 2

ExprArticleTProg where · ` 4 : ReactNode. Let 4
⇤
7! E0. Let 8 2 N and E8 = doc-step8 (E0). Let 08 =

doc-view(E8). Then simple(08) = incr(08).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:23

This theorem reduces to the lemma that dirty will always be true if the section IDs have changed
from one document to the next, or formally:

L���� 5.3 (D���� �������� ������ ������� � ������ �� ������� ���������).

section-ids(08�1) < section-ids(08) =) dirty(E8�1, E8)

For example, a simple implementation of dirty can recognize that the document structure can
only change as a result of components. In this implementation, dirty only returns true if any
component’s children includes a section either before or after the step. Say we have a function
descendents : ReactNode ! String set that returns the types of nodes descendent from the input.
Then dirty is as follows:

dirty(instReactNode 8=BC8�1, instReactNode 8=BC8) =

“section” 2 (descendents 8=BC8�1 .node [descendents 8=BC8 .node)

_ dirty(8=BC8�1.node, 8=BC8 .node)

In Appendix A.2 we give a proof of how the theorem reduces to the lemma, as well as the proof
of the lemma for this particular de�nition of dirty. More broadly, the point is that this theorem
demonstrates how the document calculus provides a foundation for reasoning about aspects such
as how global document dependencies compose with local reactive computations.

6 RELATED WORK

The impetus for this work is that, in fact, very little work has attempted to provide a formal
foundation for document languages from a computational perspective. An informal description
of the Scribe language [Reid 1980] was published in POPL 43 years ago. The TEXbook [Knuth and
Bibby 1986] gives a fairly precise speci�cation for TEX, but its principal concerns are parsing and
rendering—less so the computation in the middle. The @-syntax of Scribble [Flatt et al. 2009] is
well-de�ned but its metatheory is not, leading in part to issues as in Section 2.3. Within e�orts to
formalize languages with templates like PHP [Filaretti and Ma�eis 2014], templates are usually a
small footnote within the broader project, rather than a central focus of investigation.
In the rest of this section, we focus on understanding the practical systems that we model in

this paper. Document languages have come a long way since the 1960s when “only a few dozen
people in the world knew how to typeset mathematical formulas” [Knuth 1996]. Most academic
research on document languages in the 20th century focused on vocabulary and abstractions for
the graphical aspects of documents (Section 6.1). Such work largely continues today in the form of
the ever-growing complexity of web browser rendering engines. The 1990s saw an explosion of
languages for generating strings with templates (Section 6.2). In the new millennium, document
language research has shifted focus to the aspects more at the heart of our paper, namely using
computation to generate articles (Section 6.3). Today, the most complex interactions between
content and computation can be found in reactive document systems (Section 6.4).

6.1 Markup Systems

“Markup languages” have a long history as programming languages for marking up documents
that are presented on paper (literally via printing, or metaphorically in a PDF), or presented in the
browser. Coombs et al. [1987] developed an early markup theory that distinguished “procedural
markup”, or low-level graphical commands, from “descriptive markup”, or high-level structuring of
a document. Descriptive markup, later called a “ordered hierarchy of content objects” [DeRose et al.
1997], formed the basis of systems such as SGML [Goldfarb 1990] and HyTime [Newcomb et al.
1991] that would go on to inspire HTML and XML. The article domain of the document calculus

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

23:24 Will Crichton and Shriram Krishnamurthi

de�ned in Section 3.2 is a model for descriptive markup, the predominant model for document
languages used today. (The notable exception to this is TEX, which evaluates into procedural markup
but uses “environments” to attempt to simulate the experience of descriptive markup.)

Early markup systems had relatively primitive support for computation. The Scribe system [Reid
1980] only supported custom environments that were composed out of a �xed set of formatting
attributes. This tradition has continued with modern markup languages. Languages like Mark-
down [MacFarlane 2021], AsciiDoc (asciidoc.org), reStructuredText (docutils.sourceforge.io), Mark-
doc (markdoc.dev), and Pandoc (pandoc.org) all have little native support for anything resembling
computation. At most, these languages have capabilities for resolving references or performing
textual substitution for global variables de�ned in an external con�g �le.
One exception is TEX, which has a powerful macro system. It is notable that only 1 out of 27

chapters of The TEXbook [Knuth and Bibby 1986] concerns macros, a re�ection of how many tasks
TEX had to juggle at the time of its inception. Later computational markup systems like Typst [Mädje
2022] re�ect a signi�cantly greater separation of concerns between computation and rendering.

6.2 String Template Systems

Unhygienic macro systems like the C preprocessor and the M4 processor [Kernighan and Ritchie
1977] can be viewed as the ur-template-systems (what we call a string template program in the
document calculus). Format strings (i.e., string template literals) also date back to the earliest
programming languages such as the PICTURE clause in COBOL, WRITE command in Fortran, and
printf function in Algol 68. Variable interpolation in strings can be found in several early shell
languages, and was later adopted by Perl and Tcl. If-statements and for-loops inside templates were
popularized by PHP, which used these facilities primarily to generate strings of HTML. However,
PHP is today the only widely-used general-purpose programming language (to our knowledge)
with built-in support for string template programs — such features in other languages are expressed
usually through domain-speci�c languages such as Jinja (jinja.palletsprojects.com) for Python,
Handlebars (handlebarsjs.com) for Javascript, or Liquid (shopify.github.io/liquid) for Ruby.

Using string template programs to generate article literals can be prone to error, as discussed in
the PHP case study in Section 2.1. This observation motivated Parr [2004], who gave one of the �rst

formal models of string template literals. Parr’s model is roughly equivalent to the D
String

TLit
level of

the document calculus. Parr’s goal was to reason about the computability of template languages
(so as to demonstrate that a restricted template language was not Turing-complete), while our goal
is to provide a concise model for a wide variety of template features.

6.3 Article Template Systems

As XML and HTML gained popularity, many languages and libraries were developed to provide
better ways of creating and analyzing tree-shaped documents. XDuce [Hosoya and Pierce 2003],
XML Schema [Siméon and Wadler 2003], and CDuce [Benzaken et al. 2003] provided for typed
processing of XML documents, with a focus on encoding domain-speci�c XML schemata into the
type system. The JWIG extension [Christensen et al. 2003] to Java supported XML templates with
holes to address the problems of generating structured documents via strings. “Syntax-safe” string
template engines were designed to ensure that generated strings matched a schema [Arnoldus
et al. 2007; Heidenreich et al. 2009]. Scala even supported XML template literals upon its release,
although XML support has since been deprecated.

Metaprogramming systems share many similarities with article template systems; programs are
trees, and articles are trees. As described in Section 3.2.4, HTML libraries in modern Lisps permit
the use of quasiquotes to generate HTML. To reduce the verbosity of writing string content within

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://asciidoc.org/
https://docutils.sourceforge.io/rst.html
https://markdoc.dev/
https://pandoc.org/
https://jinja.palletsprojects.com/
https://handlebarsjs.com/
https://shopify.github.io/liquid/

A Core Calculus for Documents 23:25

Lisp-embedded articles, Skribe’s Sk-expressions [Gallesio and Serrano 2005] and Scribble’s @-
expressions [Flatt et al. 2009] provide for concise article templates. Our goal of providing statically-
typed templates also overlaps with typed metaprogramming systems like MetaML [Taha and Sheard
1997], Template Haskell [Sheard and Jones 2002], and Scala macros [Burmako 2013], just to name a
few notable systems among many.
A goal of some article template systems is to statically check for the validity of documents,

i.e., that a node tree matches a given document schema. XDuce and CDuce are specially de-
signed for this purpose by supporting the langauge of regular trees as types. Haskell libraries like
type-of-html (knupfer/type-of-html) show how speci�c schema (like HTML) can be encoded
into a su�ciently expressive type system of a general-purpose language. Our goal is to integrate
templates into System F in as simple a manner as possible, so the document calculus only checks
for the weaker property of well-formedness.

6.4 Reactive Article Template Systems

While interest in XML templates has since waned, interest in HTML templates has grown dra-
matically, especially focusing on templates that describe reactive HTML documents. Recent years
have seen many new languages for authoring reactive articles: Idyll [Conlen and Heer 2018],
MDX (mdxjs.com), Observable (observablehq.com), and Living Papers (uwdata/living-papers). In
particular, the JSX extension to Javascript, originally created by the developers of React (reactjs.com),
is now widely adopted within the Javascript ecosystem. Frameworks like Vue (vuejs.org) and
SolidJS (solidjs.com) use JSX, and Svelte (svelte.dev) uses a JSX-like syntax.
Notably, these reactive JS frameworks all provide substantively di�erent desugarings for JSX

into vanilla Javascript. The desugaring provided in Section 4.3 is most similar to React’s, where
the desugaring is straightforward and the runtime does most of the work. However, more recent
frameworks like Svelte have adopted much more complex desugarings to improve e�ciency. Svelte
statically analyzes its templates for data dependencies to determine when components should react
to state changes, avoiding the cost of dynamic dependency analysis. This trend provides a fertile
ground for future PL research that can build on the foundations of the document calculus. Just
as one example, Svelte’s dependency analysis is deeply unsound, as it is not sensitive to �elds
or aliases (see: svelte.dev). Future document languages will need �rm theoretical foundations to
correctly analyze and desugar complex templates.

7 DISCUSSION

This paper has presented the document calculus, a formal model for how templates interleave
content and computation to produce strings and articles. Our immediate goal with this work is to
provide a formal model that can undergird any theoretical investigation into document languages.
Document languages have long been a subject with a plethora of practice but only tacit theory,
especially with regards to the computation/content boundary.
Our long-term goal with this work is to provide conceptual clarity to designers of document

languages. We hope that the vocabulary and semantics of the document calculus can guide future
designs (this paper came out of the authors’ own work in designing a document language). We
conclude by discussing actionable takeaways for document language designers (Section 7.1), and
then discuss one of the major challenges unaddressed in this paper: concrete syntax (Section 7.2).

7.1 Implications for Language Designers

The taxonomy in Table 1 provides a high-level vocabulary for talking about the design space of
document language. A document language designer should ask: which domain and constructors
are most appropriate for their context of use? With regards to constructors, template literals can be

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://github.com/knupfer/type-of-html
https://mdxjs.com/
https://observablehq.com/
https://github.com/uwdata/living-papers/
https://reactjs.com/
https://vuejs.org/
https://solidjs.com/
https://svelte.dev/
https://svelte.dev/tutorial/updating-arrays-and-objects

23:26 Will Crichton and Shriram Krishnamurthi

quite powerful with an expressive language of expressions. But an imperative language with limited
expressions would probably need template programs or else the template DSL is too limiting.

With regards to domain, a language designer should be aware that designing templates for both
strings and articles does not require wholly di�erent features. A shared template language can be
used across both domains; the language just needs di�erent syntaxes for invoking a template in
each domain context (i.e., a string template strtpl versus a tree template treetpl).

The semantics in Sections 3.1 and 3.2 provide one possible implementation strategy for template
desugaring. We strongly recommend a pure strategy over an impure strategy for the reasons
discussed in the PHP case study (Section 2.1). We recommend a variable-binding desugaring
that permits lexical scope and does not require a single global context (Section 3.1.3). We also
recommend carefully considering the dimensionality of lists produced by each template feature to
avoid dimension mismatch, such as by providing a splice/quasiquote feature (Section 3.2.4).

Designers should be aware that reducing expressions to values is not likely to be the last step in
the document generation pipeline (Section 4). Global passes such as section numbering (Section 4.1)
and reforestation (Section 4.2) should execute on the reduced “raw” document. These passes have
a subtle interaction with reactivity (Section 4.3). We provide an example for how these separate
concerns can be composed in Section 5.2.

7.2 Concrete Syntax for Language Users

Concrete syntax is not a common concern in programming languages research, where it is assumed
to be handled through standard parsing techniques. But concrete syntax is essential to document
languages, moreso than most other kinds of programming languages (on par with languages for
novices or compact DSLs). The fundamental utility of a document language is predicated on its
syntactic convenience. Most authors would not want to write at only the DArticle

Prog
level, like this:

1 [text(�We live in a �), bold(text(�golden age�)), text(� of documents.�)]

In that sense, this paper’s subtitle is deliberately inaccurate: lambda is not the ultimate document.
As Olin Shivers wrote, “lambda is not a universally su�cient value constructor,” and that holds
true for constructing documents as well. To that end, future work on document languages should
investigate the design of syntaxes that trade-o� intuitiveness, error-tolerance, and systematicity.
For instance, Markdown’s syntax is designed to be reasonably intuitive and maximally error-

tolerant, at the expense of systematicity. Taking one example from MacFarlane [2018], Markdown
does not have a consistent strategy for parsing lists adjacent to a paragraph. A di�erent behavior
occurs depending on whether the list number is equal to 1 or not, as shown in this Markdown
program (left) with its HTML output according to CommonMark (right):

1 A paragraph

2 1. A list

3

4 Another paragraph

5 2. Another list

1 <p>A paragraph</p>

2 A list

3 <p>Another paragraph

4 2. Another list</p>

More generally, the widespread adoption of Markdown has demonstrated the strong desire
for a concise document syntax. Yet, authors also want computation to simplify authoring of
complex documents, as evinced by both the enduring usage of LATEX and the proliferation of
“Markdown++” successor languages. It is an open question how to get the best of both worlds
— a human-friendly, concise syntax with a principled, powerful semantics. Now is clearly the
time to revisit the accumulated design decisions of past languages to build the foundations for a
better-documented future.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

A Core Calculus for Documents 23:27

DATA AVAILABILITY STATEMENT

The archival version of the artifact for this document is hosted on Zenodo [Crichton and Krish-
namurthi 2023]. The latest version of the artifact is hosted on GitHub (cognitive-engineering-
lab/document-calculus).

ACKNOWLEDGMENTS

This work was partially supported by a gift from Amazon and by the US NSF under Grant
No. 2319014. We are grateful to the numerous individuals who have worked on the document
languages that in�uenced our work.

REFERENCES

Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. 2007. Repleo: A Syntax-Safe Template Engine. In Proceedings of

the 6th International Conference on Generative Programming and Component Engineering (Salzburg, Austria) (GPCE ’07).

Association for Computing Machinery, New York, NY, USA, 25–32. https://doi.org/10.1145/1289971.1289977

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: An XML-Centric General-Purpose Language. In

Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming (Uppsala, Sweden) (ICFP

’03). Association for Computing Machinery, New York, NY, USA, 51–63. https://doi.org/10.1145/944705.944711

Alexander Asp Bock, Thomas Bøgholm, Peter Sestoft, Bent Thomsen, and Lone Leth Thomsen. 2020. On the semantics for

spreadsheets with sheet-de�ned functions. J. Comput. Lang. 57 (2020), 100960.

Eugene Burmako. 2013. Scala Macros: Let Our Powers Combine! On How Rich Syntax and Static Types Work with

Metaprogramming. In Proceedings of the 4th Workshop on Scala (Montpellier, France) (SCALA ’13). Association for

Computing Machinery, New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/2489837.2489840

Andrew Cave and Brigitte Pientka. 2012. Programming with Binders and Indexed Data-Types. In Proceedings of the 39th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12).

Association for Computing Machinery, New York, NY, USA, 413–424. https://doi.org/10.1145/2103656.2103705

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003. Extending Java for High-Level Web Service

Construction. ACM Trans. Program. Lang. Syst. 25, 6 (nov 2003), 814–875. https://doi.org/10.1145/945885.945890

Matthew Conlen and Je�rey Heer. 2018. Idyll: A Markup Language for Authoring and Publishing Interactive Articles on the

Web. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany)

(UIST ’18). Association for Computing Machinery, New York, NY, USA, 977–989. https://doi.org/10.1145/3242587.3242600

James H. Coombs, Allen H. Renear, and Steven J. DeRose. 1987. Markup Systems and the Future of Scholarly Text Processing.

Commun. ACM 30, 11 (nov 1987), 933–947. https://doi.org/10.1145/32206.32209

Will Crichton and Shriram Krishnamurthi. 2023. Artifact for "A Core Calculus for Documents". https://doi.org/10.5281/

zenodo.8409115

Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle, Washington, USA) (PLDI

’13). Association for Computing Machinery, New York, NY, USA, 411–422. https://doi.org/10.1145/2491956.2462161

Steven J. DeRose, David G. Durand, Elli Mylonas, and Allen H. Renear. 1997. What is Text, Really? SIGDOC Asterisk J.

Comput. Doc. 21, 3 (aug 1997), 1–24. https://doi.org/10.1145/264842.264843

Matthias Felleisen. 1991. On the expressive power of programming languages. Science of Computer Programming 17, 1

(1991), 35–75. https://doi.org/10.1016/0167-6423(91)90036-W

Daniele Filaretti and Sergio Ma�eis. 2014. An Executable Formal Semantics of PHP. In ECOOP 2014 – Object-Oriented

Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 567–592.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. 2009. Scribble: Closing the Book on Ad Hoc Documentation Tools. In

Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP

’09). Association for Computing Machinery, New York, NY, USA, 109–120. https://doi.org/10.1145/1596550.1596569

Erick Gallesio and Manuel Serrano. 2005. Skribe: a functional authoring language. Journal of Functional Programming 15, 5

(2005), 751–770. https://doi.org/10.1017/S0956796805005575

Charles F Goldfarb. 1990. The SGML handbook. Vol. 10. Oxford University Press, Oxford, UK.

Shu-yu Guo, Michael Ficarra, and Kevin Gibbons. 2023. ECMAScript 2024 Language Speci�cation. https://tc39.es/ecma262/.

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende, and Marcel Böhme. 2009. Generating Safe Template

Languages. In Proceedings of the Eighth International Conference on Generative Programming and Component Engineering

(Denver, Colorado, USA) (GPCE ’09). Association for Computing Machinery, New York, NY, USA, 99–108. https:

//doi.org/10.1145/1621607.1621624

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://github.com/cognitive-engineering-lab/document-calculus
https://github.com/cognitive-engineering-lab/document-calculus
https://doi.org/10.1145/1289971.1289977
https://doi.org/10.1145/944705.944711
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/2103656.2103705
https://doi.org/10.1145/945885.945890
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/32206.32209
https://doi.org/10.5281/zenodo.8409115
https://doi.org/10.5281/zenodo.8409115
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/264842.264843
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/1596550.1596569
https://doi.org/10.1017/S0956796805005575
https://tc39.es/ecma262/
https://doi.org/10.1145/1621607.1621624
https://doi.org/10.1145/1621607.1621624

23:28 Will Crichton and Shriram Krishnamurthi

Haruo Hosoya and Benjamin C. Pierce. 2003. XDuce: A Statically Typed XML Processing Language. ACM Trans. Internet

Technol. 3, 2 (may 2003), 117–148. https://doi.org/10.1145/767193.767195

Brian W. Kernighan and Dennis M. Ritchie. 1977. The M4 Macro Processor.

Donald E. Knuth. 1996. Digital Typography. (1996). Commemorative lecture of the Kyoto Prize.

Donald E. Knuth and Duane Bibby. 1986. The TeXbook. Addison-Wesley, Boston, Massachusetts, USA.

Daniel R. Licata and Robert Harper. 2009. A Universe of Binding and Computation. In Proceedings of the 14th ACM

SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association for Computing

Machinery, New York, NY, USA, 123–134. https://doi.org/10.1145/1596550.1596571

Andres Löh and Ralf Hinze. 2006. Open Data Types and Open Functions. In Proceedings of the 8th ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (Venice, Italy) (PPDP ’06). Association for Computing

Machinery, New York, NY, USA, 133–144. https://doi.org/10.1145/1140335.1140352

John MacFarlane. 2018. Beyond Markdown. https://johnmacfarlane.net/beyond-markdown.html.

John MacFarlane. 2021. CommonMark Spec Version 0.30. https://spec.commonmark.org/0.30/.

Laurenz Mädje. 2022. Typst: A Programmable Markup Language for Typesetting. Master’s thesis. Technical University of

Berlin, Berlin, Germany.

Jay McCarthy. 2022. Web Applications in Racket. https://docs.racket-lang.org/web-server/.

Steven R. Newcomb, Neill A. Kipp, and Victoria T. Newcomb. 1991. The “HyTime ”: Hypermedia/Time-Based Document

Structuring Language. Commun. ACM 34, 11 (nov 1991), 67–83. https://doi.org/10.1145/125490.125495

Terence John Parr. 2004. Enforcing Strict Model-View Separation in Template Engines. In Proceedings of the 13th International

Conference on World Wide Web (New York, NY, USA) (WWW ’04). Association for Computing Machinery, New York, NY,

USA, 224–233. https://doi.org/10.1145/988672.988703

Justin Pombrio and Shriram Krishnamurthi. 2018. Inferring Type Rules for Syntactic Sugar. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018).

Association for Computing Machinery, New York, NY, USA, 812–825. https://doi.org/10.1145/3192366.3192398

Brian K. Reid. 1980. A High-Level Approach to Computer Document Formatting. In Proceedings of the 7th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Las Vegas, Nevada) (POPL ’80). Association for Computing

Machinery, New York, NY, USA, 24–31. https://doi.org/10.1145/567446.567449

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM

SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Machinery, New

York, NY, USA, 1–16. https://doi.org/10.1145/581690.581691

Jérôme Siméon and Philip Wadler. 2003. The Essence of XML. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (New Orleans, Louisiana, USA) (POPL ’03). Association for Computing Machinery,

New York, NY, USA, 1–13. https://doi.org/10.1145/604131.604132

Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annotations. In Proceedings of the 1997 ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Amsterdam, The Netherlands)

(PEPM ’97). Association for Computing Machinery, New York, NY, USA, 203–217. https://doi.org/10.1145/258993.259019

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 23. Publication date: January 2024.

https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/1596550.1596571
https://doi.org/10.1145/1140335.1140352
https://johnmacfarlane.net/beyond-markdown.html
https://spec.commonmark.org/0.30/
https://docs.racket-lang.org/web-server/
https://doi.org/10.1145/125490.125495
https://doi.org/10.1145/988672.988703
https://doi.org/10.1145/3192366.3192398
https://doi.org/10.1145/567446.567449
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/604131.604132
https://doi.org/10.1145/258993.259019

	Abstract
	1 Introduction
	2 Document Languages: The Bad Parts
	2.1 PHP and the Global Mutable Buffer
	2.2 React and the Unresponsive Component
	2.3 Scribble and the Improper Loop

	3 The Document Calculus
	3.1 The String Calculus
	3.2 The Article Calculus

	4 Extending the Document Calculus
	4.1 References
	4.2 Reforestation
	4.3 Reactivity

	5 Reasoning with the Document Calculus
	5.1 Templates Desugar to Well-Typed Terms
	5.2 Correctly Composing References and Reactivity

	6 Related Work
	6.1 Markup Systems
	6.2 String Template Systems
	6.3 Article Template Systems
	6.4 Reactive Article Template Systems

	7 Discussion
	7.1 Implications for Language Designers
	7.2 Concrete Syntax for Language Users

	Acknowledgments
	References
	A Appendix
	A.1 Definitions
	A.2 Proofs

