Encrypted Search: Leakage Suppression

Seny Kamara

How Should we Handle Leakage?

- Approach #1: ORAM simulation
 - Store and simulate data structure with ORAM
 - General-purpose
 - Zero-leakage (if data is transformed appropriately)
 - polylog overhead per read/write on top of simulation
- Approach #2: Custom oblivious structures

How Should we Handle Leakage?

- Approach #3: Rebuild [K.14]
 - Rebuild encrypted structure after t queries
 - Set t using cryptanalysis
 - Open question: can you rebuild encrypted structures?
- Approach #4: Leakage suppression
 - Suppression compilers
 - Suppression transforms

Leakage Suppression via ORAM

- Common answer is "use ORAM!"
 - usually without any details
 - or experiments
- How exactly do we use ORAM to search?

ORAM

Setup time

Leakage Suppression via ORAM

- ORAM supports read & write operations to an array
 - with polylog(n) cost
 - and leakage profile $\Lambda_{ORAM} = (\mathscr{L}_S, \mathscr{L}_Q) = (dsize, \bot)$
- ORAM is a "low-level" primitive
 - designed for read/write operations to an array
 - what if we want to query a more complex structure?
- Need to use ORAM simulation

ORAM Simulation

- Represent DS as an array and store in ORAM
- Client simulates Query(DS,q) algorithm
 - replaces each Read(i) with ORAM.Read(i)
 - replaces each Write(i,v) with ORAM.Write(i,v)

ORAM Simulation

Setup time

Query time

Query(DS,q)

ORAM Simulation

- Costs O(T·polylog(|DS|))
 - where T is runtime of Query(DS,q)
- Leakage profile
 - Λ = (dsize, (runtime, vol))
 - vol: size of response (can be suppressed with padding)
- Can we do better?

Suppression Compiler

Suppression Compiler for Query Equality

Can we build such a thing?

Suppression Compiler for Query Equality

nrp is the *non-repeating sub-pattern* of patt

Non-Repeating Sub-Patterns

• Leakage patterns can be decomposed into sub-patterns:

$$\mathsf{patt} = \begin{cases} \mathsf{patt}_1 & \text{if "condition" is true} \\ \mathsf{patt}_2 & \text{otherwise.} \end{cases}$$

Non-repeating sub-patterns ≈ leakage on non-repeating queries

$$\mathsf{patt} = \begin{cases} \mathsf{nrp} & \text{if queries are unique} \\ \mathsf{misc} & \text{otherwise.} \end{cases}$$

Suppression Compiler for Query Equality

Cache-based Compiler and Rebuilding

- Cache-based Compiler
 - needs to rebuild encrypted structure from time to time
- So base STE scheme has to have a Rebuild protocol
- Rebuild protocol must
 - be efficient for server
 - have O(1) client storage
 - be zero-leakage

Our Suppression Pipeline

[K.-Moataz-Ohrimenko18]

$$\Lambda = (\mathcal{L}_S, \mathcal{L}_Q)$$

= $(\bigstar, srlen)$

Square Root ORAM

[Goldreigh-Ostrovsky92]

Reinterpreting Square Root ORAM

[K.-Moataz-Ohrimenko18]

Query time

Main Memory + Dummies

ERAM $\Lambda_{\text{ERAM}} = (\mathcal{L}_{S}, \mathcal{L}_{Q})$ $= (\bigstar, \text{qeq})$

if item in cache get dummy else get item

Cache

EDX $\Lambda_{\text{EDX}} = (\mathcal{L}_{S}, \mathcal{L}_{Q})$ $= (\bigstar, \bot)$

Reinterpreting Square Root ORAM

- Square root ORAM ≈
 - "uses a ZL encrypted dictionary...
 - ...to suppress the qeq leakage of an encrypted RAM"
- Can we replace the ERAM with another encrypted structure?
 - if yes then no multiplicative polylog overhead due to simulation

The Cache-Based Compiler

Query time

Main Memory + Dummies

if item in cache get dummy else get item

Cache

EDX
$$\Lambda_{EDX} = (\mathscr{L}_S, \mathscr{L}_Q)$$

$$= (\bigstar, \bot)$$

The Cache-Based Compiler

- EDS has to satisfy certain properties
 - has to be rebuildable
 - has to be "extendable" ≈ can store dummies

• has to be "safe" ≈ handles dummies securely

$$\mathscr{L}_{S}(\overline{DS}) \leq \mathscr{L}_{S}(DS)$$
 $\mathscr{L}_{Q}(\overline{DS},q) \leq \mathscr{L}_{S}(DS,q)$

has to have "small" non-repeating sub-pattern

[K.-Moataz-Ohrimenko18]

- Data structure transformation
 - pad tuples to multiple of α (e.g., $\alpha = 3$)

- PBS.Setup(1k, EMM = DX)
 - creates client state that maps labels to number of blocks
 - sends encrypted dictionary EDX to server

- Consider sequence $(\ell_1, \ell_3, \ell_2, ...)$
- PBS.Get(K, state, Q, ℓ₁)
 - 2 := $DX[\ell_1]$
 - Enqueue $\ell_1 | 1$ and $\ell_1 | 2$ on Q
 - query := Q.dequeue()
 - send EDX.Token(K, query)
 - client only gets back
- PBS.Get(K, state, Q, \(\exists)\)
 - . . .
 - client gets back

- PBS leverages a new tradeoff
 - security vs. latency
 - hides response length (volume) but response not immediate
- PBS has leakage profile
 - $\Lambda = (\mathcal{L}_{S}, \mathcal{L}_{Q}) = (\bigstar, \mathsf{rqeq}, \bigstar)$
 - where rqeq has non-repeating sub-pattern

 - srlen on the last query

Latency Analysis of PBS

Thm: If queries and responses are Zipf distributed then under the inverted query hypothesis, latency is $t + \epsilon \cdot t$ with probability at least

$$1 - \exp\left(-2t\left(\varepsilon \cdot \frac{\alpha}{\mu}\right)^2\right)$$

Our Suppression Pipeline

[K.-Moataz-Ohrimenko18]

The Volume Pattern

- Volume pattern is the size of a response
 - very common leakage pattern (even ORAM leaks it)
 - hard to suppress without blowup in storage
- [Kellaris-Kollios-Nissim-O'Neill16,...]
 - series of attacks vs. volume pattern of range queries

Suppressing Volume with Naive Padding

- Query complexity $O(\max_{\ell \in \mathbb{L}_{MM}} \#MM[\ell])$
- Storage complexity $O(\#\mathbb{L}_{\mathsf{MM}} \cdot \max_{\ell \in \mathbb{L}_{\mathsf{MM}}} \#\mathsf{MM}[\ell])$

Computationally-Secure Leakage

VS.

Unbounded Adversary

Bounded Adversary

Pseudo-Random Transform (PRT)

- Let $F:\{0,1\}^kx\{0,1\}^* \longrightarrow \{0,1\}^{\log \mu}$ be a PRF
- Let $\lambda \ge 0$ be a parameter (min. response length)
- For each label ℓ in MM
 - compute $len(\ell) = \lambda + F_K(\ell \mid \#MM[\ell])$
 - if len(ℓ) < #MM[ℓ] truncate ℓ's tuple to length len(ℓ)
 - if len(l) > #MM[l] pad l's tuple to length len(l)

Pseudo-Random Transform (PRT)

• Example with $\lambda = 1$ and $\mu = 3$

$$\lambda + F_K(\ell_1 | 4) = 1 + 0 = 1$$

$$\lambda + F_K(\ell_2 | 2) = 1 + 2 = 3$$

$$\lambda + F_K(\ell_3 | 3) = 1 + 1 = 1$$

Pseudo-Random Transform (PRT)

- PRT is a "lossy" transformation
- PRT exploits a new tradeoff
 - lossiness vs. security
- Volume hiding relies on pseudo-randomness of F
- Need to analyze
 - Number of truncations
 - Storage overhead

Zipf-Distributed Multi-Maps

A MM is Zipf-distributed if the rth tuple has length

Pseudo-Random Transform (PRT)

Thm: Let $1/2 < \alpha < 1$. If MM is Zipf-distributed, then MM' has size at most

$$\alpha \cdot \# \mathbb{L} \cdot \max_{\ell \in \mathbb{L}} \# \mathsf{MM}[\ell]$$

with probability at least $1 - \exp \left(-\#\mathbb{L} \cdot (2\alpha - 1)^2/8\right)$.

Furthermore, it incurs at most

$$\frac{1}{\log(\#\mathbb{L})} \cdot \#\mathbb{L}$$

truncations with probability at least $1 - \exp\left(-2 \cdot \#\mathbb{L} \cdot \log^2(\#\mathbb{L})\right)$.

Pseudo-Random Transform (PRT)

- PRT has many advantages
 - easy to use and implement \(\cup \)
 - doesn't impact query and storage complexity too much \(\text{\cup}\)
- But it is is lossy
 - for keyword search one can rank results
 - so only low-ranked results are lost

[K.-Moataz19]

- Data structure transformation
 - hides volume 😀
 - query complexity ≈ query complexity of naive padding
 - storage complexity ≤ storage complexity of naive padding
 - non-lossy 😜
- How is this possible?
 - New EMM design framework
 - Computational assumptions from average-case complexity

[K.-Moataz19]

[K.-Moataz19]

- Compressing the state
 - instead of choosing edges/bins uniformly at random
 - use a PRF and store key/rand value in state

Some PRF seeds can lead to collisions so just pick again until no collisions

[K.-Moataz19]

Store bins in a dictionary DX and encrypt DX

[K.-Moataz19]

- To get \(\ell_2\),
 - retrieve rand₂ from state
 - compute bin identifiers
 - $2:= F(rand_2, 1),$
 - $3:= F(rand_2, 2),$
 - $4:= F(rand_3, 3)$
 - retrieve bins

[K.-Moataz19]

$$\frac{N}{n} + \frac{\ln(1/\varepsilon)}{3} \left(1 + \sqrt{1 + \frac{18N}{n \cdot \ln(1/\varepsilon)}} \right)$$

with probability at least 1 - ϵ , where $N = \sum \#MM[\ell]$ $\ell \in \mathbb{L}_{\mathsf{MM}}$

[K.-Moataz19]

- Alternative construction for concentrated MMs
 - V2 and V4 are duplicated so store them only once
 - Pick bi-partite clique at random
 - store duplicated items in clique
 - Pick remaining edges at random

[K.-Moataz19]

Thm: The load of a bin is at most

$$\frac{N - N_{\text{DS}}}{n} + \frac{\ln(1/\varepsilon)}{3} \left(1 + \sqrt{1 + \frac{18(N - N_{\text{DS}})}{n \cdot \ln(1/\varepsilon)}} \right)$$

with probability at least 1 - ϵ , where N_{DS} is the size of concentrated part

Densest Subgraph Assumption

[Applebaum-Barak-Wigderson10]

Erdös-Rényi graph

Erdös-Rényi graph with planted dense subgraph

Densest Subgraph Assumption

[Applebaum-Barak-Wigderson10]

- Variant of the planted clique problem
 - central problem in average-case hardness
- Evidence for hardness
 - studied since the mid-70's in CS & statistical physics
 - failure of powerful algorithmic techniques
 - restricted lower bounds
 - Sum-of-squares
 - Statistical query

Conclusions

- A large and vibrant area of research
- Many interesting and hard problems
- Many fundamental questions
 - how do we model leakage?
 - how do we quantify leakage?
 - how do we suppress leakage?
 - are the tradeoffs we observe inherent? (i..e, lower bounds)

- Many connections
 - algorithms & data structures
 - database theory & systems
 - statistical learning theory
 - optimization
 - graph theory
 - distributed systems

- Many interesting leakage attacks to study
- But many new techniques to bypass leakage attacks
 - padding & clustering techniques [Bost-Fouque17]
 - response-hiding schemes [Blackstone-K.-Moataz19]
 - suppression compilers [K.-Moataz-Ohrimenko18]
 - suppression transforms [K.-Moataz19]
 - worst-case vs. average-case leakage [Agarwal-K.19]
 - distributing data [Agarwal-K.19]

- New tradeoffs to explore
 - leakage vs. correctness [K.-Moataz19]
 - leakage vs. latency [K.-Moataz-Ohrimenko18]

- Real-world impact
 - Microsoft SQL Server
 - MongoDB Field Level Encryption
 - Cisco WebEx
 - Ionic
 - more coming...

Thanks to...

Archita Agarwal

Ghous Amjad

Hajar Alturki

Laura Blackstone

Marilyn George

Tarik Moataz

Olya Ohrimenko

Sam Zhao

The End