SAC Summer School 2019

Encrypted Search:
Leakage Suppression

Seny Kamara

/>
43
\ g

?]
D

7
g

[~" \ ENCRYPTED
BROWN \/X\/ SYSTEMS LAB

42 B
\ENE

How Should we Handle Leakage?

* Approach #1: ORAM simulation

* Store and simulate data structure with ORAM

* General-purpose

* Zero-leakage (if data is transformed appropriately)

* polylog overhead per read/write on top of simulation
* Approach #2: Custom oblivious structures

How Should we Handle Leakage?

* Approach #3: Rebuild [K.14]

* Rebuild encrypted structure after t queries

* Set t using cryptanalysis

* Open question: can you rebuild encrypted structures?
* Approach #4: | eakage suppression

* Suppression compilers

* Suppression transforms

. can we reduce leakage?

Leakage Suppression via ORAM

 Common answer is “use ORAM!”
* usually without any details
* Or experiments
* How exactly do we use ORAM to search?

ORAM

Setup time

ORAM.Setup

- NN

Query time

ORAM.Read(i)

Read(i) < > HEEEEE

>
<

ORAM.Write(i,v)

. . >
Write(i,v) < > -.-.-.

<

Leakage Suppression via ORAM

* ORAM supports read & write operations to an array
* with polylog(n) cost
« and leakage profile Aoram = (%,) = (dsize, 1)

* ORAM is a “low-level” primitive

* designed for read/write operations to an array

« what if we want to query a more complex structure”?
* Need to use ORAM simulation

ORAM Simulation

* Represent DS as an array and store in ORAM
* Client simulates Query(DS,q) algorithm
* replaces each Read(i) with ORAM.Read(i)
* replaces each Write(i,v) with ORAM.Write(i,v)

ORAM Simulation

Setup time
DS Represent ORAM.Setup
: a4
Query time
Query(DS,q)
Read(3) > ORAM.Read(3) g
Write(1,v) ——— ORAM.Write(1,v) _ > -.-.-.
>

Read(10) ——— ORAM.Read(10)

ORAM Simulation

* Costs O(T-polylog(|DS|))
* where T is runtime of Query(DS,q)
* | eakage profile

« A = (dsize, (runtime, vol))
* vol: size of response (can be suppressed with padding)
* Can we do better?

. can we do better than ORAM simulation?

11

Suppression Compiler

(=) —

A = (Zs, #)
= (%, (patts, pattz))

Compiler

— ()

A= (Zs, L)
= (%, patty)

12

Suppression Compiler for Query Equality

@ q Compiler q @

A = (Zs, #) A = (Zs, %)
= (%, geq) = (%, 1)

13

QI Can we build such a thing?

Suppression Compiler for Query Equality

(=) —

A = (Zs, #)
= (%, (geq, patt))

nrp is the non-repeating sub-pattern of patt

Cache-based
Compiler

15

Non-Repeating Sub-Patterns

* Leakage patterns can be decomposed into sub-patterns:

)
= < patt; if “condition” is true
patt =

 pattz otherwise.

* Non-repeating sub-patterns = leakage on non-repeating queries

r

nrp if queries are unique
patt = ¢ . ,
misc otherwise.

\

Suppression Compiler for Query Equality

(=) —

A = (Zs, #)
= (%, (geq, patt))

Cache-based
Compiler

(. . .
nrp if queries are unique
patt = <

\ misc otherwise.

17

Cache-based Compiler and Rebuilding

* Cache-based Compiler

* needs to rebuild encrypted structure from time to time
* SO base STE scheme has to have a Rebuild protocol
* Rebuild protocol must

* be efficient for server

* have O(1) client storage

* be zero-leakage

Our Suppression
[K.-Moataz-Ohrimenko18]

Rebuild

Compiler

—

A =(Ls, Lo, %)
= (%, (geq, patt), patta)

otherwise.

if queries are unique

B} .
Ipe\lﬂe A= (s, %)
= (%, srlen)
RPBS Cache-based
Compiler \
A = (Zs, Yo, %)
= (%, (geq, patt), pattro)
A = (Zs, %)
= (%, L)

19

QI How does the CBC work"?

Square Root ORAM

[Goldreigh-Ostrovsky92]

Setup time

ORAM.Setup Main Memory + Dummies Cache
| 1
Query time Main Memory + Dummies Cache
s 1l b

if item in cache
Leaks qeq but query get dummy
never repeated < else > Lero-leakage

cen

\4

Reinterpreting Square Root ORAM

K.-Moataz-Ohrimenko18]

Setup time Main Memory + Dummies Cache
ORAM.Setu
p} ERAM Aeram = (%, Fq) EDX Aepx = (%, %)
= (%, qeq) = (K, 1)
Query time Main Memory + Dummies Cache
ERAM AERAM = (QS, QQ) EDX Aepx = (0@5, QQ)
= (%, gqeq) = (K, 1)
if item in cache
get dummy
else
get item v

\4

Reinterpreting Square Root ORAM

* Square root ORAM =
* “uses a ZL encrypted dictionary...
* ...to suppress the geq leakage of an encrypted RAM”

° QZ Can we replace the ERAM with another encrypted structure?
« if yes then no multiplicative polylog overhead due to simulation

The Cache-Based Compiler

Setup time Main Memory + Dummies Cache
ORAM.Setu
p EDS Aeps = (%, %) ~ EDX Aeox = (%, 40)
>
= (%, qeq) =0k, 1)
: Main M D '
Query time in Memory + Dummies Cache
EDS Aeps = (%, L) EDX Aepx = (%,)
= (%, geq) = (%, 1)
if item in cache
get dummy
else

tit
v get item v

The Cache-Based Compiler

* EDS has to satisfy certain properties
* has to be rebuildable
* has to be “extendable” = can store dummies

DS A-extension DS
>

* has to be “safe” = handles dummies securely

%(DS) < %(DS) (DS, q) < %(DS,q)

* has to have “small” non-repeating sub-pattern

The Piggy Back Scheme (PBS)

[K.-Moataz-Ohrimenko18]

e Data structure transformation
« pad tuples to multiple of @ (e.g., a = 3)

s T —H NN
T — 7 —
. m | |

—HHE

The Piggy Back Scheme (PBS)

- PBS.Setup(1k, EMM = DX)

* creates client state that maps labels to number of blocks

» sends encrypted dictionary EDX to server

27

The Piggy Back Scheme (P

* Consider sequence (21, €3, €2, ...)
* PBS.Get(K, state, Q, €1) | i
« 2 := DX[€1] S
« Enqueue €111 and €112 0n Q State DX x
« query := Q.dequeue() '

.
* send EDX.Token(K, query) : {
G

* client only gets back ---

* PBS.Get(K, state, Q, £3)

* client gets back -

28

The Piggy Back Scheme (PBS)

* PBS leverages a new tradeoff

* security vs. latency

* hides response length (volume) but response not immediate
* PBS has leakage profile

* A = (Zs, %) = (K, rqeq, %)
* where rgeq has non-repeating sub-pattern
* 1 on all but the last query
* srlen on the last query

Latency Analysis of PBS

Th m o If queries and responses are Zipf distributed then under the inverted
query hypothesis, latency is t + €-t with probability at least

)

Our Suppression
[K.-Moataz-Ohrimenko18]

Rebuild

Compiler

—

A =(Ls, Lo, %)
= (%, (geq, patt), patta)

otherwise.

if queries are unique

B} .
Ipe\lﬂe A= (s, %)
= (%, srlen)
RPBS Cache-based
Compiler \
A = (Zs, Yo, %)
= (%, (geq, patt), pattro)
A = (Zs, %)
= (%, L)

31

. Can we suppress other patterns besides the query equality?

32

The Volume Pattern ;
'h
* lolume pattern is the size of a response m&//

* very common leakage pattern (even ORAM leaks it)

* hard to suppress without blowup in storage
* [Kellaris-Kollios-Nissim-O’Neill16,...]
* series of attacks vs. volume pattern of range queries

33

Suppressing Volume with Naive Padding

MM MM EM

| —HEEE ... |
— [— Ol ey |
m | —I Il Jl--ﬂ

* Query complexity O(max #MM[£))

£elipm

Can we do better?

34

* Storage complexity o(#Lum - max #MMI())

Computationally-Secure Leakage

Unbounded Adversary

VS.

Bounded Adversary

35

°seudo-

Random Transform (

 Let F:{0,13kx{0,1}—{0,1}og v be a PRF
* Let A > 0 be a parameter (min. response length)
* For each label £ iIn MM

» compute len(€) = A + Fk(€ | #MM[L])
* if len(2) < #MM[€] truncate €’s tuple to length len(2)
* if len(€) > #MM[L] pad €’s tuple to length len(?)

RT)

Pseudo-Random Transform (PRT)

* Example with A=1and py =3

MM

m
—
m |

A+Fk(€1]4) = 1+ 0 = 1

A+Fk(£2]2) = 1+2 =3

A+Fk(€3]13) =1+ 1 =1

—>

MM

—il
—
—l

EMM.Setup

>

EMM

T

37

°seudo-

Random Transform (

* PRT is a “lossy” transformation
* PRT exploits a new tradeoff
* |0ssiness vs. security
* Volume hiding relies on pseudo-randomness of F
* Need to analyze
* Number of truncations
* Storage overhead

RT)

Zipf-Distributed Multi-Maps

* A MM is Zipf-distributed if the rth tuple has length

1
o ol DU
#LMM 71 EG]LI\/IM
Response 0 Enron dataset
length
rth Number of

0 200 400 600 800 1000

la belS Keywords rank

Pseudo-Random Transform (PRT)

Th m o Let1/2 < a < 1. If MM is Zipf-distributed, then MM’ has size at most

a - #IL - max H#MM|/]

with probability at least 1 — exp (— #L - (2 — 1)2/8).

Furthermore, it incurs at most
1

log(#L)

truncations with probability at least 1 — exp (— 2. #L. log2(#L)).

Pseudo-Random Transform (PRT)

* PRT has many advantages
* easy to use and implement ©

» doesn’'t impact query and storage complexity too much &

« But it is is lossy &
* for keyword search one can rank results
* SO only low-ranked results are lost

. Can we design a non-lossy transformation?

42

Densest Subgraph Transform
|K.-Moataz19]

* Data structure transformation
* hides volume &
* query complexity = query complexity of naive padding &
 storage complexity < storage complexity of naive padding &
* NON-lossy &

* How is this possible?
* New EMM design framework
* Computational assumptions from average-case complexity

Densest Subgraph Transform
|K.-Moataz19]

« For each label pick py=max#MMI[£] bins at random Size of client state
* store values in bins =
« if #MM[£] < p don't store anything in remaining bins ‘ size of MM
+ Pad all bins
"
MM Client state

eilgy Vi 2| v s 515
-3 — DB
=, v 0 g 81 [B2 85

Densest Subgraph Transform
|K.-Moataz19]

« Compressing the state
e instead of choosing edges/bins uniformly at random
 use a PRF and store key/rand value in state

Client state

O-onm
6 5. [6

Client state

O(#L - max #MM[£]) O(#L)

el

Some PRF seeds can
lead to collisions
so just pick again until
no collisions

45

Densest Subgraph Transform
|K.-Moataz19]

* Store bins in a dictionary DX and encrypt DX

DX EDX

By v [v Bl v [V.
N M- EMM.SetuE -5

B > (I B >[I0

B v+ (B0 B v+ [I0

46

Densest Subgraph Transform
|K.-Moataz19]

« To get £,
* retrieve randz from state
. compute bin identifiers)

F(randy, 1), .
F(randz, 2), eceeoooioannn,
¢ 4:= F(rands, 3) . State DX !

e retrieve bins

Densest Subgraph Transform
|K.-Moataz19]

Th m : The load of a bin is at most

N In(1/e) 18N
w3 (1+\/1+n-1n(1/5))

with probability at least 1 - €, where N =) #MM[/]

£e€limm

Densest Subgraph Transform
|K.-Moataz19]

 Alternative construction for concentrated MMs
* V2 and vs are duplicated so store them only once
« Pick bi-partite cligue at random

* store duplicated items in clique

« Pick remaining edges at random

MM

Densest Subgraph Transform
|K.-Moataz19]

Th m : The load of a bin is at most
N-Nos In(l/e) (1 . \/1 . 18(N—NDS>>

n 3 n-1n(1/¢)

with probability at least 1 - €, where Nps is the size of concentrated part

Densest Subgraph Assumption
|[Applebaum-Barak-Wigderson10]

Erdos-Rényi graph with
planted dense subgraph

Erdos-Reényi graph

51

Densest Subgraph Assumption
|[Applebaum-Barak-Wigderson10]

* Variant of the planted clique problem
* central problem in average-case hardness
* Evidence for hardness
* studied since the mid-70’s in CS & statistical physics
* failure of powerful algorithmic techniques
* restricted lower bounds
* Sum-of-squares
e Statistical query

Conclusions

Encrypted Search: 2000-2019

* A large and vibrant area of research
* Many interesting and hard problems
* Many fundamental questions

* how do we model leakage?

* how do we quantity leakage?

* how do we suppress leakage?

* are the tradeoffs we observe inherent? (i..e, lower bounds)

54

Encrypted Search: 2000-2019

* Many connections
* algorithms & data structures
* database theory & systems
* statistical learning theory
* optimization
* graph theory
* distributed systems

55

Encrypted Search: 2000-2019

* Many interesting leakage attacks to study .
* But many new technigues to bypass leakage attacks
* padding & clustering techniques [Bost-Fouque17]
* response-hiding schemes [Blackstone-K.-Moataz19]
* suppression compilers [K.-Moataz-Ohrimenko18]
* suppression transforms [K.-Moataz19]
* worst-case vs. average-case leakage [Agarwal-K.19]
* distributing data [Agarwal-K.19]

56

Encrypted Search: 2000-2019

* New tradeoffs to explore
* leakage vs. correctness [K.-Moataz19]

* leakage vs. latency [K.-Moataz-Ohrimenko18]

Encrypted Search: 2000-2019

* Real-world impact
* Microsoft SQL Server

* Cisco WebEx
* lonic
* more coming...

Thanks to...

Marilyn George

Tarik Moataz

e o
)
Soglly
wil
Al 7 g

Olya Ohrimenko

Sam Zhao

59

The End

