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ABSTRACT
The ubiquitous growth in the popularity of public cloud
computing platforms as seen today entails an inherent risk:
the shared nature of data center networks (DCNs) renders
co-hosted tenants susceptible to attacks from within the net-
work. In this paper, we discuss the security mechanisms
offered by popular cloud service providers at present, and
explore the extent to which existing data center networks
might be vulnerable to internal denial-of-service attacks. We
describe two categories of attacks: the first comprising those
that are easy to mount, but are ill-disguised and conform
to traditional attack patterns (overt attacks), and the sec-
ond comprising hard-to-detect covert attacks that involve
a greater complexity of deployment, but also show greater
impacts. Finally, we discuss attack-mitigation schemes that
employ common network mechanisms, such as TCP pacing
and Network Virtualization, and also present a new source-
based filtering scheme to regulate network communications.

1. INTRODUCTION
Cloud computing offers a novel way to deploy applica-

tions and services. In this paradigm, a cloud service provider
makes its infrastructure and computational resources—compute,
storage and network—available as a service to users. Providers
can increase profits by multiplexing their resources to mul-
tiple tenants and tenants can deploy their applications and
services in a scalable and inexpensive manner.

While the popularity of public clouds like Amazon EC2 [1],
Microsoft Azure [3] and Google Compute Engine [2] indi-
cates the promise of this model, the shared nature of pub-
lic cloud infrastructures leaves them vulnerable to malicious
tenants. In fact, potential attacks by malicious co-tenants
remains one of the main concerns and barriers to the adop-
tion of public clouds by enterprises and governments [22].

In virtualized data centers, the hypervisor fairly divides
resources like CPU, memory and disk amongst co-hosted
virtual machines (VM), but the network still remains open
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to contention. The lack of isolation in data center networks
(DCN) provides malicious tenants an opportunity to gain
an unfair share of bandwidth or to degrade the quality of
service of other tenants (e.g., competitors).

DCNs are be particularly susceptible to network attacks
due to (at least) three conditions:

• Bandwidth over-subscription and shallow buffers:
DCNs are typically setup as multi-rooted trees with
servers at the leaves and core routers at the roots.
The links are (often) highly oversubscribed; ranging
from 1:2 at the Top of Rack (ToR) switch, to 1:240
from servers to the core [11]. Such a setup allows
an attacker to congest oversubscribed links with high
utilization to maximize impact. Furthermore, network
switches have shallow buffers (typically 4-16 MB) which
makes them susceptible to traffic bursts that quickly
exhaust the switch memory or maximum permitted
buffer for an interface, risking packet losses.

• TCP dominance and diverse traffic workloads:
Typically, 99.5% of DCN traffic is TCP [5]. While the
original 1974 paper proposed packet-switching to share
resources [9] and later efforts incorporated congestion
control to provide fairness, these techniques were pri-
marily focused on low-bandwidth, high-latency setup
with high statistical multiplexing such as the Internet.
In contrast, a DCN is comprised of paths with high
bandwidth-delay product where even a slight variation
in RTTs can cause TCP to back-off, significantly de-
grading throughput. A related point is that data cen-
ters run diverse workloads from ones that require small
predictable latency with others requiring large sus-
tained throughput. Since these flows compete for lim-
ited buffer space at switches, they can hurt each other’s
performance. For example, bandwidth-intensive flows
of backup services can fast build up queues increasing
delay in latency-sensitive foreground services.

• Shared network services and multiple vantage
points: Data centers host a broad range of network
services including DHCP, ARP, and DNS to bootstrap
services and enable communication between instances.
By targeting and disabling these services, a malicious
tenant can effectively attack a large number of co-
tenant services in the data center. While DCNs deploy
defense mechanisms to prevent IP spoofing and gratu-
itous ARP, they are still vulnerable to several classes
of attacks that can be masqueraded as legitimate pro-
tocol messages such as ARP storms and bandwidth



flooding. Note that while cloud providers do impose
per-VM budgets for outgoing bandwidth, an attacker
can still deploy multiple VMs to mount distributed
flooding attacks so as to meet per-VM constraints.

This paper makes a first attempt to examine a broad range
of attacks on data center networks. Our results show that
there are a number of ways for tenants to attack services
hosted in a public cloud. Some of the attacks we consider are
well-known (e.g., SYN, ARP and DHCP floods) but some,
as far as we know, are new and make use of subtle prob-
lems that occur when TCP is implemented in data center
networks. The attacks we consider range from covert at-
tacks, which are virtually undetectable, to more overt ones
that can be detected but are very powerful. We also con-
sider attacks that are targeted at a specific victim service
and attacks that are more indiscriminate and aimed at the
network.

For all the attacks we consider, we study the tradeoffs
between cost of deployment, level of impact, and risk of
detection. We also discuss means to mitigate the impact of
these attacks based on our experimental observations.

In summary, we make the following contributions:

1. we implement and empirically validate a broad range
of attacks targeted at data center networks,

2. we identify the network resources that facilitate these
attacks (e.g., switch buffers),

3. we observe and show how TCP-based performance prob-
lems (e.g., Incast [18] and Outcast [20]) can be lever-
aged by malicious tenants to mount highly covert at-
tacks against other tenants.

4. we demonstrate the feasibility of low-rate DoS in a
DCN requiring modest overhead but that can cause
significant impact.

5. we show the feasibility of well-known bandwidth flood-
ing attacks while still meeting per-VM rate caps en-
forced by cloud providers.

6. finally, we outline techniques to defend against these
attacks using common network mechanisms and dis-
cuss engineering challenges in implementing them.

2. BACKGROUND
DCN Topologies. DCNs that host public clouds typically
have a multi-rooted tree topology as shown in Figure 1. The
links are high-bandwidth, ranging from 10 to 40Gbps and
are often highly oversubscribed. At the lowest level (that
of the top of rack (ToR) switches) the oversubscription rate
is usually 1:2 but at higher levels (e.g., between servers and
core routers) the oversubscription rate can be almost 1:240
[11]. Moreover, the switches in the lower layers of the net-
work are generally inexpensive and have shallow buffers that
range from 4-16 MB.

DCN Workloads. The workloads associated with DCNs
usually include application traffic such as web search, ad-
vertisements, content streaming and data analytics. Such
applications have a diverse set of communication patterns
which include short-lived latency-sensitive flows and long-
lived throughput-sensitive flows. Broadly speaking, we can

Figure 1: Multi-rooted tree topology

categorize them into three categories: bursty query traf-
fic or mice flows (2-20KB), delay-sensitive short messages
(100-1MB) and long or elephant flows (1-100MB) [11]. Typ-
ically, 99.5% of DCN traffic is TCP [5].

DCN security. Public clouds such as EC2 and Azure im-
plement security mechanisms at multiple levels, including at
the host OS, the guest OS, and at the firewall.

EC2 and Azure claim to provide protection against several
traditional network security attacks but recommend that
tenants implement their own protection as well. Standard
DDoS mitigation techniques such as SYN cookies and con-
nection limiting are employed within EC2 [6]. Azure claims
to be able to detect incipient internal DDoS attacks and re-
move the responsible VMs or accounts [16]. In EC2, exter-
nal DDoS attacks are mitigated by providing internal band-
width that well exceeds the provider-supplied Internet band-
width [6] and Azure has load-balancing mechanisms that
mitigate, in part, DDoS attacks from inside and outside the
DCN [16].

IP spoofing is not possible within EC2 or Azure. In EC2
the firewalls ensure the authenticity of all network traffic,
i.e., an instance may only send traffic with source IP/MAC
that is assigned to it [6]. In Azure, filters at the hypervisor
VM switch block any broadcast and multicast traffic with
the exception of DHCP leases and ARP requests [16]. These
filters, along with a restricted IP/MAC to VM mapping that
is ensured by ToR switches, block any source-spoofed pack-
ets. This imposes a strict check on the identity of the source
of the traffic.

Per-VM bandwidth limits are explicitly imposed in Azure
- the amount of bandwidth allocated is proportional to the
instance size, with traffic caps of about 5Mbps for the XS-
mall (smallest) compute instance, to 800Mbps for XLarge
(largest) instances [16]. These bandwidth caps, while im-
posed primarily to ensure a proportionality between the VM
cost and the corresponding network share, also provide a
means to prevent unchecked saturation of bandwidth by a
single or a few VMs. Bandwidth is not limited to set rates in
EC2; instead different instances sizes are assigned different
I/O priorities. If no other instance is utilizing bandwidth on
a particular host, a VM can potentially get as much band-
width as the host is capable of providing [6].

3. ATTACK SETUP
Adversarial model. We assume the cloud service provider
is trusted and any potential flaws in the infrastructure is un-



Figure 2: Network topology for experimental setup

intentional. The attacks that we consider are all mounted
from user space. We also assume the root OS and the hy-
pervisor are secure: the adversary requires no elevated priv-
ileges to deploy and execute the attacks. We assume the
adversary intends to either (a) gain an unfair share of the
network resources (e.g., bandwidth), or (b) deny service to
a targeted network application. The first scenario includes
tenants that want to obtain a greater share of the network
than what they paid for. The second scenario includes ten-
ants that deliberately deny service to other tenants’ appli-
cations; for instance, a competing service that floods the
network so as to degrade the quality of their target’s appli-
cation would fall under this category.

Overview of attacks. We consider four types of attacks
which we classify according to two dimensions. The first
is whether the attack is targeted or indiscriminate, and the
second is whether it is covert or overt (i.e., hard or not to
detect). While targeted attacks are usually harder to deploy,
they also have greater impact and a lower risk of detection.
Indiscriminate attacks, on the other hand, can be easier to
deploy but easier to detect.

Experimental setup. All our experiments were carried
out on a high performance computing cluster with 152 servers
distributed under 4 racks. The cluster employs Cisco SGE2010’s
as ToR switches, with each server-to-switch link having a
bandwidth of 1Gbps. The switches are all connected in a
daisy-chain topology with switch-to-switch link bandwidth
of 1Gbps, as shown in Figure 2. For all experiments, we re-
strict our network traffic to a single rack, the inter-rack iso-
lation ensuring no bottleneck at the switch-to-switch links.

In all our experiments, CPU and memory are never bot-
tlenecked (unless explicitly shown). Each servers is equipped
with two Quad Core AMD Opteron processors with clock-
ing speed of 2.10 GHz, 32GB RAM and 1Gbps NICs. The
nodes run Windows Server 2008 R2 (SP2), and retain all of
their native network parameters. The default TCP RTOmin

is 300ms for each node.

3.1 Cloud Inference
All our attacks rely on a setup phase, in which the attacker

gathers information about the cloud including its network
topology, its VM placement strategy and some network pa-
rameters. As we describe below, previous work has already
shown how this information can be obtained in public clouds;
in our experiments we assume the attacker has already gath-
ered this information.

Topology inference. Raiciu et al. [21] demonstrate the
steps involved in topology inference by inferring the topol-
ogy of an EC2 data center network. The inference relies on
traceroute, iperf and ICMP ping and could be carried out

in any DCN that permits the use of these tools.
Recall that in EC2, VMs run on top of the Xen Hypervisor

[8] with each physical machine hosting several VMs along
with a special Dom0 VM. Dom0 mediates the access of all
other VMs on that machine to the network and reports itself
as an IP hop in traceroutes.

The attack proceeds by launching many instances and by
running ping, traceroutes and iperfs between pairs of in-
stances. The results of these pairwise experiments will differ
depending on whether the two VMs are co-located on the
same machine, are within the same rack, are in the same
subnet or in different subnets. Based on these observations,
the attacker can infer the DCN topology. For more details
we refer the reader to [21].

Cloud cartography and co-location. Cloud cartography
enables an attacker to establish a mapping between instance
creation parameters and location within the cloud. With
such a mapping, the attacker can estimate the instance cre-
ation parameters for a target VM and use them to increase
the probability of co-residence with an adversarial VM. In
[22], Ristenpart et al. explore how to perform cloud cartog-
raphy in EC2 and even using their brute-force techniques, it
is shown that co-residence can be achieved with probability
.4.

We note that our attacks require a comparatively weaker
form of co-residence. In particular, our malicious VMs only
need to be placed on the same rack or subnet, as opposed to
the same physical machine as in the case of [22]. In theory,
this form of rack- or subnet-level co-residence can be carried
out with a higher probability and can be confirmed with in-
expensive checks. For instance, to check if a malicious VM is
under the same rack as a target VM, a simple traceroute can
be carried out; if they are indeed under the same rack, the
traceroute will be of the form VM1-Dom01-Dom02-VM2.
Similar checks can be carried out to confirm subnet-level
co-residence.

Network parameters. We also require estimates of a num-
ber of network parameters. Most of these can easily esti-
mated in any public cloud. For instance, TCP RTTs can
be estimated by methods described by Jiang et al. [14].
For the Traffic Cap imposed on a VM, the available band-
width reported by iperf can be used as an estimate; Jain
et al. [13] also propose mechanisms for end-to-end available
bandwidth estimation. Simple network tools such as ICMP
ping are used to detect increased latency in the network.
The TCP RTOmin can be estimated by using a variation of
the Low Rate Denial of Service (LDoS) attack [15] which
we describe in Section 4.3.

3.2 Comparison of Attacks
We provide a summarizing comparison of all the attacks

explored, evaluating them on the basis of their cost to launch,
impact on the victim, challenges faced due to security mea-
sures, and their detectability. The comparison is depicted
in Table 1.

The comparison elucidates the various tradeoffs involved
in mounting these attacks. The flood-based attacks, which
fall under the overt class of attacks, are easy to deploy, but
are just as easy to detect due to their inconspicuous traf-
fic patterns. The cost of mounting these attacks, which
is proportional to the amount of resources (e.g. number
of adversary VMs) required to achieve a minimum thresh-



Attack Methodology Cost Impacts Detection Challenges in launching the attack

Bandwidth Flood High
Saturation of access link to victim VM,

High occupancy at switch buffer Easy
Filtering of Data packets

at source

SYN Flood Low
Denial of service for

connection attempts to victim VM Easy
Filtering and throttling of

SYN packets at source

ARP Flood High
Saturation of links within subnet,
High occupancy at switch buffer Easy

Throttling of ARP packets
at source to very low rates

DHCP Flood High
Saturation of links within subnet,
High occupancy at switch buffer Easy

Throttling of ARP packets
at source to very low rates

Low Rate DoS Low
Low throughput for long

TCP flows Difficult
Reduced impact and greater

detection at low values of RTOmin

TCP Incast Low
Low throughput for long TCP flows,

High latency for short TCP flows Difficult Placing VMs in target rack

TCP Outcast High
Low throughput for long TCP flows,

High occupancy at switch buffer Difficult Placing VMs outside target rack

Table 1: Comparison of Attack Strategies

old impact on the victim’s network performance parameters
(e.g. throughput, latency, etc.), is generally high. However,
these attacks form an important class of attacks, since they
demonstrate the feasibility of launching distributed attacks
to circumnavigate per-VM traffic caps that are typically im-
posed in DCNs.

The covert attacks (Incast, Outcast, Low Rate DoS) are
relatively difficult to deploy due to the co-location constraints
associated with them. At the same time, these attacks are
comparatively much tougher to detect, and their degenera-
tive impacts are much more pronounced. These are generally
low cost attacks, since a few adversarial VMs are sufficient
to achieve the desired performance degradation. The covert
attacks add a new dimension to mounting attacks within
DCNs, since they specifically exploit the properties of the
data center networks to attain their effectiveness.

A study of these attacks also reveals a number of chal-
lenges associated with deploying them effectively; aggres-
sive throttling of specific flood traffic (e.g., SYN, ARP and
DHCP packets) at their source could significantly decrease
their impact, consequently increasing the cost of deploy-
ment. For the covert attacks, co-location adds to the com-
plexity of launching the attacks, since their effectiveness re-
lies on strategic placement within the network. Modification
of the parameters on which the attacks rely can also nullify
their impact to a certain extent; for instance, reducing the
TCP RTOmin affects the impacts of the Low Rate DoS and
Incast attacks.

4. COVERT ATTACKS
A majority of traffic in public clouds is TCP traffic, al-

beit in varying mixtures of short-lived latency-sensitive flows
and long-lived throughput-oriented flows. TCP, however,
was designed to acheve long-term throughput fairness in
the Internet and its application in DCNs suffer from sev-
eral shortcomings. Two of the most important ones are the
TCP Incast [18] [24] and the TCP Outcast problem [20].

We observe that these shortcomings can be effectively
used to perform highly covert targeted and indiscriminate
DDoS attacks in DCNs. As we show experimentally, these
attacks can be very powerful; throttling the throughputs of
targeted VMs down to as much as 10% of their expected
values.

4.1 The Incast Attack
The TCP Incast problem was first observed by Nagle et

al. [18] and arises due to all-to-one communication patterns
in high bandwidth, low latency networks that employ TCP
such as DCNs and commodity clusters. Typically, the Incast
problem is observed in barrier-synchronized request work-
loads, where a client requests data from multiple servers and
can only proceed once it has received responses from all the
servers. Examples include distributed storage, MapReduce
and web-search workloads. In such settings, the responses
from the servers get synchronized at the input ports of the
connecting switch (usually at the ToR level) and fill up its
shared memory pool. This results in packet losses for one
or more of these responses and, under severe losses, TCP
experiences a timeout which lasts at least RTOmin amount
of time. The timeout, along with the barrier synchronized
nature of the communication, results in a drastic drop in
application throughput.

Deployment. Our first attack is based on the observation
that the incast problem can be exploited to attack co-hosted
tenants. In fact, if an attacker can strategically place ad-
versarial VMs throughout the DCN in such a way that it
can re-create the incast communication pattern, then it can
significantly affect the target’s traffic. The attack is particu-
larly effective if the target traffic is latency-sensitive. Figure
3 describes the setup needed by the attacker. First, a num-
ber of malicious VMs have to be co-located on the same
rack as the target VM. As discussed in Section 3.1, this can
be done using previous techniques. The adversarial VMs
then periodically emit short, synchronized, bursty flows to
the target VM. This causes high buffer occupancy at the
shallow-buffered ToR switch and induces packet drops for
any other flow destined to the target. The impact is espe-
cially drastic for latency-sensitive short flows, since the TCP
retransmission timeouts triggered by the packet drops cause
them to default their flow deadlines.

Experimental results. We experimentally validated the
impact of this attack by simulating the communication pat-
tern observed in cluster filesystems in our own setup. In
our experiment, a victim client issues a request for a block
of data of size B that is striped across N servers. Each
sender responds with B/N bytes of data. Only after having



Figure 3: Schematic for Incast based attack

Figure 4: Incast: Drop in application throughput
with increase in number of synchronized flows

received responses from every server does the client issue
requests for the subsequent data block. Some or most of
these flows can be visualized as adversarial flows, where the
adversary attempts to add to the number of synchronized
flows at the switch buffers. This adds to the likelihood of
buffer overflows, increasing the number of TCP timeouts
and, therefore, the impact of TCP’s congestion control on
the victim flow(s).

Each experiment is run for 200 block transfers of block-
size B = 1MB to observe steady-state performance, cal-
culating the application throughput at the client over the
entire duration of the transfer. All flows are TCP flows with
RTOmin = 300ms.

Since the attack traffic resembles the traffic pattern of the
victim, i.e, both the patterns conform to common barrier
synchronized workloads, it becomes increasingly difficult to
distinguish the attack traffic from the legitimate flows re-
quired by the victim. In fact, a traffic pattern analysis alone
would fail to distinguish the attack pattern from a typical
Map-Reduce workload – validating the classification of this
attack as covert.

The results of the experiment are shown in Figure 4. We
confirm the sharp drop in application throughput on increas-
ing the number of barrier synchronized flows. The drop is
extremely rapid at the beginining, but slows down with the
further addition of flood-senders; at N = 6 senders, the ap-
plication throughput drops to as much as 10% of the original

Figure 5: Schematic for Outcast based attack

(≈ 800Mbps), but does not fall significantly beyond that.
This implies that a potential adversary could cause desired
degradation of throughput even with a small number of ad-
versarial flows, imposing a minimal cost on attack deploy-
ment, while causing a sustained impact on victim through-
put.

4.2 The Outcast Attack
The TCP Outcast problem is another problem that arises

when TCP is used in low-latency DCNs. More specifically,
it occurs when commodity switches that employ a droptail
queuing policy at the output buffers are used. Outcast was
first observed by Prakash et al. [20], and works as follows.
Whenever a burst of packets arriving at any two incoming
ports of a switch are destined to a common output port, the
tail-drop queuing mechanism causes a batch of consecutive
packet drops at the input ports. This phenomenon is re-
ferred to as a port-blackout. Since the tail-drop scheme is
unbiased, the port-blackout is also unbiased and affects one
of the two ports uniformly at random. However, when a
small set of flows and a large set of flows—each at different
input ports—compete for the same output port, the small
set receives a much lower throughput and is said to be out-
cast from the large set. This occurs because port-blackout
causes packet drops for each set at random, but the number
of packet drops is distributed across a larger number of flows
in the case of the larger set. Thus the flows belonging to the
smaller set are more likely to lose an entire tail of their con-
gestion window during the blackout, which results in TCP
timeouts. This causes severe damage to the throughput for
the smaller set of flows, whereas the larger set remains rel-
atively unaffected. This bias in the throughput distribution
is referred as TCP Outcast.

Deployment. As in the previous Section, we observe that
the outcast problem can be exploited to attack co-hosted
tenants. By strategically deploying malicious VMs through-
out the DCN and re-creating the outcast communication
pattern, an attacker can greatly affect the throughput of the



target’s traffic by artificially inducing port blackouts at par-
ticular switches. Figure 5 shows one such placement strategy
where N malicious flows under ToR2 compete with a single
victim flow under ToR2 for a common output port at ToR1
that leads to the target VM. We use this placement strategy
to carry out our attack in our experimental testbed.

The impact of outcast attacks is diminished if the cloud
enforces low traffic caps, which is the case in Azure (see
Section2). Traffic caps can be circumvented, however, by
using a distributed outcast attack, where the malicious flows
are distributed over multiple VMs so as to stay under the
cap.

Experimental results. The setup to verify the impacts of
the outcast attack was modeled on the placement strategy
described in Figure 5. The N sources, along with the victim
sender, issue uncapped bulk TCP flows to the target des-
tination. As discussed, the placement model ensures that
the set of adversarial flows compete with the victim flow at
different switch input ports, for the same switch output port
leading to the target destination.

Note that the outcast attack remains covert, since it mim-
ics the workload observed in common all-to-one communi-
cations in DCNs; since the attack employs TCP flows, it
does not conform to the aggressive flood based DDoS attack-
patterns that generally flout network protocols. The Out-
cast attack achieves its impact in spite of the adversarial
flows being subject to TCP congestion control mechanism,
which reduces its likelihood of being identified as malignant
traffic.

The results of our experiments are shown in Figure 6
which measures the average throughput at the victim as
a function of the number of adversarial flows. We see that
the drop in throughput for the victim flow increases signifi-
cantly with the increase in the number of competing adver-
sarial flows; the throughput falls to as much as ≈ 10Mbps,
which is just 10% of it fair share (≈ 100Mbps), at N = 9
adversarial flows. As with the incast attack, this shows that
the adversary is capable of causing severe degradation of the
victim’s network performance at a relatively meager cost of
deployment, with the outcast attack.

We also describe the impacts of distributed outcast at-
tacks in DCNs with different per-VM bandwidth limits. Fig-
ure 7 compares the impact of a traffic cap of R on the victim
throughput drop for 6 malicious VMs. Thus, at low traffic
caps, the adversary must face a trade-off between the mag-
nitude of damage caused to the victim flow (quantified as
the throughput drop) and the cost incurred (quantified as
the number of VMs used to issue the adversarial flows).

4.3 Low-Rate Denial of Service Attack
TCP’s congestion control mechanism, albeit robust to a

range of network conditions, implicitly relies on end-system
co-operation. This gives rise to a well known vulnerability,
that has known to have been exploited by malicious high-
rate unresponsive flows. However, these flows are easy to
detect and remedial measures are relatively simple. On the
other hand, low-rate attacks, which are just as harmful as
the high-rate counterparts, pose much more of a threat since
they are difficult for routers and counter-DoS measures to
detect [15].

Deployment In an LDoS attack, an attack TCP stream
is generated and made to flow through a buffer B that is
shared with the target flow. The attack flow consists of short

Figure 8: The attack stream with a periodic square-
wave pattern

Figure 9: Schematic for low-rate DoS attack

bursts of packets that repeat after a chosen slow-timescale
frequency. The stream has a periodic square-wave pattern
composed of bursts of duration ` at a rate R that repeat
every T seconds (see Figure 8). The parameters `, R, and
T are changed to achieve maximum impact. In particular,
the burst rate R is kept sufficiently high to cause buffer
overflows at B (which results in packet drops for the target
stream) but low enough to avoid detection. Similarly, the
burst duration ` is kept larger than the RTT of the target
stream in order to ensure that all packets within the TCP
congestion window for that RTT are dropped. Standard
results from queuing theory show that if the buffer is cleared
out at c Mbps, then to ensure a buffer overflow at B one must
have

(R + RTCP − c) · ` < |B|

where RTCP is the rate of the target stream.
Every time the target stream’s packets are dropped, the

victim waits RTO amount of time to retransmit another
packet. Ignoring packet losses due to slow start in the tar-
get flow (i.e., the victim can send data at full rate for (t −
RTO) time in each period of the attack stream) the victim’s
throughput is expected to reduce to at least

T − RTO

T
×RTCP.

Experimental results. We study the impact of LDoS at-
tacks in DCNs. Our experimental setup is depicted schemat-
ically in Figure 9. The adversary issues periodic UDP bursts
to the destination with burst duration ` = 20ms and time
period T varied from 20ms to 1000ms in 20ms intervals.
The burst rate R is uncapped, and is allowed to saturate
the available bandwidth. At the same time, the victim is-



(a) N = 3 (b) N = 6 (c) N = 9

Figure 6: Drop in Victim flow throughput at N = 3, 6 and 9.

(a) R = 100Mbps (b) R = 200Mbps (c) R = 400Mbps

Figure 7: Drop in Victim Flow throughput at different traffic caps: R = 100, 200 and 400Mbps

Figure 10: Variation of aggregate throughput of vic-
tim flow and attack stream with inter-burst period
(T ) (no traffic caps)

sues a TCP flow to the same destination. The victim flow
and the LDoS stream share an output buffer at the switch
port leading to the destination. The TCP RTOmin is kept
at 300ms, and the victim flow RTT is around 1ms.

The results of our experiment are shown in Figure 10. It is
evident from the results that with the increase in the inter-
burst duration (i.e., the time period of the attack stream) the
aggregate throughput of the attack stream decreases, making
it increasingly harder for it to be detected. Also, the maxi-
mum impact of the attack stream occurs at roughly around
T = 300ms, 150ms, 100ms, etc. (i.e., when the inter-burst
duration is a factor of the TCP RTOmin). This is explained
as follows: every time the victim experiences packet drops,
it waits for RTOmin (or a multiple of RTOmin, as per the

exponential back-off mechanism) amount of time before it
retransmits packets. However, if the inter-burst duration is
roughly equal to (or a factor of) the TCP RTOmin, then the
attack bursts coincide with the victim’s attempts to retrans-
mit packets, throttling its throughput to a minimum.

Inferring RTOmin. We note that this analysis also pro-
vides a way to determine the best values for the parameter
T for given ` and R: since the aggregate throughput for the
attack stream keeps decreasing with increase in T , the value
of T at which the last minimum for the victim through-
put occurs (T = Tideal) is ideal. As discussed before, Tideal

is roughly equal to the TCP RTOmin and offers maximum
victim throughput degradation at minimum attack stream
detectability. This method is also useful to estimate the
TCP RTOmin (≈ Tideal), an important network parameter
as discussed in Section 3.1.

Distributed LDoS. In order to study the impact of traf-
fic caps, we performed the above experiment with varying
values of R. Both the attack rate R as well as the vic-
tim flow rate RTCP were capped at different values, and the
results obtained are depicted in Figure 11. The primary
observation is that with lower traffic-caps, the throughput
degradation is lower (almost non-existent for a traffic cap of
200Mbps). However, this provides us with another insight
into increasing the impact of the traffic-capped attack: the
use of multiple synchronized attack streams to carry out a
distributed low-rate attack.

On using multiple attack streams at a traffic cap of 200Mbps
(Figure 12), we see that the impact increases with the num-



Figure 11: Effect of traffic caps on Victim flow
throughput

Figure 12: Effect of multiple attack streams on vic-
tim flow throughput at a traffic cap of 200Mbps

ber of synchronized attack streams employed. The victim
throughput is reduced from 200Mbps to 50Mbps with 5 at-
tack streams at T = Tideal.

We also study the impact of burst-duration ` on the through-
put degradation. We carried out the experiment as de-
scribed above with burst rate R fixed at different values
(R = 200Mbps in Figure 13 (a), R = 400Mbps in Figure
13 (b), R = 800Mbps in Figure 13 (c)), and burst-duration
` = 5ms, 10ms, 20ms. The victim sends data at full rate,
i.e., attempts to saturate the available bandwidth. We see
that at lower attack-rates (R = 200Mbps), increasing the
burst-duration increases the victim throughput degradation
significantly; however, at higher attack rates (R = 800Mbps)
the throughput degradation remains the same at all ` val-
ues. Thus, the study of the trade-off between the burst-rate
R and the burst-duration ` provides the adversary a means
to minimize both the burst-duration and the burst-rate and
still achieve maximum victim throughput degradation.

5. OVERT ATTACKS
Flood based attacks have been widely explored in the In-

ternet scenario, where a targeted service is flooded with a
large volume of traffic to overwhelm the network and deny
service to legitimate users. These attacks are typically car-
ried out by means of botnets, whereby a large number of
compromised hosts are used to send the flood traffic to the
victim service.

Deployment We explore the applicability of flood based
attacks (which we categorize as overt attacks) to the Data
Center Network, where a malicious tenant attempts to flood
a target service or VM in the cloud from within the DCN.
The basic schematic followed by the flood based attacks is
described in Figure 14. A number of malicious VMs (Flood-
Senders) are used to send a barrage of packets to a victim

Figure 14: Schematic for flood-based attacks

Figure 15: Victim throughput decreases signifi-
cantly with increase in the number of senders

VM (Target). Meanwhile, any VM sending legitimate traffic
(Honest-Sender) would experience denial of service.

5.1 Bandwidth Flood
The bandwidth flood relies on flooding the access link to

the target VM with a flood of data packets. As a distributed
attack, several malicious VMs generate a flood of traffic with
the same target destination. Even with a traffic cap imposed
on each VM, the adversary utilizes the distributed nature
of the attack to not only saturate the victim access link
saturated but also keep high buffer occupancy at the switch
port leading to victim.

Experimental results. Our experimental setup to study
the impacts of bandwidth flood comprised N malicious senders
that send a barrage of non-spoofed TCP packets to a target
host. Each sender issues the flood stream at a packet rate
of R = 1000 packets/sec, with each packet having a payload
of 1460 Bytes (≈ 12 Mbps). The Honest-Sender attempts
to establish a bulk TCP flow to the same target VM, and
the denial of service experienced is quantified as the drop in
TCP throughput experienced in the presence of the flood.

Figure 15 shows that drop in TCP throughput experi-
enced is not proportional to the flood traffic; for instance,
at 3 Flood-Senders, TCP throughput drops from 900Mbps



(a) R = 200Mbps (b) R = 400Mbps (c) R = 800Mbps

Figure 13: Effect of burst duration ` and burst rate R on victim throughput

(at no flood traffic) to 400Mbps, where as the cumulated
flood traffic is only about 36Mbps. This is explained by the
network-buffer overflows at the switch port leading to the
target: the high volume of incoming traffic at the switch
port results in packet drops for the both the well behaved
TCP flow and the flood traffic; however, the TCP conges-
tion control mechanism causes the victim flow throughput
to fall by a considerable amount, while the malicious flood
traffic continues at its fixed rate.

5.2 SYN Flood
The TCP SYN flood works to exploit TCP’s three-way

handshake mechanism to establish a connection between the
server and a client. An adversary sends out a flood of TCP
SYN packets to the server, and each of these packets is han-
dled as a new connection request. This results in a large
number of open connections and the server responds to each
of the SYN packets with SYN-ACK packets. The half open
connections saturate the number of available connections
that the server is able to make, and the server is unable to
respond to legitimate connection requests. In modern Op-
erating Systems, protection against SYN flood include mea-
sures like dropping connections randomly when the number
of half-open connections exceeds a certain threshold; this
would still prevent a legitimate client from connecting to
the server successfully during a SYN flood attack.

Experimental results. Our setup to study the impacts
of the SYN flood attack consisted of N senders that send
a flood of non-spoofed TCP SYN packets to the server at
a packet rate of R packets/sec. We measure the number
of connections in the SYN received state (i.e., the number
of half open connections) at the server during the flood.
Figure 16a shows the time-variation of the number of half-
open connections at R = 1000 packets/sec, Figure 16b shows
the variation at R = 5000 packets/sec and Figure 16c at R
= 10000 packets/sec. The number of half open connections
provides an estimate of the amount of resources used up at
the server.

We see that the number of half-open connections at the
server saturate with two or more senders flooding it with
SYN packets. This is most likely a protection scheme pro-
vided by the operating system to prevent over-allocation of
resources to the half-open connections; however, this also
shows that the server is likely to drop incoming connection
requests with higher probability under those flood condi-
tions.

We also study the impact of the flood on a legitimate

Figure 17: Number of failed connections saturates
beyond 8 Flood-Senders

client attempting to connect to the server. We setup the
SYN flood as before, but also include an honest client which
continuously attempts to connect to the server; as soon as
the the client establishes a connection successfully, it imme-
diately disconnects and re-attempts connecting to the server.
However, if the client is unable to connect, it waits for the
connection timeout before it re-attempts connecting. We
measure the number of disconnections experienced by the
legitimate client in the duration of the flood (800s) at a
flood rate R = 1000 packets/sec.

Figure 17 shows that the number of failed connections in-
creases with increase in the number of Flood-Senders, and
saturates at over 8 Flood-Senders, when the client is un-
able to establish any connection successfully. This provides
a means to deny service to cloud-based services with a rela-
tively small number of malicious VMs.

5.3 ARP Flood
The Address Resolution Protocol is ubiquitously employed

to map network addresses (IP) to physical addresses (MAC).
By means of this protocol, a sender that needs to determine
the MAC address of a known destination IP node broadcasts
an ARP request to every host in the network. Only the des-
tination node responds to the request through an ARP reply
in unicast mode. Under usual operation, only the intended
destination responds to the ARP request. The protocol has
proved to work well under normal circumstances - however,
it was not designed to cope with malicious hosts.

One possible way to exploit the protocol is through ARP
cache poisoning - where an adversary sends out spoofed ARP



(a) R = 1000 packets/sec (b) R = 2000 packets/sec (c) R = 3000 packets/sec

Figure 16: Time-variation of the number of half-open connections, at different flood-rates R

Figure 18: Impact of ARP flood on TCP throughput
at flood rate R = 10000 packets/sec

packets to associate the its own MAC address to a target IP
address, so that it can intercept all of the target’s incoming
traffic. However, this attack is infeasible on a Data Center
network, since the switches and routers are configured to
intercept and filter source-spoofed traffic.

We look at another ARP based attack that exploits the
broadcast nature of ARP packets to cause ‘broadcast storms’
within the network. The adversary issues a flood of (non-
spoofed) ARP packets requesting resolution of a particular
IP. On reaching the switches, these packets are broadcasted
to all the hosts in the subnet. This results in a ‘storm’ of
ARP packets in the network, causing bandwidth saturation,
resource utilization at the hosts and high buffer occupancy
at the switches.

The ARP flood falls into the category of indiscriminate
attacks due to their widespread impact. Although the ma-
licious ARP requests are issued with a single specified IP
to resolve, their broadcast nature causes them to affect all
hosts within a particular subnet (which we verify shortly in
the experimental results). However, the attack’s indiscrimi-
nate nature is what adds to its overtness.

Experimental results. The experimental setup to study
its impact comprised N malicious senders sending out a
flood of ARP packets at a packet rate R, requesting the
MAC address of a particular target IP. Meanwhile, the le-
gitimate sender establishes a bulk TCP flow to the same
target; as before, the impact of the flood is quantified as the
drop in the TCP flow throughput during the flood.

Figure 18 shows the decrease in throughput of the TCP
flow, along with the number of TCP retransmissions expe-

Figure 19: Comparison of ARP Requests sent vs.
ARP Replies received at different R

rienced at the legitimate sender, on increasing the number
of malicious senders at R = 10000 packets/second. Each
ARP request packet has a total size of 60 bytes, bringing
the flood traffic volume to 4.5 Mbps per malicious sender.
As with the bandwidth flood, the throughput drop for the
victim flow is not proportional to the traffic, due to packet
drops at the switch port leading to the target.

A comparison of the number of ARP replies received to
the number of ARP requests transmitted yields interesting
observations. Figure 19 shows the ARP packets sent and
received at different sending rates R over a duration of 10s.
We observe that the number of replies per request sent out
decreases at extremely high sending rates, indicating a bot-
tleneck of resources at the victim. We verify this by measur-
ing CPU interrupts at the victim at the different flood rates
(R) as shown in Figure 20. On increasing the flood-rate R
at a fixed number of malicious senders (N = 1), the inter-
rupts/sec experienced by the victim increases significantly,
limiting the victim’s ability to respond to each of the ARP
requests at extremely high flood rates (R = 100000 pack-
ets/sec).

We also look at the spikes in CPU interrupts at hosts that
are not the target of the malicious ARP requests, but receive
them nonetheless due to the broadcast nature of these pack-
ets. Figure 21 shows the incoming and outgoing data traffic
contrasted with the CPU interrupts that occur per second
at one of these hosts. Thus, it is evident that even the non-
target hosts experience significant bottlenecking of its CPU
resources, as much of it is utilized in handling the interrupts
as a result of the incoming ARP requests.



(a) R = 1000 packets/sec (b) R = 10000 packets/sec (c) R = 100000 packets/sec

Figure 20: CPU interrupts/sec at target host contrasted with incoming/outgoing data traffic due to ARP
flood, at different flood-rates R

(a) R = 1000 packets/sec (b) R = 10000 packets/sec (c) R = 100000 packets/sec

Figure 21: CPU interrupts/sec at non-target host contrasted with incoming/outgoing data traffic due to
ARP flood, at different flood-rates R

5.4 DHCP Flood
The Dynamic Host Configuration Protocol is another broad-

cast based network protocol widely used to configure net-
work devices to enable communication over an IP network.
DHCP has several modes of operation, but we focus on how
DHCP is used for allocation of network addresses to hosts.
Initially, a client broadcasts a DHCPDISCOVER packet
containing its MAC address, on the physical subnet to dis-
cover available DHCP servers. The DHCP servers then re-
spond with DHCPOFFER packets (either broadcast or uni-
cast), each offering an available IP address to the client. The
client may only respond to any one of these offers (if there
are multiple offers) with a DHCPREQUEST packet, which
is again broadcast, since it is meant for all DHCP servers.
The chosen server then responds with either a DHCPACK
(along with reservation of the requested IP address for the
client) or DHCPNACK packet depending on whether or not
the IP address is still available. If the response is a DHC-
PACK, the client tests out its new IP by sending out an ARP
request for it: if no other client responds, the allocation is
complete; otherwise, the client responds to the DHCP server
with a DHCPDECLINE, declining the IP lease and restarts
the whole process.

Again, one of the common attacks on DHCP involves a
malicious client sending out multiple DHCP requests with

spoofed MAC addresses, to exhaust the available IP ad-
dresses at the DHCP server, denying the allocation of IPs
to legitimate clients. As we have already seen, Data Center
networks are resilient against source spoofing.

We focus on another attack strategy which utilizes DHCP
to create a broadcast storm, quite akin to the ARP based
attack. We only rely on the first two steps of DHCP opera-
tion: the adversary sends out a flood of DHCPDISCOVER
packets, which are broadcasted across the subnet, and the
DHCP server(s) associated with that subnet respond with
DHCPOFFER packets, which may be broadcast or unicast.
Again, as with the ARP storm, the DHCP storm also falls
into the category of indiscriminate attacks; the attack does
not target a particular VM, but the subnet as a whole.

Experimental results. We use a setup similar to the pre-
vious flood based attacks to study its impacts: N malicious
hosts broadcast a flood of non-spoofed DHCPDISCOVER
packets at a packet rate R. Figure 22 shows the drop in
throughput for a bulk TCP flow between two hosts in the
same subnet, at different values of R and N . Increasing the
number of senders and the packet rate causes bandwidth
saturation and high buffer occupancy at the switch ports,
resulting in a larger throughput drop.

We compare the number of DHCPDISCOVER packets



Figure 22: Impact of DHCP flood on TCP through-
put

Figure 23: Comparison of DHCPDISCOVER pack-
ets sent vs. DHCPOFFER packets received at dif-
ferent R

sent out with the number of DHCPOFFER packets received
by the client at different sending rates R. The results are de-
picted in Figure 23; we observe that the number of DHCPOF-
FER packets received in reply is much lower than than the
number of requests sent out, as the DHCP server throttles
the rate at which it responds to the requests with DHCPOF-
FER packets.

6. MITIGATING ATTACKS
A majority of the attacks discussed have significant im-

pacts with moderate to low costs of deployment, exploiting
shortcomings in the protocols that regulate network com-
munication in the data center network. In this section, we
outline possible ways for the mitigation of these attacks -Ű
each has its pros and cons and pose several engineering chal-
lenges in its implementation; our aim in their discussion is to
motivate the research community to work in this important
area.

6.1 Network Virtualization
Network virtualization aims to improve costs and manage-

ability of the network akin to server virtualization. One ap-
proach is to leverage proposals such as Open-Flow [17] that
maintain rules for routing state in a logically centralized con-
troller which can be queried at the time of connection-setup.
The rules can be cached locally to minimize overheads. This
approach can help prevent network based attacks, for exam-
ple, by

(a) effectively converting broadcast (ARP/DHCP) requests
into single lookups (e.g., via a directory service),

(b) optimizing traffic flow management by monitoring the
types of flows (throughput-oriented or latency-sensitive)
carried by each device/link and re-routing them on per-
formance degradation, and

(c) managing ACLs at the data center level (in contrast to
the current hypervisor-level at each server) to enable
network isolation between services.

6.2 TCP Pacing
TCP pacing has been proposed to handle bursty flows that

reduce network efficiency. The key idea is to evenly space
transmitted data over an RTT instead of sending a single
burst. This technique has been analyzed to provide bet-
ter fairness and throughput; it stands to reason that TCP
Pacing would mitigate the impacts of attacks that rely on
DCN-specific unfairness among TCP flows. TCP Pacing has
been shown to reduce the impact of the Outcast problem to
an extent [20]. However, a key engineering challenge is
to implement it in an environment with a high bandwidth-
delay product, as in a datacenter. In particular, pacing can
in fact worsen the throughput due to synchronized losses
and delay of congestion signals. Moreover, it requires pa-
rameter tuning as the performance is sensitive to the choice
of parameters. Techniques such as intelligent active queue
management [4] can be explored to address some of these
concerns.

6.3 Filtering Mechanisms
In any attack, the adversary relies on the ability of the

attack traffic to reach its target host or victim, unfiltered at
key points in its flow-path. It is inherently difficult to clas-
sify any data traffic within the network as malicious traffic,
sans cases in which the traffic betray certain ill-disposed
characteristics (such as source-spoofed packets); this makes
the adversary’s task significantly simpler. The situation de-
mands a stricter monitoring of communication between the
different VMs within the network.

A preliminary conclusion would suggest that such a mech-
anism should prevent malicious traffic from reaching their
target VMs; this ideally requires that only pairs of trusted
VMs should be allowed to communicate with each other in
the DCN. While this can be ensured by filtering incoming
malicious traffic at a host, an even better alternative would
require that the malicious traffic be dropped at the source
itself. There are challenges associated with both the ap-
proaches; we compare and contrast the two with regards to
both their pros and cons.

Destination-based filtering. One possible approach is
destination-based filtering: packets arriving at a node (that
hosts several VMs) are checked to determine whether the
intended destination of the packet has approved communi-
cation from the packet’s specified source. This prevents the
target VM from being overwhelmed by packets from un-
trusted sources, and this filtering can easily be implemented
at the hypervisor or the host operating system (or typically
as firewall rules for each VM, as in Azure [6] and Amazon
EC2 [16]). However, this still allows the malicious pack-
ets to saturate the links and fill up the switch buffers along
the path leading up to the target - virtually denying any
legitimate communication to the target VM or service.



Source-based filtering. To overcome the shortcomings
of the destination-based scheme, we propose a source-based
filtering mechanism that detects and filters malicious traffic
at source. As discussed, in an ideal situation, only groups
of mutually trusted VMs should be able to communicate
with each other. In our scheme, any network traffic that
violates this is identified and filtered at source. We define
communication groups as groups of VMs that are allowed to
communicate with each other within the DCN. By default
these groups are allocated according to the ownership of the
VMs - all VMs belonging to the same owner (i.e., a single
tenant) would form a closed communication group. These
groups can be extended to include other trusted owners or
tenants, upon verification by both parties.

The membership of VMs is authenticated by a Directory
System, akin to that employed by VL2 [11] to maintain a
mapping between application-specific addresses (names) to
location-specific addresses (locators). Our Directory System
maps the VM IP addresses to the communication group that
they belong to; before issuing a packet, the host checks its
local cache of directory entries to verify if the destination
of the packet belongs to the same communication group as
its source. If the directory entry is not present in the local
cache, a query is issued to the Directory System, requesting
the same. If the destination is verified to be in the source
VM’s communication group, the packets are transmitted,
and dropped otherwise.

The primary advantage of this mechanism is that it pre-
vents potentially malignant traffic from ever leaving its source,
thereby minimizing instances of intentional link saturation
and switch-buffer congestion. However, potential drawbacks
include performance overheads and added latency associated
with the directory lookups.

7. RELATED WORK
In this section we briefly present some of the research lit-

erature related to vulnerabilities in DCNs and mechanisms
to ensure fairness in sharing the network.

Vulnerabilities in DCNs. Ristenpart et al. [22] describe
inherent risks in public cloud platforms by exploring the
feasibility of co-location - the ability to place VMs within
the network that are resident on the same physical machine
as a target VM. With extensive analysis, it is possible to
map instance parameters to its assigned IP; this mapping
is exploited to determine a likely host where the target VM
may reside, and several instances are instantiated with sim-
ilar parameters until co-location is achieved. Raiciu et al.
[21] show the feasibility of deducing the network topology
information in DCNs, despite the service provider’s inten-
tions to keep it confidential. The authors utilize a set of
relatively simple network tools, including iperf, ICMP ping,
and traceroute, to infer the network topology for an Amazon
EC2 data center.

TCP has been shown to suffer from a number of issues in
data center networks. Nagle et. al [18] introduced the TCP
Incast Problem - the loss in throughput experienced by ap-
plication employing barrier synchronized workloads in stor-
age networks. Subsequent works [24], [10], [25] further ex-
plore the Incast problem, and Vasudevan et al. [24] suggests
several mitigation mechanisms including high-resolution ker-
nel timers and randomized timeouts.

Prakash et al. [20] discuss the TCP Outcast Problem,

which arises when a small set of flows at one input port
of a shallow-buffered switch competes with a large set of
flows at another input port, for the same output port; in
such situations, the smaller set of flows experiences signifi-
cant throughput drop. The same work also describes several
solutions to the problem, namely, RED, SFQ, TCP pacing
and Equal Path Routing.

Implementing fairness in Network Sharing. Signifi-
cant effort has been invested in developing a fair mechanism
to share network resources in DCNs in recent works. Sec-
ondNet [12] and Oktopus [7] are mechanisms that provide
static allocation of network resources per-tenant; while Sec-
ondNet employs rate-controllers at the hypervisor to ensure
per-flow rate-caps, Oktopus utilizes virtual networks con-
necting the VMs to provide the tenant with a fixed share of
network resources.

Sheih et al. [23] describe (Seawall) as a performance iso-
lation scheme that allocates bandwidth to customers on a
per-source basis; it assigns equal weights to all the sources
communicating over a link and distributes the bandwidth
accordingly.

Popa et al. [19] identify the primary requirements of
bandwidth allocation in DCNs – Network Proportionality,
Minimum Guarantee, and High Utilization – and showed
that the difficulty in realizing fair allocation mechanisms lie
in the tradeoffs associated with these requirements. The
authors also describe different allocation mechanisms to the
navigate these tradeoffs.

Alizadeh et al. [5] introduce DCTCP as a solution to per-
formance impairments faced by a varied mix of workloads
in data center networks. DCTCP modifies TCP to leverage
Explicit Congestion Notification (ECN) for provide feedback
to end hosts; this ensures low switch buffer utilization, alle-
viating impacts of TCP Incast and queue buildups that are
characteristic of mixed workloads.

8. CONCLUSION
In this work, we show how the public cloud platform, due

to its shared network infrastructure, is inherently vulnerable
to attacks from a malicious tenant. The experiments on
the various attacks and their results verify the feasibility of
launching such attacks in a cloud environment, and allow us
to compare them on the basis of their cost of deployment
and the resulting detrimental impacts.

Based on the observations, we outline how common net-
work schemes (TCP Pacing, Network Virtualization) can be
employed to mitigate the impacts of such attacks. We also
propose a new mechanism to regulate network communica-
tions in the data center network - a source-based filtering
mechanism that scrutinizes network packets for malignant
traits at their origin, and restricts network based communi-
cation to pre-defined communication groups. This inhibits
the adversary’s ability to direct malicious traffic to their tar-
geted victims, adding a new degree of complexity to mount-
ing attacks within DCNs.
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