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Abstract
Labeling training data is increasingly the largest bottleneck in deploying machine learning systems. We present Snorkel, a
first-of-its-kind system that enables users to train state-of-the-art models without hand labeling any training data. Instead,
users write labeling functions that express arbitrary heuristics, which can have unknown accuracies and correlations. Snorkel
denoises their outputs without access to ground truth by incorporating the first end-to-end implementation of our recently
proposed machine learning paradigm, data programming. We present a flexible interface layer for writing labeling functions
based on our experience over the past year collaborating with companies, agencies, and research laboratories. In a user study,
subject matter experts build models 2.8× faster and increase predictive performance an average 45.5% versus seven hours
of hand labeling. We study the modeling trade-offs in this new setting and propose an optimizer for automating trade-off
decisions that gives up to 1.8× speedup per pipeline execution. In two collaborations, with the US Department of Veterans
Affairs and the US Food and Drug Administration, and on four open-source text and image data sets representative of other
deployments, Snorkel provides 132% average improvements to predictive performance over prior heuristic approaches and
comes within an average 3.60% of the predictive performance of large hand-curated training sets.

Keywords Machine learning · Weak supervision · Training data

1 Introduction

In the last several years, there has been an explosion of
interest in machine learning-based systems across industry,
government, and academia, with an estimated spend this year
of $12.5 billion [61]. A central driver has been the advent
of deep learning techniques, which can learn task-specific
representations of input data, obviating what used to be the
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most time-consuming development task: feature engineer-
ing. These learned representations are particularly effective
for tasks like natural language processing and image analy-
sis, which have high-dimensional, high-variance input that
is impossible to fully capture with simple rules or hand-
engineered features [14,18]. However, deep learning has a
major upfront cost: these methods need massive training sets
of labeled examples to learn from—often tens of thousands
to millions to reach peak predictive performance [56].

Such training sets are enormously expensive to create,
especially when domain expertise is required. For example,
reading scientific papers, analyzing intelligence data, and
interpreting medical images all require labeling by trained
subject matter experts (SMEs). Moreover, we observe from
our engagements with collaborators like research laborato-
ries and major technology companies that modeling goals
such as class definitions or granularity change as projects
progress, necessitating re-labeling. Some big companies are
able to absorb this cost, hiring large teams to label training
data [12,16,35]. Other practitioners utilize classic techniques
like active learning [53], transfer learning [38], and semi-
supervised learning [9] to reduce the number of training
labels needed. However, the bulk of practitioners are increas-
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Fig. 1 In Example 1.1, training data is labeled by sources of differing
accuracy and coverage. Two key challenges arise in using this weak
supervision effectively. First, we need a way to estimate the unknown
source accuracies to resolve disagreements. Second, we need to pass on
this critical lineage information to the end model being trained

ingly turning to some form of weak supervision: cheaper
sources of labels that are noisier or heuristic. The most pop-
ular form is distant supervision, in which the records of an
external knowledge base are heuristically aligned with data
points to produce noisy labels [3,7,36]. Other forms include
crowdsourced labels [41,63], rules and heuristics for label-
ing data [47,65], and others [33,34,34,55,64]. While these
sources are inexpensive, they often have limited accuracy
and coverage.

Ideally, we would combine the labels from many weak
supervision sources to increase the accuracy and coverage of
our training set. However, two key challenges arise in doing
so effectively. First, sources will overlap and conflict, and
to resolve their conflicts we need to estimate their accura-
cies and correlation structure,without access to ground truth.
Second, we need to pass on critical lineage information about
label quality to the end model being trained.

Example 1.1 In Fig. 1, we obtain labels from a high-accuracy,
low-coverage Source 1, and from a low-accuracy, high-
coverage Source 2, which overlap and disagree (split-color
points). If we take an unweighted majority vote to resolve
conflicts, we end up with null (tie-vote) labels. If we could
correctly estimate the source accuracies, we would resolve
conflicts in the direction of Source 1.

We would still need to pass this information on to the end
model being trained. Suppose thatwe took labels fromSource
1 where available, and otherwise took labels from Source 2.
Then, the expected training set accuracy would be 60.3%—
only marginally better than the weaker source. Instead we
should represent training label lineage in end model training,
weighting labels generated by high-accuracy sources more.

In recent work, we developed data programming as a
paradigm for addressing both of these challenges by model-
ingmultiple label sources without access to ground truth, and
generating probabilistic training labels representing the lin-
eage of the individual labels. We prove that, surprisingly, we
can recover source accuracy and correlation structurewithout
hand-labeled training data [5,43]. However, there are many

Fig. 2 In Snorkel, rather than labeling training data by hand, users write
labeling functions, which programmatically label data points or abstain.
These labeling functions will have different unknown accuracies and
correlations. Snorkel automatically models and combines their outputs
using a generative model, then uses the resulting probabilistic labels to
train a discriminative model

practical aspects of implementing and applying this abstrac-
tion that have not been previously considered.

We present Snorkel, the first end-to-end system for com-
bining weak supervision sources to rapidly create training
data (Fig. 2). We built Snorkel as a prototype to study how
people could use data programming, a fundamentally new
approach to buildingmachine learning applications. Through
weekly hackathons and office hours held at Stanford Univer-
sity over the past year, we have interactedwith a growing user
community around Snorkel’s open-source implementation.1

We have observed SMEs in industry, science, and govern-
ment deploying Snorkel for knowledge base construction,
image analysis, bioinformatics, fraud detection, and more.
From this experience, we have distilled three principles that
have shaped Snorkel’s design:

1. BringAll Sources to BearThe system should enable users
to opportunistically use labels from all available weak
supervision sources.

2. Training Data as the Interface to ML The system should
model label sources to produce a single, probabilistic
label for each data point and train any of a wide range of
classifiers to generalize beyond those sources.

3. Supervision as Interactive Programming The system
should provide rapid results in response to user super-
vision. We envision weak supervision as the REPL-like
interface for machine learning.

Our work makes the following technical contributions:

A Flexible Interface for SourcesWe observe that the hetero-
geneity of weak supervision strategies is a stumbling block
for developers. Different types of weak supervision operate
on different scopes of the input data. For example, distant
supervision has to be mapped programmatically to specific
spans of text. Crowdworkers andweak classifiers often oper-
ate over entire documents or images. Heuristic rules are open

1 http://snorkel.stanford.edu
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Fig. 3 An overview of the Snorkel system. (1) SME users write label-
ing functions (LFs) that express weak supervision sources like distant
supervision, patterns, and heuristics. (2) Snorkel applies the LFs over

unlabeled data and learns a generative model to combine the LFs’ out-
puts into probabilistic labels. (3) Snorkel uses these labels to train a
discriminative classification model, such as a deep neural network

ended; they can leverage information from multiple contexts
simultaneously, such as combining information from a docu-
ment’s title, named entities in the text, and knowledge bases.
This heterogeneity was cumbersome enough to completely
block users of early versions of Snorkel.

To address this challenge, we built an interface layer
around the abstract concept of a labeling function (LF). We
developed a flexible language for expressing weak supervi-
sion strategies and supporting data structures. We observed
accelerated user productivity with these tools, which we val-
idated in a user study where SMEs build models 2.8× faster
and increase predictive performance an average 45.5% ver-
sus seven hours of hand labeling.

Trade-offs in Modeling of Sources Snorkel learns the accu-
racies of weak supervision sources without access to ground
truth using a generative model [43]. Furthermore, it also
learns correlations and other statistical dependencies among
sources, correcting for dependencies in labeling functions
that skew the estimated accuracies [5]. This paradigm gives
rise to previously unexplored trade-off spaces between pre-
dictive performance and speed. The natural first question is:
when does modeling the accuracies of sources improve pre-
dictive performance? Further, howmany dependencies, such
as correlations, are worth modeling?

We study the trade-offs between predictive performance
and training time in generative models for weak supervision.
While modeling source accuracies and correlations will not
hurt predictive performance,we present a theoretical analysis
of when a simple majority vote will work just as well. Based
on our conclusions, we introduce an optimizer for deciding
when to model accuracies of labeling functions, and when
learning can be skipped in favor of a simple majority vote.
Further, our optimizer automatically decides which corre-
lations to model among labeling functions. This optimizer
correctly predicts the advantage of generative modeling over
majority vote to within 2.16 accuracy points on average on
our evaluation tasks, and accelerates pipeline executions by

up to 1.8×. It also enables us to gain 60–70% of the benefit
of correlation learning while saving up to 61% of training
time (34 minutes per execution).

First End-to-End System for Data Programming Snorkel is
the first system to implement our recent work on data pro-
gramming [5,43]. Previous ML systems that we and others
developed [65] required extensive feature engineering and
model specification, leading to confusion about where to
inject relevant domain knowledge.While programmingweak
supervision seems superficially similar to feature engineer-
ing, we observe that users approach the two processes very
differently. Our vision—weak supervision as the sole port of
interaction for machine learning—implies radically different
workflows, requiring a proof of concept.

Snorkel demonstrates that this paradigm enables users
to develop high-quality models for a wide range of tasks.
We report on two deployments of Snorkel, in collaboration
with the US Department of Veterans Affairs and Stanford
Hospital and Clinics, and the US Food and Drug Adminis-
tration, where Snorkel improves over heuristic baselines by
an average 110%.We also report results on four open-source
datasets that are representative of other Snorkel deploy-
ments, including bioinformatics, medical image analysis,
and crowdsourcing; on which Snorkel beats heuristics by
an average 153% and comes within an average 3.60% of the
predictive performance of large hand-curated training sets.

2 Snorkel architecture

Snorkel’s workflow is designed around data programming
[5,43], a fundamentally new paradigm for training machine
learning models using weak supervision, and proceeds in
three main stages (Fig. 3):

1. Writing Labeling Functions Rather than hand-labeling
training data, users of Snorkel write labeling functions,
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which allow them to express various weak supervision
sources such as patterns, heuristics, external knowledge
bases, and more. This was the component most informed
by early interactions (and mistakes) with users over the
last year of deployment, and we present a flexible inter-
face and supporting data model.

2. Modeling Accuracies and Correlations Next, Snorkel
automatically learns a generative model over the labeling
functions, which allows it to estimate their accuracies and
correlations. This step uses no ground-truth data, learn-
ing instead from the agreements and disagreements of the
labeling functions. We observe that this step improves
end predictive performance 5.81% over Snorkel with
unweighted label combination, and anecdotally that it
streamlines the user development experience by provid-
ing actionable feedback about labeling function quality.

3. Training a Discriminative Model The output of Snorkel
is a set of probabilistic labels that can be used to train a
wide variety of state-of-the-art machine learning models,
such as popular deep learning models. While the gener-
ative model is essentially a re-weighted combination of
the user-provided labeling functions—which tend to be
precise but low-coverage—modern discriminative mod-
els can retain this precision while learning to generalize
beyond the labeling functions, increasing coverage and
robustness on unseen data.

Next, we set up the problem Snorkel addresses and
describe its main components and design decisions.
Setup Our goal is to learn a parameterized classification
model hθ that, given a data point x ∈ X , predicts its label
y ∈ Y , where the set of possible labelsY is discrete. For sim-
plicity, we focus on the binary setting Y = {−1, 1}, though
we include a multi-class application in our experiments. For
example, x might be amedical image, and y a label indicating
normal versus abnormal. In the relation extraction examples
we look at, we often refer to x as a candidate. In a traditional
supervised learning setup, we would learn hθ by fitting it to
a training set of labeled data points. However, in our setting,
we assume that we only have access to unlabeled data for
training. We do assume access to a small set of labeled data
used during development, called the development set, and a
blind, held-out labeled test set for evaluation. These sets can
be orders of magnitudes smaller than a training set, making
them economical to obtain.

The user of Snorkel aims to generate training labels by
providing a set of labeling functions, which are black-box
functions, λ : X → Y ∪ {∅}, that take in a data point
and output a label where we use ∅ to denote that the label-
ing function abstains. Given m unlabeled data points and
n labeling functions, Snorkel applies the labeling functions
over the unlabeled data to produce a matrix of labeling func-
tion outputs � ∈ (Y ∪ {∅})m×n . The goal of the remaining

Fig. 4 Labeling functions take as input a Candidate object, repre-
senting a data point to be classified. Each Candidate is a tuple of
Context objects, which are part of a hierarchy representing the local
context of the Candidate

Snorkel pipeline is to synthesize this label matrix �—which
may contain overlapping and conflicting labels for each data
point—into a single vector of probabilistic training labels
Ỹ = (ỹ1, . . . , ỹm), where ỹi ∈ [0, 1]. These training labels
can then be used to train a discriminative model.

Next, we introduce the running example of a text relation
extraction task as a proxy for many real-world knowledge
base construction and data analysis tasks:

Example 2.1 Consider the task of extracting mentions of
adverse chemical–disease relations from the biomedical lit-
erature (see CDR task, Sect. 4.1). Given documents with
mentions of chemicals and diseases tagged, we refer to each
co-occurring (chemical, disease) mention pair as a candidate
extraction, which we view as a data point to be classified as
either true or false. For example, in Fig. 1, wewould have two
candidates with true labels y1 = True and y2 = False:

x_1 = Causes("magnesium", "quadriplegic")
x_2 = Causes("magnesium", "preeclampsia")

Data Model A design challenge is managing complex,
unstructured data in a way that enables SMEs to write label-
ing functions over it. In Snorkel, input data is stored in a
context hierarchy. It is made up of context types connected
by parent/child relationships, which are stored in a relational
database andmade available via an object-relationalmapping
(ORM) layer built with SQLAlchemy.2 Each context type
represents a conceptual component of data to be processed
by the system or used when writing labeling functions; for
example a document, an image, a paragraph, a sentence, or
an embedded table. Candidates—i.e., data points x—are then
defined as tuples of contexts (Fig. 4).

Example 2.2 In our running CDR example, the input doc-
uments can be represented in Snorkel as a hierarchy con-
sisting of Documents, each containing one or more
Sentences, each containing one or more Spans of text.
These Spans may also be tagged with metadata, such as
Entity markers identifying them as chemical or disease
mentions (Fig. 4). A candidate is then a tuple of two Spans.

2 https://www.sqlalchemy.org/
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2.1 A language for weak supervision

Snorkel uses the core abstraction of a labeling function
to allow users to specify a wide range of weak supervi-
sion sources such as patterns, heuristics, external knowledge
bases, crowdsourced labels, andmore. This higher-level, less
precise input is more efficient to provide (see Sect. 4.2) and
can be automatically denoised and synthesized, as described
in subsequent sections.

In this section, we describe our design choices in building
an interface forwriting labeling functions,whichwe envision
as a unifying programming language for weak supervi-
sion. These choices were informed to a large degree by our
interactions—primarily through weekly office hours—with
Snorkel users in bioinformatics, defense, industry, and other
areas over the past year.3 For example, while we initially
intended to have a more complex structure for labeling func-
tions,withmanually specified types and correlation structure,
we quickly found that simplicity in this respect was critical
to usability (and not empirically detrimental to our ability to
model their outputs). We also quickly discovered that users
wanted either far more expressivity or far less of it, compared
to our first library of function templates. We thus trade-off
expressivity and efficiency by allowing users to write label-
ing functions at two levels of abstraction: custom Python
functions and declarative operators.

Hand-Defined Labeling Functions In its most general form,
a labeling function is just an arbitrary snippet of code, usu-
ally written in Python, which accepts as input a Candidate
object and either outputs a label or abstains. Often these func-
tions are similar to extract–transform–load scripts, express-
ing basic patterns or heuristics, but may use supporting code
or resources and be arbitrarily complex. Writing labeling
functions by hand is supported by the ORM layer, which
maps the context hierarchy and associated metadata to an
object-oriented syntax, allowing the user to easily traverse
the structure of the input data.

Example 2.3 In our running example, we can write a labeling
function that checks if theword “causes” appears between the
chemical and disease mentions. If it does, it outputs True
if the chemical mention is first and False if the disease
mention is first. If “causes” does not appear, it outputs None,
indicating abstention:

def LF_causes(x):
cs, ce = x.chemical.get_word_range ()
ds, de = x.disease.get_word_range ()
if ce < ds and "causes" in x.parent.words[ce+1:ds]:

return True
if de < cs and "causes" in x.parent.words[de+1:cs]:

return False
return None

We could also write this with Snorkel’s declarative interface:

3 http://snorkel.stanford.edu#users

LF_causes = lf_search("{{1}}.∗\ Wcauses\W.∗{{2}}",
reverse_args=False)

Declarative Labeling Functions Snorkel includes a library
of declarative operators that encode the most common weak
supervision function types, based on our experience with
users over the last year. The semantics and syntax of these
operators is simple and easily customizable, consisting of two
main types: (i) labeling function templates, which are simply
functions that take one or more arguments and output a sin-
gle labeling function; and (ii) labeling function generators,
which take one or more arguments and output a set of label-
ing functions (described below). These functions capture a
range of common forms of weak supervision, for example:

• Pattern-based Pattern-based heuristics embody themoti-
vation of soliciting higher information density input from
SMEs. For example, pattern-based heuristics encom-
pass feature annotations [64] and pattern-bootstrapping
approaches [19,22] (Example 2.3).

• Distant supervision Distant supervision generates train-
ing labels by heuristically aligning data points with an
external knowledge base and is one of the most popular
forms of weak supervision [3,24,36].

• Weak classifiers Classifiers that are insufficient for our
task—e.g., limited coverage, noisy, biased, and/or trained
on a different dataset—can be used as labeling functions.

• Labeling function generators One higher-level abstrac-
tion that we can build on top of labeling functions in
Snorkel is labeling function generators, which gener-
ate multiple labeling functions from a single resource,
such as crowdsourced labels and distant supervision from
structured knowledge bases (Example 2.4).

Example 2.4 A challenge in traditional distant supervision
is that different subsets of knowledge bases have different
levels of accuracy and coverage. In our running example, we
can use the Comparative Toxicogenomics Database (CTD)4

as distant supervision, separately modeling different subsets
of it with separate labeling functions. For example, we might
write one labeling function to label a candidate True if it
occurs in the “Causes” subset, and another to label it False
if it occurs in the “Treats” subset. We can write this using a
labeling function generator,

LFs_CTD = Ontology(ctd ,
{"Causes": True, "Treats": False})

which creates two labeling functions. In this way, generators
can be connected to large resources and create hundreds of
labeling functions with a line of code.

4 http://ctdbase.org/
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Fig. 5 Labeling functions expressing pattern matching, heuristic, and
distant supervision approaches, respectively, in Snorkel’s Jupyter note-
book interface, for the Spouses example. Full code is available in
Snorkel’s Intro tutorial. https://github.com/HazyResearch/snorkel/tree/
master/tutorials/intro

Fig. 6 The data viewer utility in Snorkel, showing candidate spouse
relation mentions from the Spouses example, composed of person–
person mention pairs

Interface Implementation Snorkel’s interface is designed to
be accessible to subject matter expert (SME) users without
advanced programming skills. All components run in Jupyter
iPython notebooks,5 including writing labeling functions.6

Users can therefore write labeling functions as arbitrary
Python functions for maximum flexibility (Fig. 5). We also
provide a library of labeling function primitives and genera-
tors to more declaratively program weak supervision, and a
viewer utility (Fig. 6) that displays candidates, and also sup-
ports annotation, e.g., for constructing a small held-out test
set for end evaluation.

Execution Model Since labeling functions operate on dis-
crete candidates, their execution is embarrassingly parallel.
If Snorkel is connected to a relational database that supports

5 http://jupyter.org/
6 Note that all code is open source and available—with tutorials, blog
posts,workshop lectures, and othermaterial—at http://snorkel.stanford.
edu/.

simultaneous connections, e.g., PostgreSQL, then the master
process (usually the notebook kernel) distributes the primary
keys of the candidates to be labeled to Python worker pro-
cesses. The workers independently read from the database to
materialize the candidates via the ORM layer, then execute
the labeling functions over them. The labels are returned to
the master process which persists them via the ORM layer.
Collecting the labels at the master is more efficient than hav-
ing workers write directly to the database, due to table-level
locking.

Snorkel includes a Spark7 integration layer, enabling
labeling functions to be run across a cluster. Once the set of
candidates is cached as a Spark data frame, only the closure
of the labeling functions and the resulting labels need to be
communicated to and from the workers. This is particularly
helpful in Snorkel’s iterative workflow. Distributing a large
unstructured data set across a cluster is relatively expensive,
but only has to be performed once. Then, as users refine their
labeling functions, they can be rerun efficiently.

2.2 Generative model

The core operation of Snorkel is modeling and integrating
the noisy signals provided by a set of labeling functions.
Using the recently proposed approach of data programming
[5,43], we model the true class label for a data point as a
latent variable in a probabilistic model. In the simplest case,
we model each labeling function as a noisy “voter” which
is independent—i.e., makes errors that are uncorrelated with
the other labeling functions. This defines a generative model
of the votes of the labeling functions as noisy signals about
the true label.

We can also model statistical dependencies between the
labeling functions to improve predictive performance. For
example, if two labeling functions express similar heuris-
tics, we can include this dependency in the model and avoid
a “double counting” problem. We observe that such pair-
wise correlations are the most common, so we focus on them
in this paper (though handling higher order dependencies is
straightforward). We use our structure learning method for
generative models [5] to select a set C of labeling function
pairs ( j, k) to model as correlated (see Sect. 3.2).

Now we can construct the full generative model as a
factor graph. We first apply all the labeling functions to
the unlabeled data points, resulting in a label matrix �,
where �i, j = λ j (xi ). We then encode the generative model
pw(�,Y ) using three factor types, representing the labeling
propensity, accuracy, and pairwise correlations of labeling
functions:

φLab
i, j (�,Y ) = 1{�i, j �= ∅}

7 https://spark.apache.org/
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φAcc
i, j (�,Y ) = 1{�i, j = yi }

φCorr
i, j,k(�,Y ) = 1{�i, j = �i,k} ( j, k) ∈ C

For a given data point xi , we define the concatenated vector
of these factors for all the labeling functions j = 1, ..., n and
potential correlations C as φi (�,Y ), and the corresponding
vector of parameters w ∈ R

2n+|C|. This defines our model:

pw(�,Y ) = Z−1
w exp

(
m∑
i=1

wTφi (�, yi )

)
,

where Zw is a normalizing constant. To learn this model
without access to the true labels Y , we minimize the negative
log marginal likelihood given the observed label matrix �:

ŵ = arg min
w

− log
∑
Y

pw(�,Y ) .

We optimize this objective by interleaving stochastic gra-
dient descent steps with Gibbs sampling ones, similar to
contrastive divergence [23]; for more details, see [5,43]. We
use the Numbskull library,8 a Python NUMBA-based Gibbs
sampler. We then use the predictions, Ỹ = pŵ(Y |�), as
probabilistic training labels.

2.3 Discriminative model

The end goal in Snorkel is to train a model that generalizes
beyond the information expressed in the labeling functions.
We train a discriminative model hθ on our probabilistic
labels Ỹ by minimizing a noise-aware variant of the loss
l(hθ (xi ), y), i.e., the expected loss with respect to Ỹ :

θ̂ = arg min
θ

m∑
i=1

Ey∼Ỹ [l(hθ (xi ), y)] .

A formal analysis shows that as we increase the amount
of unlabeled data, the generalization error of discriminative
models trainedwith Snorkelwill decrease at the same asymp-
totic rate as traditional supervised learning models do with
additional hand-labeled data [43], allowing us to increase
predictive performance by adding more unlabeled data. Intu-
itively, this property holds because as more data is provided,
the discriminative model sees more features that co-occur
with the heuristics encoded in the labeling functions.

Example 2.5 The CDR data contains the sentence, “Myas-
thenia gravis presenting as weakness after magnesium
administration.” None of the 33 labeling functions we devel-
oped vote on the corresponding Causes(magnesium,

8 https://github.com/HazyResearch/numbskull

myasthenia gravis) candidate, i.e., they all abstain.
However, a deep neural network trained on probabilistic
training labels from Snorkel correctly identifies it as a true
mention.

Snorkel provides connectors for popularmachine learning
libraries such as TensorFlow [1], allowing users to exploit
commodity models like deep neural networks that do not
require hand-engineering of features and have robust predic-
tive performance across a wide range of tasks.

3 Weak supervision trade-offs

We study the fundamental question of when—and at what
level of complexity—we should expect Snorkel’s generative
model to yield the greatest predictive performance gains.
Understanding these performance regimes can help guide
users and introduces a trade-off space between predictive
performance and speed. We characterize this space in two
parts: first, by analyzing when the generative model can be
approximated by an unweighted majority vote, and second,
by automatically selecting the complexity of the correlation
structure tomodel.We then introduce a two-stage, rule-based
optimizer to support fast development cycles.

3.1 Modeling accuracies

The natural first question when studying systems for weak
supervision is, “When does modeling the accuracies of
sources improve end-to-end predictive performance?” We
study that question in this subsection and propose a heuris-
tic to identify settings in which this modeling step is most
beneficial.

3.1.1 Trade-off space

We start by considering the label density d� of the label
matrix �, defined as the mean number of non-abstention
labels per data point. In the low-density setting, sparsity of
labelswillmean that there is limited room for even an optimal
weighting of the labeling functions to diverge much from
the majority vote. Conversely, as the label density grows,
known theory confirms that the majority vote will eventually
be optimal [31]. It is the middle-density regime where we
expect to most benefit from applying the generative model.
We start by defining ameasure of the benefit of weighting the
labeling functions by their true accuracies—in other words,
the predictions of a perfectly estimated generative model—
versus an unweighted majority vote:

Definition 1 (Modeling Advantage) Let the weighted major-
ity vote of n labeling functions on data point xi be denoted as
fw(�i ) = ∑n

j=1 w j�i, j , and the unweighted majority vote
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Fig. 7 A plot of themodeling advantage, i.e., the improvement in label
accuracy from thegenerativemodel, as a functionof the number of label-
ing functions (equivalently, the label density) on a synthetic dataset.(We
generate a class-balanced dataset of m = 1000 data points with binary
labels, and n independent labeling functionswith average accuracy 75%
and a fixed 10% probability of voting.) We plot the advantage obtained
by a learned generative model (GM), Aw; by an optimal model A∗;
the upper bound Ã∗ used in our optimizer; and the low-density bound
(Proposition 1)

(MV) as f1(�i ) = ∑n
j=1 �i, j , wherewe consider the binary

classification setting and represent an abstaining vote as 0.
We define the modeling advantage Aw as the improvement
in accuracy of fw over f1 for a dataset:

Aw(�, y) = 1

m

m∑
i=1

(1 {yi fw(�i ) > 0 ∧ yi f1(�i ) ≤ 0}

− 1 {yi fw(�i ) ≤ 0 ∧ yi f1(�i ) > 0})

In other words, Aw is the number of times fw correctly dis-
agrees with f1 on a label, minus the number of times it
incorrectly disagrees. Let the optimal advantage A∗ = Aw∗
be the advantage using the optimal weights w∗ (WMV*).

Additionally, let:

α∗ = 1

n

n∑
j=1

α∗
j = 1

n

n∑
j=1

1/(1 + exp(w∗
j ))

be the average accuracies of the labeling functions. To build
intuition, we start by analyzing the optimal advantage for
three regimes of label density (see Fig. 7):

Low Label Density In this sparse setting, very few data
points have more than one non-abstaining label; only a small
number have multiple conflicting labels. We have observed
this occurring, for example, in the early stages of applica-
tion development. We see that with non-adversarial labeling
functions (w∗ > 0), even an optimal generative model
(WMV*) can only disagree with MV when there are dis-
agreeing labels, which will occur infrequently. We see that

the expected optimal advantage will have an upper bound
that falls quadratically with label density:

Proposition 1 (Low-Density Upper Bound) Assume that
P(�i, j �= 0) = pl ∀i, j , andw∗

j > 0 ∀ j . Then, the expected

label density is d̄ = npl , and

E�,y,w∗
[
A∗] ≤ d̄2α∗(1 − α∗) (1)

Proof We bound the advantage above by computing the
expected number of pairwise disagreements; for details, see
Appendix of extended online version.9 �

High Label Density In this setting, the majority of the data
points have a large number of labels. For example, we might
be working in an extremely high-volume crowdsourcing set-
ting, or an application with many high-coverage knowledge
bases as distant supervision. Under modest assumptions—
namely, that the average labeling function accuracy α∗ is
greater than 50%—it is known that the majority vote con-
verges exponentially to an optimal solution as the average
label density d̄ increases, which serves as an upper bound
for the expected optimal advantage as well:

Proposition 2 (High-Density Upper Bound) Assume that
P(�i, j �= 0) = pl ∀i, j , and that α∗ > 1

2 . Then:

E�,y,w∗
[
A∗] ≤ e

−2pl
(
α∗− 1

2

)2
d̄

(2)

Proof This follows from an application of Hoeffding’s
inequality; for details, see Appendix of extended version.

�

Medium Label Density In this middle regime, we expect that
modeling the accuracies of the labeling functions will deliver
the greatest gains in predictive performance because we will
have many data points with a small number of disagreeing
labeling functions. For such points, the estimated labeling
function accuracies can heavily affect the predicted labels.
We indeed see gains in the empirical results using an inde-
pendent generative model that only includes accuracy factors
φAcc
i, j (Table 1). Furthermore, the guarantees in [43] establish

that we can learn the optimal weights, and thus approach the
optimal advantage.

3.1.2 Automatically choosing a modeling strategy

The bounds in the previous subsection imply that there are
settings in which we should be able to safely skip mod-
eling the labeling function accuracies, simply taking the
unweighted majority vote instead. However, in practice, the

9 https://arxiv.org/abs/1711.10160
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Table 1 Modeling advantage Aw attained using a generative model for
several applications in Snorkel (Sect. 4.1), the upper bound Ã∗ used by
our optimizer, the modeling strategy selected by the optimizer—either
majority vote (MV) or generative model (GM)—and the empirical label
density d�

Dataset Aw (%) Ã∗ (%) Modeling strategy d�

Radiology 7.0 12.4 GM 2.3

CDR 4.9 7.9 GM 1.8

Spouses 4.4 4.6 GM 1.4

Chem 0.1 0.3 MV 1.2

EHR 2.8 4.8 GM 1.2

overall label density d� is insufficiently precise to deter-
mine the transition points of interest, given a user time-cost
trade-off preference (characterized by the advantage toler-
ance parameter γ in Algorithm 1). We show this in Table 1
using our application data sets from Sect. 4.1. For example,
we see that the Chem and EHR label matrices have equiva-
lent label densities; however, modeling the labeling function
accuracies has a much greater effect for EHR than for Chem.

Instead of simply considering the average label density
d�, we instead develop a best-case heuristic based on looking
at the ratio of positive to negative labels for each data point.
This heuristic serves as an upper bound to the true expected
advantage, and thus, we can use it to determine when we can
safely skip training the generative model (see Algorithm 1).
Let cy(�i ) = ∑n

j=1 1
{
�i, j = y

}
be the counts of labels

of class y for xi , and assume that the true labeling function
weights lie within a fixed range,w j ∈ [wmin, wmax] and have
a mean w̄.10 Then, define:

�(�i , y) = 1
{
cy(�i )wmax > c−y(�i )wmin

}
Ã∗(�) = 1

m

m∑
i=1

∑
y∈±1

1 {y f1(�i ) ≤ 0} �(�i , y)σ (2 fw̄(�i )y)

where σ(·) is the sigmoid function, fw̄ is majority vote
with all weights set to the mean w̄, and Ã∗(�) is the
predicted modeling advantage used by our optimizer. Essen-
tially, we are taking the expected counts of instances inwhich
a weighted majority vote could possibly flip the incorrect
predictions of unweightedmajority vote under best-case con-
ditions, which is an upper bound for the expected advantage:

Proposition 3 (Optimizer Upper Bound) Assume that the
labeling functions have accuracy parameters (log-odds
weights) w j ∈ [wmin, wmax], and have E[w] = w̄. Then:

Ey,w∗
[
A∗ | �

] ≤ Ã∗(�) (3)

10 We fix these at defaults of (wmin, w̄, wmax) = (0.5, 1.0, 1.5), which
corresponds to assuming labeling functions have accuracies between
62 and 82%, and an average accuracy of 73%.

Fig. 8 The predicted ( Ã∗) and actual (Aw) advantage of using the gen-
erative labeling model (GM) over majority vote (MV) on the CDR
application as the number of LFs is increased. At 9 LFs, the optimizer
switches from choosing MV to choosing GM; this leads to faster mod-
eling in early development cycles, and more accurate results in later
cycles

Proof Sketch: We upper bound the modeling advantage by
the expected number of instances in whichWMV* is correct
and MV is incorrect. We then upper bound this by using
the best-case probability of the weighted majority vote being
correct given (wmin, wmax). �


We apply Ã∗ to a synthetic dataset and plot in Fig. 7.
Next, we compute Ã∗ for the labeling matrices from experi-
ments in Sect. 4.1 and compare with the empirical advantage
of the trained generative models (Table 1).11 We see that
our approximate quantity Ã∗ serves as a correct guide in
all cases for determining which modeling strategy to select,
which for the mature applications reported on is indeed most
often the generative model. However, we see that while EHR
and Chem have equivalent label densities, our optimizer cor-
rectly predicts that Chem can bemodeled with majority vote,
speeding up each pipeline execution by 1.8×.

3.1.3 Accelerating initial development cycles

We find in our applications that the optimizer can save exe-
cution time especially during the initial cycles of iterative
development. To illustrate this empirically, in Fig. 8 we mea-
sure themodeling advantage of the generativemodel versus a
majority vote of the labeling functions on increasingly large
random subsets of the CDR labeling functions. We see that

11 Note that in Sect. 4, due to known negative class imbalance in
relation extraction problems, we default to a negative value if majority
vote yields a tie-vote label of 0. Thus, our reported F1 score metric
hides instances in which the generative model learns to correctly (or
incorrectly) break ties. In Table 1, however, we do count such instances
as improvements over majority vote, as these instances have an effect
on the training of the end discriminative model (they yield additional
training labels).
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the modeling advantage grows as the number of labeling
functions increases, and that our optimizer approximation
closely tracks it; thus, the optimizer can save execution time
by choosing to skip the generative model and run majority
vote instead during the initial cycles of iterative development.

3.2 Modeling structure

In this subsection,we considermodeling additional statistical
structure beyond the independent model. We study the trade-
off between predictive performance and computational cost,
and describe how to automatically select a good point in this
trade-off space.

Structure Learning We observe many Snorkel users writing
labeling functions that are statistically dependent. Examples
we have observed include:

• Functions that are variations of each other, such as check-
ing for matches against similar regular expressions.

• Functions that operate on correlated inputs, such as raw
tokens of text and their lemmatizations.

• Functions that use correlated sources of knowledge,
such as distant supervision from overlapping knowledge
bases.

Modeling such dependencies is important because they affect
our estimates of the true labels. Consider the extreme case in
which not accounting for dependencies is catastrophic:

Example 3.1 Consider a set of 10 labeling functions, where 5
are perfectly correlated, i.e., they vote the same way on every
data point, and 5 are conditionally independent given the
true label. If the correlated labeling functions have accuracy
α = 50% and the uncorrelated ones have accuracy β = 99%,
then the maximum likelihood estimate of their accuracies
according to the independent model is α̂ = 100% and β̂ =
50%.

Specifying a generative model to account for such depen-
dencies by hand is impractical for three reasons. First, it
is difficult for non-expert users to specify these dependen-
cies. Second, as users iterate on their labeling functions, their
dependency structure can change rapidly, like when a user
relaxes a labeling function to label many more candidates.
Third, the dependency structure can be dataset specific, mak-
ing it impossible to specify a priori, such as when a corpus
contains many strings that match multiple regular expres-
sions used in different labeling functions. We observed users
of earlier versions of Snorkel struggling for these reasons
to construct accurate and efficient generative models with
dependencies. We therefore seek a method that can quickly

identify an appropriate dependency structure from the label-
ing function outputs � alone.

Naively, we could include all dependencies of interest,
such as all pairwise correlations, in the generative model
and perform parameter estimation. However, this approach
is impractical. For 100 labeling functions and 10,000 data
points, estimating parameters with all possible correlations
takes roughly 45 min.When multiplied over repeated runs of
hyperparameter searching and development cycles, this cost
greatly inhibits labeling function development. We therefore
turn to our method for automatically selecting which depen-
dencies to model without access to ground truth [5]. It uses
a pseudolikelihood estimator, which does not require any
sampling or other approximations to compute the objective
gradient exactly. It is much faster than maximum likelihood
estimation, taking 15 s to select pairwise correlations to be
modeled among 100 labeling functions with 10,000 data
points. However, this approach relies on a selection threshold
hyperparameter ε which induces a trade-off space between
predictive performance and computational cost.

3.2.1 Trade-off space

Such structure learning methods, whether pseudolikelihood
or likelihood-based, crucially depend on a selection threshold
ε for deciding which dependencies to add to the generative
model. Fundamentally, the choice of ε determines the com-
plexity of the generative model.12 We study the trade-off
between predictive performance and computational cost that
this induces. We find that generally there is an “elbow point”
beyond which the number of correlations selected—and thus
the computational cost—explodes, and that this point is a safe
trade-off point between predictive performance and compu-
tation time.

Predictive Performance At one extreme, a very large value
of ε will not include any correlations in the generative
model, making it identical to the independent model. As ε

is decreased, correlations will be added. At first, when ε is
still high, only the strongest correlations will be included. As
these correlations are added, we observe that the generative
model’s predictive performance tends to improve. Figure 9,
left, shows the result of varying ε in a simulation where more
than half the labeling functions are correlated. After adding a
few key dependencies, the generative model resolves the dis-
crepancies among the labeling functions. Figure 9, middle,
shows the effect of varying ε for the CDR task. Predictive
performance improves as ε decreases until the model over-
fits. Finally, we consider a large number of labeling functions
that are likely to be correlated. In our user study (described

12 Specifically, ε is both the coefficient of the �1 regularization term
used to induce sparsity, and the minimum absolute weight in log scale
that a dependency must have to be selected.
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Fig. 9 Predictive performance of the generative model and number of
learned correlations versus the correlation threshold ε. The selected
elbow point achieves a good trade-off between predictive performance
and computational cost (linear in the number of correlations). Left: sim-

ulation of structure learning correcting the generative model. Middle:
the CDR task. Right: all user study labeling functions for the Spouses
task

in Sect. 4.2), participants wrote labeling functions for the
Spouses task. We combined all 125 of their functions and
studied the effect of varying ε. Here, we expect there to be
many correlations since it is likely that users wrote redun-
dant functions. We see in Fig. 9, right, that structure learning
surpasses the best performing individual’s generative model
(50.0 F1).

Computational Cost Computational cost is correlated with
model complexity. Since learning in Snorkel is done with a
Gibbs sampler, the overhead of modeling additional corre-
lations is linear in the number of correlations. The dashed
lines in Fig. 9 show the number of correlations included in
each model versus ε. For example, on the Spouses task, fit-
ting the parameters of the generative model at ε = 0.5 takes
4 min, and fitting its parameters with ε = 0.02 takes 57 min.
Further, parameter estimation is often run repeatedly dur-
ing development for two reasons: (i) fitting generative model
hyperparameters using a development set requires repeated
runs, and (ii) as users iterate on their labeling functions, they
must re-estimate the generative model to evaluate them.

3.2.2 Automatically choosing a model

Based on our observations, we seek to automatically choose a
value of ε that trades-off between predictive performance and
computational cost using the labeling functions’ outputs �

alone. Including ε as a hyperparameter in a grid search over a
development set is generally not feasible because of its large
effect on running time. We therefore want to choose ε before
other hyperparameters, without performing any parameter
estimation. We propose using the number of correlations
selected at each value of ε as an inexpensive indicator. The
dashed lines in Fig. 9 show that as ε decreases, the num-
ber of selected correlations follows a pattern. Generally, the
number of correlations grows slowly at first, then hits an
“elbow point” beyond which the number explodes, which
fits the assumption that the correlation structure is sparse. In
all three cases, setting ε to this elbow point is a safe trade-off

between predictive performance and computational cost. In
cases where performance grows consistently (left and right),
the elbow point achieves most of the predictive performance
gains at a small fraction of the computational cost. For exam-
ple, onSpouses (right), choosing ε = 0.08 achieves a score of
56.6 F1—within one point of the best score—but only takes
8 min for parameter estimation. In cases where predictive
performance eventually degrades (middle), the elbow point
also selects a relatively small number of correlations, giving
an 0.7 F1 point improvement and avoiding overfitting.

Performing structure learning for many settings of ε is
inexpensive, especially since the search needs to be per-
formed only once before tuning the other hyperparameters.
On the large number of labeling functions in the Spouses
task, structure learning for 25 values of ε takes 14 min. On
CDR, with a smaller number of labeling functions, it takes
30 s. Further, if the search is started at a low value of ε and
increased, it can often be terminated early, when the num-
ber of selected correlations reaches a low value. Selecting
the elbow point itself is straightforward. We use the point
with greatest absolute difference from its neighbors, butmore
sophisticated schemes can also be applied [51]. Our full opti-
mization algorithm for choosing a modeling strategy and (if
necessary) correlations is shown in Algorithm 1.

Algorithm 1Modeling Strategy Optimizer

Input: Label matrix � ∈ (Y ∪ {∅})m×n ,
advantage tolerance γ , structure search resolution η

Output: Modeling strategy

if Ã∗(�) < γ then
return MV

Structures ← [ ]
for i from 1 to 1

2η do
ε ← i · η

C ← LearnStructure(�, ε)
Structures.append(|C |, ε)

ε ← SelectElbowPoint(Structures)
return GMε
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4 Evaluation

We evaluate Snorkel by drawing on deployments developed
in collaboration with users. We report on two real-world
deployments and four tasks on open-source data sets rep-
resentative of other deployments. Our evaluation is designed
to support the following three main claims:

• Snorkel outperforms distant supervision baselines In dis-
tant supervision [36], one of the most popular forms of
weak supervision used in practice, an external knowl-
edge base is heuristically aligned with input data to
serve as noisy training labels. By allowing users to easily
incorporate a broader, more heterogeneous set of weak
supervision sources—for example, pattern matching,
structure-based, and other more complex heuristics—
Snorkel exceeds models trained via distant supervision
by an average of 132%.

• Snorkel approaches hand supervision We see that by
writing tens of labeling functions, we were able to
approach or match results using hand-labeled training
data which took weeks or months to assemble, coming
within 2.11% of the F1 score of hand supervision on rela-
tion extraction tasks and an average 5.08% accuracy or
AUC on cross-modal tasks, for an average 3.60% across
all tasks.

• Snorkel enables a new interaction paradigmWemeasure
Snorkel’s efficiency and ease of use by reporting on a user
study of biomedical researchers from across the USA.
These participants learned to write labeling functions to
extract relations from news articles as part of a two-day
workshop on learning to use Snorkel, and matched or
outperformed models trained on hand-labeled training
data, showing the efficiency of Snorkel’s process even
for first-time users.

We now describe our results in detail. First, we describe
the six applications that validate our claims. We then show
that Snorkel’s generativemodeling stage helps to improve the
predictive performance of the discriminative model, demon-
strating that it is 5.81% more accurate when trained on
Snorkel’s probabilistic labels versus labels produced by an
unweighted average of labeling functions. We also validate
that the ability to incorporate many different types of weak
supervision incrementally improves results with an ablation
study. Finally, we describe the protocol and results of our
user study.

4.1 Applications

To evaluate the effectiveness of Snorkel, we consider several
real-world deployments and tasks on open-source datasets
that are representative of other deployments in information

Table 2 Number of labeling functions, fraction of positive labels (for
binary classification tasks), number of training documents, and number
of training candidates for each task

Task # LFs % Pos. # Docs # Candidates

Chem 16 4.1 1753 65,398

EHR 24 36.8 47,827 225,607

CDR 33 24.6 900 8272

Spouses 11 8.3 2073 22,195

Radiology 18 36.0 3851 3851

Crowd 102 – 505 505

extraction, medical image classification, and crowdsourced
sentiment analysis. Summary statistics of the tasks are pro-
vided in Tables 4 and 2.

Discriminative Models One of the key bets in Snorkel’s
design is that the trend of increasingly powerful, open-
sourcemachine learning tools (e.g.,models, pre-trainedword
embeddings and initial layers, automatic tuners, etc.) will
only continue to accelerate. To best take advantage of this,
Snorkel creates probabilistic training labels for any discrim-
inative model with a standard loss function.

In the following experiments, we control for end model
selection by using currently popular, standard choices across
all settings. For text modalities, we choose a bidirectional
long short term memory (LSTM) sequence model [18], and
for the medical image classification task we use a 50-layer
ResNet [21] pre-trained on the ImageNet object classification
dataset [14]. Both models are implemented in TensorFlow
[1] and trained using the Adam optimizer [27], with hyper-
parameters selected via random grid search using a small
labeled development set. Final scores are reported on a held-
out labeled test set. See full version [42] for details.

A key takeaway of the following results is that the discrim-
inative model generalizes beyond the heuristics encoded in
the labeling functions (as in Example 2.5). In Sect. 4.1.1, we
see that on relation extraction applications the discrimina-
tive model improves performance over the generative model
primarily by increasing recall by 43.15% on average. In
Sect. 4.1.2, the discriminative model classifies entirely new
modalities of data to which the labeling functions cannot be
applied.

Data SetDetailsAdditional information about the sizes of the
datasets is included in Table 4. Specifically, we report the size
of the (unlabeled) training set and hand-labeled development
and test sets, in terms of number of candidates. Note that the
development and test sets can be orders of magnitude smaller
than the training sets. Labeled development and test sets were
either used when already available as part of a benchmark
dataset, or labeled with the help of our collaborators, limited
to several hours of labeling time maximum. Note that test
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Table 3 Evaluation of Snorkel on relation extraction tasks from text

Task Distant Supervision Snorkel (Gen.) Snorkel (Disc.) Hand Supervision

P R F1 P R F1 Lift P R F1 Lift P R F1

Chem 11.2 41.2 17.6 78.6 21.6 33.8 + 16.2 87.0 39.2 54.1 + 36.5 – – –

EHR 81.4 64.8 72.2 77.1 72.9 74.9 + 2.7 80.2 82.6 81.4 + 9.2 – – –

CDR 25.5 34.8 29.4 52.3 30.4 38.5 + 9.1 38.8 54.3 45.3 + 15.9 39.9 58.1 47.3

Spouses 9.9 34.8 15.4 53.5 62.1 57.4 + 42.0 48.4 61.6 54.2 + 38.8 47.8 62.5 54.2

Snorkel’s generative and discriminative models consistently improve over distant supervision, measured in F1, the harmonic mean of precision (P)
and recall (R). We compare with hand-labeled data when available, coming within an average of 1 F1 point

Fig. 10 Precision–recall curves for the relation extraction tasks. The top
plots compare a majority vote of all labeling functions, Snorkel’s gen-
erative model, and Snorkel’s discriminative model. They show that the
generativemodel improves overmajority vote by providingmore granu-
lar information about candidates, and that the discriminative model can
generalize to candidates that no labeling functions label. The bottom

plots compare the discriminative model trained on an unweighted com-
bination of the labeling functions, hand supervision (when available),
and Snorkel’s discriminative model. They show that the discriminative
model benefits from the weighted labels provided by the generative
model, and that Snorkel is competitive with hand supervision, particu-
larly in the high-precision region

sets were labeled by individuals not involved with labeling
function development to keep the test sets properly blinded.

4.1.1 Relation extraction from text

We first focus on four relation extraction tasks on text data,
as it is a challenging and common class of problems that are
well studied and for which distant supervision is often con-
sidered. Predictive performance is summarized in Table 3,
and precision–recall curves are shown in Fig. 10. We briefly
describe each task.

Scientific Articles (Chem) With modern online repositories
of scientific literature, such as PubMed13 for biomedical arti-
cles, research results are more accessible than ever before.
However, actually extracting fine-grained pieces of informa-

13 https://www.ncbi.nlm.nih.gov/pubmed/

Table 4 Number of candidates in the training, development, and test
splits for each dataset

Task # Train. # Dev. # Test

Chem 65,398 1292 1232

EHR 225,607 913 604

CDR 8272 888 4620

Spouses 22,195 2796 2697

Radiology 3851 385 385

Crowd 505 63 64

tion in a structured format and using this data to answer
specific questions at scale remains a significant open chal-
lenge for researchers. To address this challenge in the context
of drug safety research, Stanford and US Food and Drug
Administration (FDA) collaborators used Snorkel to develop
a system for extracting chemical reagent and reaction prod-
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uct relations from PubMed abstracts. The goal was to build
a database of chemical reactions that researchers at the FDA
can use to predict unknown drug interactions. We used the
chemical reactions described in the Metacyc database [8] for
distant supervision.

Electronic Health Records (EHR) As patients’ clinical
records increasingly become digitized, researchers hope to
inform clinical decision making by retrospectively analyz-
ing large patient cohorts, rather than conducting expensive
randomized controlled studies. However, much of the valu-
able information in electronic health records (EHRs)—such
as fine-grained clinical details, practitioner notes, etc.—is not
contained in standardizedmedical coding systems and is thus
locked away in the unstructured text notes sections. In collab-
oration with researchers and clinicians at the US Department
ofVeteransAffairs, StanfordHospital andClinics (SHC), and
the StanfordCenter for Biomedical InformaticsResearch,we
used Snorkel to develop a system to extract structured data
from unstructured EHR notes. Specifically, the system’s task
was to extract mentions of pain levels at precise anatomical
locations from clinician notes, with the goal of using these
features to automatically assess patient well-being and detect
complications after medical interventions like surgery. To
this end, our collaborators created a cohort of 5800 patients
fromSHCEHRdata,with visit dates between 1995 and 2015,
resulting in 500 K unstructured clinical documents. Since
distant supervision from a knowledge base is not applica-
ble, we compared against regular expression-based labeling
previously developed for this task.

Chemical–Disease Relations (CDR) We used the 2015
BioCreative chemical–disease relation dataset [60], where
the task is to identifymentions of causal links between chem-
icals and diseases in PubMed abstracts. We used all pairs of
chemical and disease mentions co-occurring in a sentence as
our candidate set.We used the Comparative Toxicogenomics
Database (CTD) [37] for distant supervision, and addition-
ally wrote labeling functions capturing language patterns and
information from the context hierarchy. To evaluate Snorkel’s
ability to discover previously unknown information, we ran-
domly removed half of the relations in CTD and evaluated
on candidates not contained in the remaining half.

Spouses Our fourth task is to identify mentions of spouse
relationships in a set of news articles from the Signal Media
dataset [10]. We used all pairs of person mentions (tagged
with SpaCy’s NER module14) co-occurring in the same sen-
tence as our candidate set. To obtain hand-labeled data for
evaluation, we crowdsourced labels for the candidates via
AmazonMechanical Turk, soliciting labels from three work-
ers for each example and assigning themajority vote.We then

14 https://spacy.io/

Table 5 Evaluation on cross-modal experiments. Labeling functions
that operate on or represent one modality (text, crowd workers) produce
training labels for models that operate on another modality (images,
text), and approach the predictive performance of large hand-labeled
training datasets

Task Snorkel (Disc.) Hand supervision

Radiology (AUC) 72.0 76.2

Crowd (Acc) 65.6 68.8

wrote labeling functions that encoded language patterns and
distant supervision from DBpedia [30].

4.1.2 Cross-modal: images and crowdsourcing

In the cross-modal setting, we write labeling functions over
one data modality (e.g., a text report, or the votes of crowd-
workers) and use the resulting labels to train a classifier
defined over a second, totally separate modality (e.g., an
image or the text of a tweet). This demonstrates the flexibility
of Snorkel, in that the labeling functions (and by extension,
the generative model) do not need to operate over the same
domain as the discriminative model being trained. Predictive
performance is summarized in Table 5.

Abnormality Detection in Lung Radiographs (Rad) In many
real-world radiology settings, there are large repositories of
image datawith corresponding narrative text reports, but lim-
ited or no labels that could be used for training an image
classificationmodel. In this application, in collaborationwith
radiologists, we wrote labeling functions over the text radi-
ology reports, and used the resulting labels to train an image
classifier to detect abnormalities in lung X-ray images. We
used a publicly available dataset from the OpenI biomedi-
cal image repository15 consisting of 3,851 distinct radiology
reports—composed of unstructured text and Medical Sub-
ject Headings (MeSH)16 codes—and accompanying X-ray
images.

Crowdsourcing (Crowd)We trained a model to perform sen-
timent analysis using crowdsourced annotations from the
weather sentiment task from Crowdflower.17 In this task,
contributors were asked to grade the sentiment of often-
ambiguous tweets relating to the weather, choosing between
five categories of sentiment. Twenty contributors graded
each tweet, but due to the difficulty of the task and lack of
crowdworker filtering, there were many conflicts in worker
labels. We represented each crowdworker as a labeling
function—showing Snorkel’s ability to subsume existing

15 http://openi.nlm.nih.gov/
16 https://www.nlm.nih.gov/mesh/meshhome.html
17 https://www.crowdflower.com/data/weather-sentiment/
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Table 6 Comparison between training the discriminative model on
the labels estimated by the generative model, versus training on the
unweighted average of the LF outputs. Predictive performance gains
show that modeling LF noise helps

Task Disc. model on
Unweighted LFs Disc. model Lift

Chem 48.6 54.1 + 5.5

EHR 80.9 81.4 + 0.5

CDR 42.0 45.3 + 3.3

Spouses 52.8 54.2 + 1.4

Crowd (Acc) 62.5 65.6 + 3.1

Rad. (AUC) 67.0 72.0 + 5.0

crowdsourcing modeling approaches—and then used the
resulting labels to train a text model over the tweets, for
making predictions independent of the crowd workers.

4.1.3 Effect of generative modeling

An important question is the significance of modeling the
accuracies and correlations of the labeling functions on the
end predictive performance of the discriminative model (ver-
sus in Sect. 3, where we only considered the effect on the
accuracy of the generative model).We compare Snorkel with
a simpler pipeline that skips the generative modeling stage
and trains the discriminative model on an unweighted aver-
age of the labeling functions’ outputs. Table 6 shows that
the discriminative model trained on Snorkel’s probabilistic
labels consistently predicts better, improving 5.81% on aver-
age. These results demonstrate that the discriminative model
effectively learns from the additional signal contained in
Snorkel’s probabilistic training labels over simpler model-
ing strategies.

4.1.4 Scaling with unlabeled data

One of the most exciting potential advantages of using a
programmatic supervision approach as in Snorkel is the abil-
ity to incorporate additional unlabeled data, which is often
cheaply available. Recently, proposed theory characterizing
the data programming approach used predicts that discrimi-
nativemodel generalization risk (i.e., predictive performance
on the held-out test set) should improve with additional unla-
beled data, at the same asymptotic rate as in traditional
supervisedmethods with respect to labeled data [43]. That is,
with a fixed amount of effort writing labeling functions, we
could then get improved discriminative model performance
simply by adding more unlabeled data.

Wevalidate this theoretical prediction empirically on three
of our datasets (Fig. 11). We see that by adding additional
unlabeled data—in these datasets, candidates from addi-

Fig. 11 The increase in endmodel performance (measured in F1 score)
for different amounts of unlabeled data, measured in the number of can-
didates. We see that as more unlabeled data is added, the performance
increases

tional documents—we get significant improvements in the
end discriminative model performance, with no change in
the labeling functions. For example, in the EHR experiment,
where we had access to a large unlabeled corpus, we were
able to achieve significant gains (8.1 F1 score points) in
going from 100 to 50 thousand documents. Further empiri-
cal validation of these strong unlabeled scaling results can
be found in follow-up work using Snorkel in a range of appli-
cation domains, including aortic valve classification in MRI
videos [17], industrial-scale content classification at Google
[4], fine-grained named entity recognition [45], radiology
image triage [26], and others. Based on both this empirical
validation, and feedback from Snorkel users in practice, we
see this ability to leverage available unlabeled data without
any additional user labeling effort as a significant advantage
of the proposed weak supervision approach.

4.1.5 Labeling function type ablation

We also examine the impact of different types of labeling
functions on end predictive performance, using the CDR
application as a representative example of three common cat-
egories of labeling functions:

• Text Patterns Basic word, phrase, and regular expression
labeling functions.

• Distant Supervision External knowledge bases mapped
to candidates, either directly or filtered by a heuristic.

• Structure-Based Labeling functions expressing heuris-
tics over the context hierarchy, e.g., reasoning about
position in the document or relative to other candidates.

We show an ablation in Table 7, sorting by stand-alone score.
We see that distant supervision adds recall at the cost of some
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Table 7 Labeling function ablation study on CDR

LF type P R F1 Lift

Text patterns 42.3 42.4 42.3

+ Distant supervision 37.5 54.1 44.3 + 2.0

+ Structure-based 38.8 54.3 45.3 + 1.0

Adding different types of labeling functions improves predictive per-
formance

Table 8 Self-reported skill levels—no previous experience (New),
beginner (Beg.), intermediate (Int.), and advanced (Adv.)—for all user
study participants

Subject New Beg. Int. Adv.

Python 0 3 8 4

Machine learning 5 1 4 5

Info. extraction 2 6 5 2

Text mining 3 6 4 2

precision, as we would expect, but ultimately improves F1
score by 2 points; and that structure-based labeling functions,
enabled by Snorkel’s context hierarchy data representation,
add an additional F1 point.

4.2 User study

We conducted a formal study of Snorkel to (i) evaluate how
quickly subject matter expert (SME) users could learn to
write labeling functions, and (ii) empirically validate the
core hypothesis that writing labeling functions is more time-
efficient than hand-labeling data. Users were given instruc-
tion on Snorkel, and then asked to write labeling functions
for the Spouses task described in the previous subsection.

Participants In collaboration with theMobilize Center [28],
an NIH-funded Big Data to Knowledge (BD2K) center, we
distributed a national call for applications to attend a two-day
workshop on using Snorkel for biomedical knowledge base
construction. Selection criteria included a strong biomedi-
cal project proposal and little-to-no prior experience using
Snorkel. In total, 15 researchers18 were invited to attend out
of 33 team applications submitted, with varying backgrounds
in bioinformatics, clinical informatics, and data mining from
universities, companies, and organizations around the USA.
The education demographics included 6 bachelors, 4 mas-
ters, and 5 Ph.D. degrees. All participants could program in
Python, with 80% rating their skill as intermediate or bet-
ter; 40% of participants had little-to-no prior exposure to
machine learning; and 53-60% had no prior experience with
text mining or information extraction applications (Table 8).

18 One participant declined to write labeling functions, so their score
is not included in our analysis.

Protocol The first day focused entirely on labeling functions,
ranging from theoretical motivations to details of the Snorkel
API. Over the course of 7 hours, participants were instructed
in a classroom setting on how to use and evaluate models
developed using Snorkel. Users were presented with 4 tuto-
rial Jupyter notebooks providing skeleton code for evaluating
labeling functions, along with a small labeled development
candidate set, and were given 2.5 hours of dedicated devel-
opment time in aggregate to write their labeling functions.
All workshop materials are available online.19

Baseline To compare our users’ performance against models
trained on hand-labeled data, we collected a large hand-
labeled dataset via Amazon Mechanical Turk (the same set
used in the previous subsection). We then split this into 15
datasets representing 7 hours worth of hand-labeling time
each—based on the crowdworker average of 10 s per label—
simulating the alternative scenario where users skipped both
instruction and labeling function development sessions and
instead spent the full day hand-labeling data. Partitions were
created by drawing a uniform random sample of 2500 labels
from the total Amazon Mechanical Turk-generated Spouse
dataset. For 15 such random samples, the mean F1 score was
20.9 (min:11.7, max: 29.5). Scaling to 55 random partitions,
the mean F1 score was 22.5 (min:11.7, max: 34.1).

Results Our key finding is that labeling functions written in
Snorkel, even by SME users, can match or exceed a tradi-
tional hand-labeling approach. The majority (8) of subjects
matched or outperformed these hand-labeled data models.
The average Snorkel user’s score was 30.4 F1, and the aver-
age hand-supervision scorewas 20.9 F1. The best performing
user model scored 48.7 F1, 19.2 points higher than the best
supervised model using hand-labeled data. The worst par-
ticipant scored 12.0 F1, 0.3 points higher that the lowest
hand-labeledmodel. The full distribution of scores by partici-
pant, and broken down by participant background, compared
against the baseline models trained with hand-labeled data
are shown in Figs. 12, 13 and 14 respectively.

Additional Details We note that participants only needed
to create a fairly small set of labeling functions to achieve
the reported performances, writing a median of 10 labeling
functions (with a minimum of 2, and a maximum of 15). In
general, these labeling functions had simple form; for exam-
ple, two from our user study:

19 https://github.com/HazyResearch/snorkel/tree/master/tutorials/
workshop
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Fig. 12 Predictive performance attained by our 14 user study partici-
pants using Snorkel. The majority (57%) of users matched or exceeded
the performance of a model trained on 7 h (2500 instances) of hand-
labeled data
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Fig. 13 The profile of the best performing user by F1 score was aMS or
Ph.D. degree in any field, strong Python coding skills, and intermediate
to advanced experience with machine learning. Prior experience with
text mining added no benefit

def LF_fictional(c):
fictional = {"played the husband", "played the
wife", "plays the husband", "plays the wife", "
acting role"}
if re.search("|".join(fictional), c.get_parent ().
text , re.I):

return −1
else:

return 0

def LF_family(c):
family = {"business partner", "son", "daughter",
"father", "dad", "mother", "mom", "children , "
child , "twins", "cousin", "friend", "girlfriend"
, "boyfriend", "sister","brother"}
if len(other.intersection(get_between_tokens(c)))
> 0:

return −1
else:

return 0

Participant labeling functions had a median length of
2 lines of Python code (min:2, max:12). We grouped
participant-designed functions into three types:

1. Pattern-based (regular expressions, small term sets)

Fig. 14 We bucketed labeling functions written by user study partici-
pants into three types—pattern-based, distant supervision, and complex.
Participants tended tomainlywrite pattern-based labeling functions, but
also universally expressed more complex heuristics as well

2. Distant Supervision (interacts with a knowledge base)
3. Complex (misc. heuristics, e.g., countingPERSONnamed

entity tags, comparing last names of a pair of PERSON
entities)

On average, 58% of participant’s labeling functions where
pattern-based (min:25%, max: 82%). The best labeling func-
tion design strategy used by participants appeared to be
defining small term sets correlated with positive and negative
labels. Participantswith the lowest F1 scores tended to design
labeling functions with low coverage of negative labels. This
is a common difficulty encountered when designing label-
ing functions, as writing heuristics for negative examples is
sometimes counter-intuitive. Users with the highest overall
F1 scores wrote 1-2 high-coverage negative labeling func-
tions and several medium-to-high-accuracy positive labeling
functions.

We note that the best single participant’s pipeline achieved
an F1 score of 48.7, compared to the authors’ score of 54.2.
User study participants favored pattern-based labeling func-
tions; the most common design was creating small positive
and negative term sets. Author labeling functions were sim-
ilar, but were more accurate overall p (e.g., better pattern
matching).

5 Extensions and next steps

In this section, we briefly discuss extensions and use cases
of Snorkel that have been developed since its initial release,
as well as next steps and future directions more broadly.

5.1 Extensions for real-world deployments

Since its release, Snorkel has been used at organizations
such as the Stanford Hospital, Google, Intel, Microsoft,
Facebook, Alibaba, NEC, BASF, Toshiba, and Accenture;
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in the fight against human trafficking as part of DARPA’s
MEMEX program; and in production at several large tech-
nology companies. Deploying Snorkel in these real-world
settings has often involved productionizing around various
key aspects. With various teams at the Stanford School of
Medicine, we have worked to extend the cross-modal radi-
ology application described in Sect. 4 to a range of other
similar cross-modal medical problems, which has involved
building robust interfaces for various multi-modal clinical
data and formats [26]. In collaboration with several teams
at Google, we recently developed a new version of Snorkel,
Snorkel DryBell, to interface with Google’s organizational
weak supervision resources and compute infrastructure, and
enableweak supervision at industrial scale [4].Another focus
has been extending Snorkel to handle richly-formatted data,
defined in [62] as data with multi-modal, semi-structured
components such as PDF forms, tables, and HTML pages.
Support for this rich but challengingdata typehas been imple-
mented in a system built on top of Snorkel, Fonduer [62],
which has been applied to domains such as anti-human traf-
ficking efforts via DARPA’s MEMEX project and extraction
of genome-wide association (GWA) studies from the scien-
tific literature [29].

5.2 Ascending the code-as-supervision stack

The goal of Snorkel is to enable users to program the
modern machine learning stack, by labeling training data
with labeling functions rather than manual annotation. This
code-as-supervision approach can then inherit the traditional
advantages of code such as modularity, debuggability, and
higher-level abstraction layers. In particular, enabling this
last element—even higher-level, more declarative ways of
specifying labeling functions—has been a major motivation
of the Snorkel project.

Since Snorkel’s release, various extensions have explored
higher-level, more declarative interfaces for labeling training
data by building on top of Snorkel (Fig. 15). One idea, moti-
vated by the difficulty of writing labeling functions directly
over image or video data, is to first compute a set of features or
primitives over the raw data using unsupervised approaches,
and then write labeling functions over these building blocks
[58]. For example, if the goal is to label instances of people
riding bicycles, we could first run an off-the-shelf pre-trained
algorithm to put bounding boxes around people and bicycles,
and thenwrite labeling functions over the dimensions or rela-
tive locations of these bounding boxes.20 In medical imaging
tasks, anatomical segmentation masks provide a similarly
intuitive semantic abstraction for writing labeling functions
over. For example, in a large collection of cardiacMRI videos
from the UK Biobank, creating segmentations of the aorta

20 See the image tutorial at http://snorkel.stanford.edu/.

Fig. 15 In a traditional programming stack, progressively higher-level
languages and abstractions provide increasingly simple and declarative
interfaces. Similarly, we envision a code-as-supervision stack built on
top of the basic unit of labeling functions, allowing users to label training
data in increasingly higher-level ways. Figure from [46]

enabled a cardiologist to define labeling functions for iden-
tifying rare aortic valve malformations [17].

An even higher-level interface is natural language. The
Babble Labble project [20] accepts natural language expla-
nations of data points and then uses semantic parsers to parse
these explanations into labeling functions. In this way, users
without programming knowledge have the capability towrite
labeling functions just by explaining reasons why data points
have specific labels. Another related approach is to use pro-
gram synthesis techniques, combined with a small set of
labeled data points, to automatically generate labeling func-
tions [59].

5.3 Multi-task weak supervision

Many real-world use cases of machine learning involve mul-
tiple related classification tasks—both because there are
multiple tasks of interest, and because available weak super-
vision sources may in fact label different related tasks.
Handling this multi-task weak supervision setting has been
the focus of recent work on a new version of Snorkel, Snorkel
MeTaL,21 which handles labeling functions that label dif-
ferent tasks, and in turn can be used to supervise popular
multi-task learning (MTL) discriminative models [44,45].
For example, we might be aiming to train a fine-grained
named entity recognition (NER) system which tags spe-
cific types of people, places, and things, and have access
to both fine-grained labeling functions—e.g., that label doc-
tors versus lawyers—and coarse-grained ones, e.g., that label
people versus organizations. By representing these as differ-
ent logically-related tasks, we can model and combine these

21 https://github.com/HazyResearch/metal
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multi-granularity labeling functions using this new multi-
task version of Snorkel.

5.4 Future directions

In addition to working on the core directions outlined—real-
world deployment, higher-level interfaces, and multi-task
supervision—several other directions are natural and exciting
extensions of Snorkel. One is the extension to other clas-
sic machine learning settings, such as structured prediction,
regression, and anomaly detection settings.Another direction
is extending the possible output signature of labeling func-
tions to include continuous values, probability distributions,
or other more complex outputs. The extension of the core
modeling techniques—for example, learning labeling func-
tion accuracies that are conditioned on specific subsets of
the data, or jointly learning the generative and discriminative
models—also provide exciting avenues for future research.

Another practical and interesting direction is exploring
integrations with other complementary techniques for deal-
ing with the lack of hand-labeled training data (see Other
Forms of Supervision in Sect. 6). One example is active
learning [53], in which the goal is to intelligently sample
data points to be labeled; in our setting, we could intelli-
gently select sets of data points to show to the user when
writing labeling functions—e.g., data points not labeled by
existing labeling functions—and potentially with interest-
ing visualizations and graphical interfaces to aid and direct
this development process. Another interesting direction is
formalizing the connection between labeling functions and
transfer learning [38], andmakingmore formal and practical
connections to semi-supervised learning [9].

5.5 Limitations

To be applicable in a problem domain, Snorkel requires three
main ingredients: first, a set of labeling functions that users
can write; second, a discriminative model to train; and third,
a preferably large amount of unlabeled data. While there are
many current and exciting future directions for enabling users
to more easily write labeling functions in a more diverse
set of circumstances, as discussed in this section, there are
some tasks or datasets where this will remain a gating limi-
tation. Next, Snorkel’s ease of use implicitly relies on easily
available discriminative models, such as the increasingly
commoditized architectures available in the open-source
today, e.g., text, image, and other data types; however, this is
not the case in every domain. Finally, Snorkel benefits from
settings where unlabeled data is readily available, as demon-
strated empirically in this paper and theoretically in prior
work [43], which is not always the case.

6 Related work

This section is an overview of techniques for managing weak
supervision,manyofwhich are subsumed inSnorkel.Wealso
contrast it with related forms of supervision.

Combining Weak Supervision Sources The main challenge
of weak supervision is how to combine multiple sources. For
example, if a user provides two knowledge bases for dis-
tant supervision, how should a data point that matches only
one knowledge base be labeled? Some researchers have used
multi-instance learning to reduce the noise in weak supervi-
sion sources [24,49], essentially modeling the different weak
supervision sources as soft constraints on the true label, but
this approach is limited because it requires using a specific
end model that supports multi-instance learning.

Researchers have therefore considered how to estimate
the accuracy of label sources without a gold standard
with which to compare—a classic problem [13]—and com-
bine these estimates into labels that can be used to train
an arbitrary end model. Much of this work has focused
on crowdsourcing, in which workers have unknown accu-
racy [11,25,66]. Such methods use generative probabilistic
models to estimate a latent variable—the true class label—
based on noisy observations. Other methods use genera-
tive models with hand-specified dependency structures to
label data for specific modalities, such as topic models for
text [3] or denoising distant supervision sources [50,57].
Other techniques for estimating latent class labels given
noisy observations include spectral methods [39]. Snorkel
is distinguished from these approaches because its gener-
ative model supports a wide range of weak supervision
sources, and it learns the accuracies and correlation struc-
ture among weak supervision sources without ground truth
data.

Other Forms of SupervisionWork on semi-supervised learn-
ing considers settings with some labeled data and a much
larger set of unlabeled data, and then leverages various
domain- and task-agnostic assumptions about smoothness,
low-dimensional structure, or distance metrics to heuristi-
cally label the unlabeled data [9]. Work on active learning
aims to automatically estimate which data points are opti-
mal to label, thereby hopefully reducing the total number of
examples that need to be manually annotated [54]. Transfer
learning considers the strategy of repurposingmodels trained
on different datasets or tasks where labeled training data
is more abundant [38]. Another type of supervision is self-
training [2,52] and co-training [6], which involves training a
model or pair of models on data that they labeled themselves.
Weak supervision is distinct in that the goal is to solicit input
directly from SMEs, however at a higher level of abstraction
and/or in an inherently noisier form. Snorkel is focused on
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managing weak supervision sources, but combing its meth-
ods with these other types of supervision is straightforward.
Related Data Management Problems Researchers have con-
sidered related problems in data management, such as data
fusion [15,48] and truth discovery [32]. In these settings, the
task is to estimate the reliability of data sources that provide
assertions of facts and determine which facts are likely true.
Many approaches to these problems use probabilistic graph-
ical models that are related to Snorkel’s generative model
in that they represent the unobserved truth as a latent vari-
able, e.g., the latent truth model [67]. Our setting differs in
that labeling functions assign labels to user-provided data,
and they may provide any label or abstain, which we must
model. Work on data fusion has also explored how to model
user-specified correlations among data sources [40]. Snorkel
automatically identifies which correlations among labeling
functions to model.

7 Conclusion

Snorkel provides a new paradigm for soliciting and manag-
ing weak supervision to create training data sets. In Snorkel,
users provide higher-level supervision in the form of label-
ing functions that capture domain knowledge and resources,
without having to carefully manage the noise and conflicts
inherent in combining weak supervision sources. Our eval-
uations demonstrate that Snorkel significantly reduces the
cost and difficulty of training powerful machine learning
models while exceeding prior weak supervision methods
and approaching the quality of large, hand-labeled training
sets. Snorkel’s deployments in industry, research laborato-
ries, and government agencies show that it has real-world
impact, offering developers an improved way to build mod-
els.
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