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Abstract

In this paper, we propose a learning algorithm for train-
ing deep neural networks when there is not sufficient la-
beled data. To improve the generalization capabilities of the
deep model, we adopt a learning scheme to train two related
tasks simultaneously. One is the original task (target), and
the other is an auxiliary task (source). In order to create
a related auxiliary task, we leverage an available knowl-
edge graph to query for semantically related concepts that
are grounded in labeled images; hence we call our method
KGAuxLearn. We jointly train the target and source tasks
in a multi-task architecture. We evaluate our method on
two fine-grained visual categorization benchmarks: Oxford
Flowers 102 and CUB-200-2011. Our experiments demon-
strate that the error rate reduced by at least 2.1% over fine-
tuning for both datasets. We also improve the error rate by
1.36% and 2.93% over using randomly selected concepts
as an auxiliary task for Oxford Flowers 102 and CUB-200-
2011, respectively. In addition, comparing our method with
auxiliary data selection methods that do not use a knowl-
edge graph, the error rate improves by 0.69% and 2.57%
on Oxford Flowers 102 and CUB-200-2011, respectively.

1. Introduction

Deep neural networks (DNNs) have been achieving
state-of-the-art performances on a wide range of problems
in vision, language, and speech areas [16, 21, 25]. A
large part of DNNs’ success is owed to the availability of
massive amount of labeled data [15, 18]. However, label-
ing samples can be prohibitively expensive and time con-
suming such that it is considered one of its main bottle-
necks. As one solution, there has been a growing interest
in knowledge transfer methodologies such as transfer learn-
ing [28, 17, 36] and multi-task learning (MTL) [2, 42, 3].
The objective of MTL is to improve the performance of all
related tasks while learning them in parallel. According to
Caruana [8], MTL results in better performance than trans-

fer learning because it “improves generalization by leverag-
ing the domain-specific information contained in the train-
ing signals of related tasks.” In essence, MTL introduces
an inductive bias that prefers hypotheses that can explain
multiple tasks, which limits overfitting [6, 5].

In this paper, we introduce a fast multi-task learning-
based framework for fine-grained visual categorization, a
problem which often suffers from a lack of labeled data.
Previous work has demonstrated the value of selecting aux-
iliary data for additional tasks to cope with limited labeled
data. Ge et al. [13] used expensive image-by-image sim-
ilarity computations. Zhang et al. [41] used a meta learn-
ing approach that requires repeatedly training on different
tasks in order to learn which auxiliary data to select. How-
ever, neither method takes advantage of high-level semantic
knowledge. We show that we can use existing high-level
semantic knowledge in the form of a knowledge graph to
guide the selection.

In our framework, we have two tasks: target (the origi-
nal learning task) and source (the auxiliary task to improve
generalization on the target task). Knowledge transfer ap-
proaches such as MTL and transfer learning have better pers
[8]. In order to find related tasks to the target data, we
use ConceptNet, a semantic network of structured knowl-
edge, which consists of more than 8 million concepts and
21 million relations [32]. In particular, our source task will
be the collection of all of the retrieved concepts from the
knowledge graph. For example, for the class name “rose”
in Oxford Flowers 102 [27], the extracted related concepts
include “blossom,” “petal,” “flower,” “floribunda,” “multi-
flora,” “rose bowl,” and more. Note that there are a few
non-related retrieved concepts that can be seen as noise. Af-
ter extracting related concepts from the knowledge graph,
we construct our source task by collecting images corre-
sponding to those concepts from ImageNet 22K, which con-
tains 14M images and 22K categories [10]. Then, we
jointly train our deep network using both target and source
tasks. Our framework architecture consists of a shared con-
volutional neural network followed by two parallel task-
specific fully connected classifiers. Shared layers’ param-
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Figure 1. Illustration of KGAuxLearn. Inputs to the framework
are the target data (such as Oxford Flowers 102) and source data
(related images from ImageNet). After passing through the deep
convolutional neural network, they go to the corresponding fully
connected layers.

eters are updated using both target and source tasks, while
each fully connected layer is updated by its corresponding
task (Figure 1).

We performed our experiments on two fine-grained vi-
sual categorization (FGVC) problems, which aim to distin-
guish subordinate visual categories such as different species
of birds [37] or flowers [27]. There are two major diffi-
culties associated with these datasets: first, the number of
training samples per class is small; and second, visual dis-
tinction between categories is subtle. As a result, training a
high-quality DNN from scratch would be challenging. Our
experiments on these two FGVC datasets show the efficacy
of our proposed method by improving accuracy. Specifi-
cally, on Oxford Flowers 102, we decrease the error rate
by 2.11%, 1.36%, and 0.69% over fine-tuning on the tar-
get task, using randomly selected concepts as the auxiliary
task, and other auxiliary task selection methods, respec-
tively. Similarly, on CUB-200-2011 we improve the error
rate by 2.68%, 2.93%, and 2.57% over the aforementioned
baselines.

2. Related Work

Transfer Learning In transfer learning, we leverage the
knowledge we have learned from some (source) tasks to
the new (target) task to combat data scarcity in addition to
improving accuracy and time complexity [36, 28]. There-
fore, we utilize knowledge learnt from one (or more) re-
lated task(s) to the target task. In traditional machine learn-
ing, transfer learning involves learning several interrelated
problems using SVMs [38], hierarchical Bayesian methods
[30], graphical models [34], Markov logic networks [24],
etc. With the huge success of deep neural networks, trans-
fer learning is fine-tuning a pretrained deep model for a tar-

get task, which improves model performance remarkably,
while reducing the need for labeled data [40, 14]. In par-
ticular, in computer vision tasks, convolutional neural net-
works (CNNs) trained on large datasets such as ImageNet
have been extensively used for transfer learning [19, 9]. For
some target tasks with less labeled data such as fine-grained
visual categorization, fine-tuning on deep neural networks
will lead to overfitting [13]. In this paper, we try to avoid
the overfitting problem by considering transfer learning, but
we found that multi-task learning architecture works better
on these tasks since it incorporates a regularizer in the form
of related auxiliary task, while training the target task.

Multi-Task Learning In multi-task learning, several re-
lated tasks are learned simultaneously in order to take ad-
vantage of useful information embodied in those tasks, and
increase generalization performance of all tasks [8, 36, 43].
It has shown improvements in many applications in various
areas [35, 29, 11, 7, 26, 22, 39, 23, 4]. This paper is closely
related to the multi-task learning paradigm with the aspect
of learning more than one task. The main difference, how-
ever, is that while we train two target and source tasks si-
multaneously, we care about target task accuracy. The main
role of the source task is to regularize the framework by
learning a shared feature representation that benefits the tar-
get task the most.

Our framework is motivated by ideas studied in joint
learning using auxiliary tasks [13, 41]. Ge et al. [13] used
a subset of training images from the original source task
for training. They computed descriptors from filter bank
responses for both target and source tasks, which is compu-
tationally expensive. Zhang et al. [41] introduced a regu-
larized meta-learning objective function in which the regu-
larization is based on an auxiliary data. To select more use-
ful samples from auxiliary data, they computed a score for
each data point using a forward pass through their network.
Then, they fine-tune the model in the second pass, which
makes the framework expensive to adapt. Our framework
is similar to these approaches with respect to using auxil-
iary data to improve the generalization performance of the
model on the target task, but the main difference is the way
we choose the auxiliary data. We straightforwardly use the
semantic knowledge graph to retrieve all of the related con-
cepts to the target task. This is extremely fast and easy to
apply.

3. The Framework
Here is the procedure of our framework (Figure 1):

1. Join knowledge graph to ImageNet: First, we join
the relational knowledge graph, ConceptNet [32], with
the images of ImageNet 22K [10]. This enables us
to query for semantically related concepts that are
grounded in labeled images.



2. Create auxiliary task: Given the target task defined by
classes that are identified with nodes in the knowledge
graph, we select all of the related nodes to construct
our source task. In order to retrieve related concepts,
we use the “related” API endpoint of ConceptNet [1].
This API endpoint uses word embeddings built from
a combination of ConceptNet embeddings with distri-
butional word embeddings (word2vec and Glove) to
create a more robust embedding for each concept [33].
Cosine similarity is used to find related terms for each
node. Finally, using the connection of ConceptNet and
ImageNet 22K we made in step one, we extract images
to obtain auxiliary data.

3. Construct KGAuxLearn architecture: We use a deep
convolutional NN followed by two task-specific fully
connected layers; one for the target (FCtarget) and the
other for the source task (FCsource). The objective
function is:

argmin
θ,ws,wt

Lsource(h
s) + Ltarget(h

t) =

1

n

n∑
i=1

`
(
ht(xt

i;wt,θ), y
t
i

)
+

1

m

m∑
i=1

`
(
hs(xs

i ;ws,θ), y
s
i

)
where hs and ht are the hypotheses for source and tar-
get tasks correspondingly. ws,wt are source and tar-
get parameters, and θ is the shared parameters. The
source sample set is Ssource = {(xs

i , y
s
i )}mi=1, and the

target sample set is Starget = {(xt
i, y

t
i)}ni=1, where

m and n are the number of samples in the source and
target tasks respectively.

4. Jointly train target and source tasks: There are three
sets of parametersws,wt,θ that needed to be learned.
In order to optimize these parameters, we applied an
alternating training procedure, which interleaves up-
dating source and target tasks parameters. In partic-
ular, we alternate optimizing parameter sets {ws,θ}
and {wt,θ}. Note that θ is shared among two tasks;
therefore, when the input is source data, parameter
set {ws,θ} is updated and target-related parameters
FCtarget do not change (since the gradient w.r.t these
parameters is zero). When the input is target data, pa-
rameter set {wt,θ} is updated and source-related pa-
rameters (FCsource) do not change.

4. Experiments
Overview We performed experiments on two fine-grained
visual categorization datasets. For each target task, we
queried related categories using the structural knowledge

graph, ConceptNet, then extracted images of those cate-
gories from ImageNet 22K to construct the source task.
Then, we adjusted a convolutional neural network by adding
two task-specific classifiers on top, and fine-tuned the
model using both target and auxiliary data. We computed
top-1 and mean class accuracies and compared our results
with baselines and other methods using auxiliary data for
learning.

Datasets We evaluated our approach on two fine-grained
visual categorization benchmarks as target tasks: Oxford
Flowers 102 [27] and CUB-200-2011 [37]. Oxford Flow-
ers 102 contains 102 classes; each class has 10 images for
training and 10 images for validation. Total number of test-
ing images is 6,149. CUB-200-2011 consists of 200 bird
species with 5,994 images for training and 5,794 images for
testing.

Implementation In our experiments, we use the 152-
layer ResNet [15] pretrained on ImageNet 1K [31] as a
deep convolutional network. The only difference is that
instead of having one fully connected layer, we have two
fully connected layers for source and target tasks, which
are initialized randomly (Figure 1). During training, target
images are augmented by a combination of random crop,
flip, and rotation procedures, and during inference, images
are resized and center cropped. All images are resized to
224 × 224. After hyperparameter tuning on the validation
set, SGD with momentum 0.9 and initial learning rate 0.01
is used for CUB-200-2011 and Adam is used for Oxford
Flowers 102 with initial learning rate 0.001. We applied a
cosine annealing schedule to update the learning rate during
training. We also freeze ResNet 152 up to layer 6. We set
the maximum number of epochs to 100, and load the model
which has the best target validation accuracy for evaluation.
Our source dataset is ImageNet 22K [10], which organized
according to the WordNet [12] hierarchy.

Training the Model For Oxford Flowers 102, using the
“related” API endpoint of ConceptNet, we extracted 1,006
classes with 825k images in total, and for CUB-200-2011,
we extracted 1,045 classes with approximately 885k train-
ing images. Note the huge difference between the number
of images in source and target tasks: The source task for
Oxford Flowers 102 is at least 800 times larger, and that of
CUB-200-2011 is at least 160 times larger. We therefore set
target task batch size to 8 and source task batch size to 128.
In each iteration, we randomly select 8 samples from target
and 128 samples from source task. Iterations in each epoch
is based on the total number of target task, which means
not all source tasks images are passed through the model in
each epoch. This makes the training process very fast. In
future work, we plan to use more related samples from the
auxiliary data.



Quantitative Analysis To evaluate classification perfor-
mance, we computed top-1 and mean class accuracy. We
defined two baselines: (1) fine-tuning on the target task
only, and (2) choosing random concepts as the source task.
In the former, we just fine-tune the deep convolution net-
work (pretrained on ImageNet 1K) with one fully connected
layer for the target task. In the latter, we use the same
structure as our framework, but instead of selecting a source
task from the knowledge graph, we randomly sample con-
cepts. In order to have a fair comparison, the number of
randomly selected categories is exactly equal to that of the
KGAuxLearn source task. More concretely, for Oxford
Flowers 102, for example, we had retrieved 1,006 related
concepts from knowledge graph to construct source task.
Therefore, for the “random” baseline, we selected 1,006
random concepts to be the source task.

We also compare our method with the results of papers
[13, 41] in which they used joint learning with source task
from ImageNet 1K. We perform all experiments using three
different seeds, and report the results in Tables 1 and 2 (±
in these tables represents standard deviation). For Oxford
Flowers 102, according to Table 1, KGAuxLearn perfor-
mance is higher than the baselines as well as selective joint
fine-tuning introduced in [13]. In [13], their best mean ac-
curacy was 95.8%, while we got 96.49%. Note the com-
putational cost in their framework since they need to com-
pute the similarities of all images descriptor in target data
to those of source data, which is ImageNet 1K. For CUB-
200-2011, as shown in Table 2, our model has better per-
formance than baselines as well as MetaFGNet in [41]. In
[41], their best accuracy (similar to our settings) is reported
80.3% when used ImageNet 1K as source data, while our
model accuracy is 82.87%. Note the simplicity of our
framework compared to [41], as they require one pass to
compute the source task target, and the other pass for fine-
tuning. For both experiments, we outperform over random
auxiliary images as source task. This is significantly impor-
tant as it shows our model is learning a better generalized
representation while learning jointly with related tasks. It
should be noted that in [41], they achieved higher accuracy
when using a subset of L-Bird [20] as auxiliary set for CUB-
200-2011. L-Bird contains more than 4M images from
around 10k bird species. Consequently, obtaining such a
high score is unsurprising when using a more specialized
source task.

Few-Shot Learning Scheme As one future direction, we
would like to extend our framework for few-shot learning
scheme in which there are a handful number of images for
each class. We performed small experiments for such set-
ting when there are 2, 4, 6, 8, and 10 images per class for
the Oxford Flowers 102 dataset. As illustrated in Figure 2,
for all cases, KGAuxLearn outperforms all baselines. This
observation is important as it shows this methodology could

Method Top-1 (%) Mean Acc (%)
Fine-tune 93.51± 0.14 94.38± 0.17
Random Source 94.35± 0.27 95.12± 0.1
Selective Joint [13] N/A 95.8
KGAuxLearn 96.07± 0.20 96.49± 0.19

Table 1. A comparison of classification performance (top-1 and
mean class accuracy with standard deviation) on Oxford Flowers
102. KGAuxLearn outperforms the baselines and the best result
reported in [13] with ImageNet as the source task.

Method Top-1 (%) Mean Acc (%)
Fine-tune 80.19± 0.4 80.37± 0.38
Random Source 79.94± 0.3 80.11± 0.33
MetaFGNet [41] 80.3 N/A
KGAuxLearn 82.87± 0.53 83.00± 0.49

Table 2. A comparison of classification performance (top-1 and
mean class accuracy with standard deviation) on CUB-200-2011.
KGAuxLearn outperforms the baselines and the best result re-
ported in [41] with ImageNet as the source task.

be fit in other related research areas such as few-shot learn-
ing.
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Figure 2. Error rate when there are a small number of images
per class for Oxford Flowers 102 using different approaches.
KGAuxLearn performance is better than baselines in all cases.

5. Conclusions
In this paper, we introduce a training methodology to

improve image classification performance with insufficient
data for training. Inspired from multi-task learning, we cre-
ate a source task, related to the original task, and adjust
a deep neural network to train both tasks in parallel. To
construct the source task, we retrieve related concepts from
a semantic knowledge graph, and then extract correspond-
ing images in ImageNet 22K. Our experiments on two fine-
grained visual categorization benchmarks are promising, il-
lustrating accurate and fast performance.
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