

Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction

S O S

Stephen H. Bach, Bert Huang, Ben London, and Lise Getoor University of Maryland, College Park

Introduction

- Hinge-loss Markov random fields are powerful models for structured prediction
- New scalable MPE inference algorithm much faster than inference in discrete MRFs
- State-of-the-art performance on four diverse learning tasks

Hinge-loss Markov Random Fields

Undirected probabilistic graphical models analogous to discrete MRFs

- Variables are continuous valued in [0,1]
- Potentials are hinge-loss functions
- Arbitrary linear constraints

$$P(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z} \exp \left[-\sum_{j=1}^{m} \lambda_j \max \{\ell_j(\mathbf{Y}, \mathbf{X}), 0\}^{p_j} \right]$$

where $\ell_i(\mathbf{Y}, \mathbf{X})$ is a linear function, Z is a normalization constant, and $p_j \in \{1, 2\}$

Templating Language

Easy to define via **interpretable relaxation** from logical rules to hinge-loss functions using a templating language called **probabilistic soft logic** (PSL)

$$\lambda : Label(D_1, L) \wedge Link(D_1, D_2) \Rightarrow Label(D_2, L)$$
 \iff

$$\lambda \cdot \max\{\operatorname{Label}(D_1, L) + \operatorname{Link}(D_1, D_2) - \operatorname{Label}(D_2, L) - 1, 0\}$$

Fast Supervised Learning

- Learn tied weights Λ with
- Approximate max likelihood: $\frac{\partial \log p(\mathbf{Y}|\mathbf{X})}{\partial \Lambda_q} = \mathbb{E}_{\Lambda} \left[\Phi_q(\mathbf{Y}, \mathbf{X}) \right] \Phi_q(\mathbf{Y}, \mathbf{X})$
- Max pseudolikelihood: $\frac{\partial \log P^*(Y|X)}{\partial \Lambda_q} = \sum_{i=1}^n \mathbb{E}_{Y_i|\mathrm{MB}} \left| \sum_{j \in t_q: i \in \phi_j} \phi_j(\mathbf{Y}, \mathbf{X}) \right| \Phi_j(\mathbf{Y}, \mathbf{X})$
- Large margin: $\min_{\Lambda \geq 0} \ \frac{1}{2} ||\Lambda||^2 + C\xi \ \text{s.t.} \ \Lambda^\top (\Phi(\mathbf{Y}, \mathbf{X}) \Phi(\tilde{\mathbf{Y}}, \mathbf{X})) \leq -L(\mathbf{Y}, \tilde{\mathbf{Y}}) + \xi, \forall \mathbf{Y}$

-ast performance

and state-of-the-art

accuracy on four

diverse tasks!

Fast inference enables fast learning

Collective Classification

- Labels in graph depend on neighbors' labels
- Learn propensity of each label value to propagate A or B?
- Citation network data sets

	Citeseer	Cora
HL-MRF-Q	0.729	0.818
HL-MRF-L	0.729	0.808
MRF	0.715	0.797

Average classification accuracy

Social-trust Prediction

- Who trusts whom in social networks?
- Easily encode social-science
 theories, such as structural balance
 theory, as logical rules
- Epinions data set

	ROC	P-R (+)	P-R (-)
HL-MRF-Q	0.832	0.979	0.482
HL-MRF-L	0.757	0.963	0.333
MRF	0.725	0.963	0.298

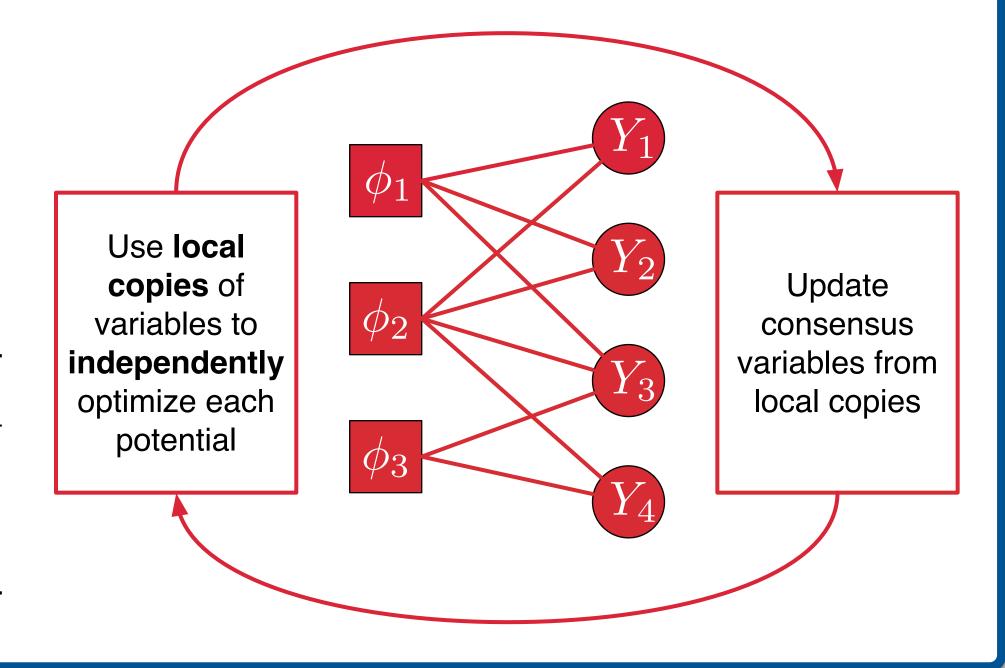
Average areas under curves on Epinions data set

Fast, Convex MPE Inference

- Hinge-loss Markov random fields are log-concave densities
- New MPE inference algorithm based on the alternating direction method of multipliers (ADMM) is highly scalable

	Citeseer	Cora	Epinions
HL-MRF-Q	0.42	0.70	0.32
HL-MRF-L	0.46	0.50	0.28
MRF	110.96	184.32	212.36

Average inference times in seconds vs. MC-SAT for discrete MRFs



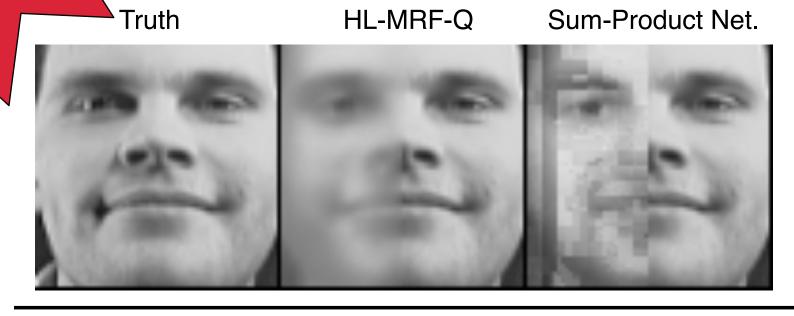
Preference Prediction

- How will a user rate something based on ratings of similar users?
- Compared to Bayesian probabilistic matrix factorization (BPMF)
- Jester jokes data set

	NMSE	NMAE
HL-MRF-Q	0.0738	0.2297
HL-MRF-L	0.0544	0.1875
BPMF	0.0501	0.1832

Normalized mean square and absolute errors on Jester data set

Image Reconstruction



	HL-MRF-Q	SPN
Caltech-Left	1741	1815
Caltech-Bottom	1910	1924
Olivetti-Left	927	942
Olivetti-Bottom	1226	918

Mean squared pixel error on 0-255 grayscale