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A fundamental challenge in developing impactful artificial intelligence tech-
nologies is balancing the ability to model rich, structured domains with the ability
to scale to big data. Many important problem areas are both richly structured
and large scale, from social and biological networks, to knowledge graphs and the
Web, to images, video, and natural language. In this thesis I introduce two new
formalisms for modeling structured data, distinguished from previous approaches
by their ability to both capture rich structure and scale to big data. The first,
hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graph-
ical model that generalizes different approaches to convex inference. I unite three
views of inference from the randomized algorithms, probabilistic graphical models,
and fuzzy logic communities, showing that all three views lead to the same infer-
ence objective. I then derive HL-MRFs by generalizing this unified objective. The
second new formalism, probabilistic soft logic (PSL), is a probabilistic programming
language that makes HL-MRFs easy to define, refine, and reuse for relational data.
PSL uses a syntax based on first-order logic to compactly specify complex models. I
next introduce an algorithm for inferring most-probable variable assignments (MAP
inference) for HL-MRFs that is extremely scalable, much more so than commercially
available software, because it uses message passing to leverage the sparse dependency
structures common in inference tasks. I then show how to learn the parameters of
HL-MRFs using a number of learning objectives. The learned HL-MRFs are as ac-
curate as traditional, discrete models, but much more scalable. To enable HL-MRFs
and PSL to capture even richer dependencies, I then extend learning to support la-
tent variables, i.e., variables without training labels. To overcome the bottleneck of
repeated inferences required during learning, I introduce paired-dual learning, which
interleaves inference and parameter updates. Paired-dual learning learns accurate
models and is also scalable, often completing before traditional methods make even
one parameter update. Together, these algorithms enable HL-MRFs and PSL to
model rich, structured data at scales not previously possible.
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Chapter 1: Introduction

In many problems in artificial intelligence and machine learning, the domains are rich

and structured, with many interdependent elements that are best modeled jointly.

Examples include social networks, biological networks, the Web, natural language,

computer vision, sensor networks, and so on. The key to accurately modeling such

domains is to capture the dependencies induced by their structures. For example,

friends in a social network are more likely to share common interests, pages on

the Web that link to each other are more likely to share a common topic, and in

computer vision what is happening in one frame of video is often correlated with

what is happening in adjacent frames. In applications that require making inferences

about such domains, constructing a joint model that incorporates these structural

dependencies is generally more accurate than attempting to model elements of the

domain independently.

Machine learning subfields such as structured prediction (BakIr et al., 2007),

statistical relational learning (Getoor and Taskar, 2007), and inductive logic pro-

gramming (Muggleton and De Raedt, 1994) all seek to model structural depen-

dencies. These three interrelated disciplines are connected by their focus on high-

dimensional models in which the unknowns depend on each other in rich and com-
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plex ways. Structured prediction (SP) and statistical relational learning (SRL) are

closely related and tend to focus on probabilistic models, enabling them to reason

under uncertainty. SRL emphasizes constructing probabilistic models using rela-

tional formalisms, such as first-order predicate logic. Inductive logic programming

(ILP) also uses first-order logic to define rules for inferring the consequences entailed

from a set of propositions. See Chapter 2 for a more detailed discussion on SP, SRL,

ILP, and their connections.

This thesis focuses on a fundamental challenge in SP: the need for models

that are both expressive and scalable. In the worst case, inference in probabilis-

tic models is NP-hard (Shimony, 1994), but this does not mean that the problem

is hopeless. Many restricted classes of models admit tractable inference, and ap-

proximation techniques for inference in general models often work well in practice.

Currently, practitioners must navigate this landscape of specialized models and ap-

proximation techniques to find the tools that will capture their problem domains as

well as possible while sacrificing as little scalability as possible. This search is chal-

lenging because there is generally an inverse relationship between expressivity and

scalability. New tools are needed that achieve a good balance between expressivity

and scalability across a wide range of problems.

I address this challenge by first unifying three different approaches for scalable

inference with structured predictors based on logical formalisms. The first approach

is randomized algorithms for MAX SAT, the classic problem of finding a Boolean

assignment to variables that maximizes the weighted sum of satisfied clauses in a

model. Goemans and Williamson (1994) introduced a convex inference objective
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for finding rounding probabilities for each variable such that a randomized rounding

procedure will produce a .75-optimal solution to this NP-hard problem in expecta-

tion. The procedure can also be derandomized to find a single, .75-optimal discrete

solution. The second approach is local consistency relaxation (Wainwright and Jor-

dan, 2008) for discrete Markov random fields with potentials defined using Boolean

logic. Again, a convex inference objective is defined, this time based on variational

approximations to maximum a posteriori (MAP) inference, i.e., inferring the most

probable assignment to the variables. The resulting, possibly fractional solutions

are a relaxed solution to MAP inference in the discrete graphical model. Finally, the

third approach is  Lukasiewicz logic (Klir and Yuan, 1995), a fuzzy logic developed

for reasoning about vague or uncertain concepts, e.g., whether something is “bright”

or “warm” or “old.”  Lukasiewicz logic interprets logical propositions not as true or

false, but as continuously valued in the [0, 1] interval. If the logical clauses in the

MAX SAT problem are interpreted using  Lukasiewicz logic instead of Boolean logic,

it defines a new, convex optimization problem for reasoning.

I show that all three approaches actually optimize the same inference objective,

unifying these previously distinct interpretations of convex inference for SP. Unifying

them is significant because it means that a single modeling framework and set of

algorithms can be used to scalably reason and learn in a broad range of structured

domains containing both discrete and continuous information. Developing such a

modeling framework and algorithms is the subject of the rest of this thesis.

My next contribution is therefore to take the unified inference objective, gen-

eralize it, and use it as the energy function of a new kind of probabilistic graphical
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model defined over continuous variables, which I call hinge-loss Markov random

fields (HL-MRFs) because their MAP inference objective is always a weighted sum

of hinge losses. HL-MRFs are log-linear models defined over continuous variables in

the [0, 1] interval with hinge functions (a maximum of a linear function and zero)

for potentials. They extend the unified inference objective in several ways to make

it more versatile. First, the potentials are allowed to be arbitrary hinge functions,

not just the hinges induced by the three unified interpretations of logical models.

This generalization allows HL-MRFs to capture additional types of structural de-

pendencies. Second, I allow linear constraints to be added to the model, which is

crucial for modeling many domain elements such as multinomial variables and func-

tional or partial functional relationships. (This is equivalent to allowing potentials

to have infinite weights. Third, HL-MRF potentials can be squared, making them

piecewise-quadratic instead of piecewise-linear, which creates smooth tradeoffs be-

tween conflicting structural dependencies rather than completely favoring the most

influential ones.

An important question at this point is what the semantics of these new con-

tinuous variables are. They can be interpreted using any of the three semantics

(rounding probabilities, pseudomarginals, or fuzzy truth values) used to derive them.

However, the additional modeling features I add to derive HL-MRFs—which I show

lead to increased functionality and predictive performance—also separates them

from their original interpretations. For example, even if features like squared po-

tentials sometimes perform better in practice, using them means that the rounding

guarantees of Goemans and Williamson (1994) no longer apply. I therefore take an
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agnostic approach to the semantics of these variables. Their interpretation depends

on the particular model and application. For example, in a node labeling problem,

it might be most useful to interpret the continuous variables as rounding proba-

bilities to obtain discrete final predictions. In a link prediction task, in which the

existing relationships to predict are often sparse, in might be best to interpret the

continuous values as confidences and order the predictions from most confident to

least confident. The results can then be evaluated using ranking measures like area

under the precision-recall curve (AuPR) or area under the receiver operating charac-

teristic curve (AuROC), which better characterize performance in sparse prediction

problems. The continuous values can also simply represent naturally continuous

quantities, like sensor data or pixel intensities.

With this range of possible interpretations, it is important that HL-MRFs

generalize approaches based on logical formalisms because logic is a powerful tool

for easily applying SP to a wide range of problems. One way to think of a struc-

tured domain is as a set of entities, broadly construed, connected by relationships.

Mapping the relationships to predicates and the entities to constants enables users

to model these domains with logic. A ground atom (a predicate combined with

constants for arguments) can represent a relationship involving one or more entities.

An SP framework can then map the ground atoms back to variables representing

whether each corresponding relationship holds in the domain. Continuing with this

idea, logical operators are a shorthand language for defining structural dependencies

among the variables represented by atoms. For example, if one variable is true, i.e.,

a relationship exists in a structured domain, when another variable is true, this can
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be indicated by a logical implication.

This convenient formalism for defining structured predictors becomes even

more powerful when extended to use first-order logic, in which logical variables can

be used as arguments to predicates in logical clauses, acting as placeholders for sets

of constants. Then, structural dependencies can be compactly specified for large sets

of relationships. One popular SRL framework that uses this idea is Markov logic

networks (Richardson and Domingos, 2006), which maps ground atoms to Boolean

random variables and logical clauses to potentials in a discrete Markov random field

(MRF). Since HL-MRFs generalize approaches to scalable inference in structured

predictors defined using logical clauses, they can also be defined using a logical

language.

My third contribution is to bring the modeling power and flexibility of logic-

based languages to HL-MRFs by introducing a probabilistic programming language

called probabilistic soft logic (PSL). PSL is a language for compactly specifying

families of HL-MRFs using a syntax based on first-order logic. A PSL program is

a template that induces a HL-MRF for a given relational data set based on the

general structural dependencies described in the program. PSL enables users to

easily construct, test, and refine rich models for SP. Logical clauses are mapped

to hinge-loss potentials. Additional syntax for arithmetic relationships allows for

the specification of a broader set of structural dependencies, including linear con-

straints. PSL’s syntax makes it easy to define a number of useful features that

commonly occur in structured domains, including constraints on the domain and

range of relationships, e.g., functional and partial functional relationships, structural
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dependencies based on the similarity of entities, priors on variables for which there

is no other evidence, blocks and canopies for improving computational performance,

and aggregates, which allow variables to be defined as functions of sets of other

variables.

PSL is closely related to Markov logic networks (MLNs), in that they both

use syntaxes based on first-order logic to define variants of MRFs. Whereas MLNs

define discrete MRFs over Boolean variables, PSL defines HL-MRFs over continuous

variables. As I show in this thesis, HL-MRFs are much more scalable than discrete

MRFs, so the advantage of PSL is that it gives users the benefits of HL-MRFs for

structured prediction. There are also some syntactic differences between PSL and

MLNs, which I discuss in Section 4.2.

After introducing HL-MRFs and PSL, I introduce a complete stack of algo-

rithms for performing inference and learning with them. The first is an algorithm

for MAP inference, the problem of finding a single most-probable assignment to the

variables. This problem is fundamental because it is used to make predictions and

as a subroutine of many learning algorithms. Scalability is therefore crucial. By

design, MAP inference is always a convex optimization, so in principle any off-the-

shelf convex optimization toolkit could be used. However, standard general-purpose

methods like interior-point methods do not scale well to large-scale structure predic-

tion (Yanover et al., 2006). I introduce a MAP inference algorithm based on consen-

sus optimization that decomposes the problem into many independent subproblems

and iterates to combine their solutions into a global solution. The algorithm uses a

technique called the alternating direction method of multipliers (ADMM) (Glowin-
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ski and Marrocco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011) to derive

message-passing updates that guarantee convergence to the MAP state. It is much

faster than using an interior-point method, as I show empirically, because it lever-

ages the sparse dependency structure common in SP. MAP inference for HL-MRFs

easily scales to models with hundreds of thousands of variables and over a million

dependencies, finding the solution for such models in roughly a minute using com-

modity hardware. I also show that it enables solving the local consistency relaxation

for discrete logic-based models more accurately than the current leading approach,

dual decomposition (Sontag et al., 2011).

I then turn to supervised learning, considering how to learn the parameters

of HL-MRFs from training data. I introduce three learning algorithms that op-

timize different learning objectives. The first optimizes the maximum likelihood

objective. This objective contains an intractable expectation term, so it can be

approximated with the MAP state, which is easily found for HL-MRFs. Doing so

can be interpreted as using a generalization of the perceptron algorithm for SP.

The second learning algorithm maximizes the pseudolikelihood of the training data

(Besag, 1975). Maximum pseudolikelihood estimation has the advantage of not re-

quiring joint inference. It learns by conditioning each variable on the true values of

the variables on which it depends and estimating expectations with respect to these

one-dimensional distributions, which can be much faster computationally. While

sometimes this approach suffers from difficulty learning long-range dependencies—

in which important structural dependencies are not included in the model directly,

but instead modeled as a chain of dependencies—it nevertheless is an important
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option for users to have. The third learning algorithm maximizes a large-margin

objective Taskar et al. (2004) that generalizes the large-margin objective for binary

classification used to train support vector machines (Vapnik, 2000). Large-margin

learning trains the model to separate the probability assigned to the training data

from other, nearby points in the prediction space.

With these learning algorithms in hand, I evaluate their performance on a

range of SP tasks. The first task is node labeling, the problem of classifying entities

when their labels depend on the labels of related entities. As a specific instance

of this problem, I consider the problem of classifying documents based on topic in

citation networks. I show that HL-MRFs are as accurate as traditional, discrete

MRFs but take only a small fraction of the time to make predictions. The second

task is trust prediction in social networks, which is an instance of link labeling,

where the structure of the network is again known, but the task is now to assign

labels to the edges as opposed to nodes. Here the labels correspond to whether a

trusts or distrusts the opinions of another user. Again, HL-MRFs are as accurate as

discrete MRFs, but much faster. Then I study link prediction, the task of predicting

the relationships among entities. An important problem in this category is prefer-

ence prediction, in which there are two types of entities, users and content, and

the relationships represent how strongly each user will enjoy each piece of content.

Here the continuous variables of HL-MRFs are valuable because they can directly

represent the non-Boolean nature of user preferences. The continuous values in the

predictions can be sorted per user to construct ordered lists of content recommenda-

tions. I show that HL-MRFs can match the performance of state-of-the-art Bayesian
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probabilistic matrix factorization (Salakhutdinov and Mnih, 2008) on this problem,

while being very easy to construct and interpret. Finally, I compare HL-MRFs to a

range of deep learning methods for image completion, showing that they can match

or surpass the performance of a range of methods. Again, the continuous values of

HL-MRFs make them very easy to apply to this problem because they can directly

represent pixel intensity. Together, this range of experiments shows that HL-MRFs

and PSL are general-purpose tools, easily applied to many problems and able to

scale much better than existing methods.

So far, these learning algorithms and experiments have assumed fully super-

vised training, i.e., the training data contains labels for all the variables in the model.

Often, however, it is useful or necessary to construct a model that contains latent

variables, variables for which there are no training labels available during learning.

Latent variables can represent many important types of information in structured

domains. One kind is hard-to-acquire information, such as the opinions of all users

in a social network (so a model could be learned using just the opinions of users that

are available). Another kind is information that is impossible to acquire because

it is inherently unobservable, such as whether someone is trustworthy. While there

might be observable indications of such a latent trait, it is inherently a subjective

judgement. Latent variables can also capture abstract, lower dimensional represen-

tations of a problem’s feature space. For example, in an image completion task,

latent variables can represent a mixture of archetypical images to use to complete

the given partial image.

Latent variables are therefore very important tools for SP models, and it is im-
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portant that HL-MRFs and PSL support them. Traditional approaches to learning

structured predictors with latent variables, such as “hard” expectation maximization

or latent structured support vector machines (LSSVM) (Yu and Joachims, 2009), are

equally applicable to HL-MRFs as they are to discrete MRFs. However, these ap-

proaches are constrained by the fact that they require repeated inferences to update

beliefs over the latent variables and compute the gradient of the learning objec-

tive. Recently, several methods have been introduced that overcome the challenge

of learning when computing the gradient of the objective requires inference. For

fully-supervised learning, large-margin methods can use the dual of loss-augmented

inference to form a joint convex minimization (Taskar et al., 2005; Meshi et al.,

2010). Schwing et al. (2012a) extended this idea to latent-variable learning for dis-

crete MRFs, using a method specifically formulated to pass messages corresponding

to the discrete states of the variables.

I use a similar approach to solve the inference bottleneck for HL-MRFs, solving

the challenge that arises in continuous models of dealing with intractable expecta-

tions and entropy terms in the learning objective. This new algorithm is called

paired-dual learning (PDL), and it makes learning with latent variables extremely

fast by interleaving ADMM inference updates with updates to the parameters. It

is so fast that it often converges to an accurate model before traditional methods

have made a single parameter update.

I show that PDL has a big impact on the computational cost of learning

with latent variables by evaluating it on a range of models. On these tasks, PDL

converges to accurate models in as little as 10% of the time required by traditional
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methods, often before the traditional methods can make a single parameter update.

The first task I consider is community detection in social media. I show that HL-

MRFs can discover interesting associations among supporters of political candidates,

language, and media outlets by modeling latent political support in Twitter data.

PDL makes training these models much faster. I then return to trust prediction

in social networks, showing that modeling latent user attributes like whether each

user is trusting or trustworthy can significantly improve performance over the fully

supervised model. Again, PDL makes learning this superior model much faster.

Finally, I revisit image completion to address the problem of learning to construct

more realistic faces by modeling real facial structure. When predicting the bottom

half of a face from the top, the fully supervised models evaluated in the previous

chapter rely on superficial symmetries that lead to good pixel-level accuracy but

produce very unnatural images. Learning latent, archetypical face structures leads

to more realistic images, and once again PDL makes doing so much faster. PDL

completes the stack of inference and learning algorithms that make HL-MRFs and

PSL general-purpose tools for SP.

Together, HL-MRFs and PSL address the challenge of balancing scalability

and expressivity by offering users a class of models that admits very fast inference

and is easily applicable to a wide range of problems. In summary, this thesis demon-

strates that they are as accurate as traditional methods for SP, while being much

more scalable. HL-MRFs unite and generalize several fundamental approaches to

artificial intelligence and machine learning problems: randomized algorithms for

MAX SAT, relaxed inference for probabilistic graphical models, and fuzzy logic.
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PSL provides users with a friendly and powerful interface for defining models for

many different structured domains. I introduce algorithms for inference, supervised

learning, and learning with latent variables; and demonstrate that these algorithms

enable HL-MRFs and PSL to model many domains accurately and scalably. To-

gether, this package of new tools enables users to solve machine learning problems

with a level of accuracy at a scale that was not previously possible.

Material in this thesis has been published at top-tier venues for research on

machine learning and artificial intelligence. The equivalence between MAX SAT

and local consistency relaxation was published in Artificial Intelligence & Statistics

(Bach et al., 2015b). Work on MAP inference was published in Neural Information

Processing Systems (Bach et al., 2012). Additional work on MAP inference and work

on supervised learning appeared in Uncertainty in Artificial Intelligence (Bach et al.,

2013). Paired-dual learning appeared at the International Conference on Machine

Learning (Bach et al., 2015a).
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Chapter 2: Related Work

Researchers in artificial intelligence and machine learning have long been interested

in predicting interdependent unknowns using structural dependencies. Some of the

earliest work in this area is inductive logic programming (ILP) (Muggleton and

De Raedt, 1994), in which structural dependencies are described with first-order

logic. Using first-order logic has several advantages. First, it can capture many

types of dependencies among variables, such as correlations, anti-correlations, and

implications. Second, it can compactly specify dependencies that hold across many

different sets of propositions by using variables as wildcards that match entities in

the data. These features enable the construction of intuitive, general-purpose models

that are easily applicable or adapted to different domains. Inference for ILP finds

the propositions that satisfy a query, consistent with a relational knowledge base.

However, ILP is limited by its difficulty in coping with uncertainty. Standard ILP

approaches only model dependencies which hold universally, and such dependencies

are rare in real-world data.

Another broad area of research, probabilistic methods, directly models uncer-

tainty over unknowns. Probabilistic graphical models (PGMs) (Koller and Fried-

man, 2009) are a family of formalisms for specifying joint distributions over inter-
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dependent unknowns through graphical structures. The graphical structure of a

PGM generally represents conditional independence relationships among random

variables. Explicitly representing conditional independence relationships allows a

distribution to be more compactly parametrized. For example, in the worst case,

a discrete distribution could be represented by an exponentially large table over

joint assignments to the random variables. However, describing the distribution in

smaller, conditionally independent pieces can be much more compact. Similar ben-

efits apply to continuous distributions. Algorithms for probabilistic inference and

learning can also operate over the conditionally independent pieces described by the

graph structure. They are therefore straightforward to apply to a wide variety of

distributions. Categories of PGMs include Markov random fields (MRFs), Bayesian

networks (BNs), and dependency networks (DNs). Constructing PGMs often re-

quires careful design, and models are usually constructed for single tasks and data

sets.

More recently, researchers have sought to combine the advantages of rela-

tional and probabilistic approaches, creating the field of statistical relational learn-

ing (SRL) (Getoor and Taskar, 2007). SRL techniques build probabilistic models of

relational data, i.e., data composed of entities and relationships connecting them.

Relational data is obviously most often described using a relational calculus, but

SRL techniques are also equally applicable to similar categories of data that go

by other names, such as graph data or network data. Modeling relational data is

inherently complicated by the large number of interconnected and overlapping struc-

tural dependencies that are typically present. This has motivated two directions of
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work. The first direction is algorithmic, seeking inference and learning methods that

scale up to very high dimensional models. The other direction is both user-oriented

and—as a growing body of evidence shows—supported by learning theory, seek-

ing formalisms for compactly specifying entire groups of dependencies in the model

that share both form and parameters. Specifying these grouped dependencies, often

in the form of templates via a domain-specific language, is convenient for users.

Most often in relational data the structural dependencies hold without regard to

the identities of entities, instead being induced by an entity’s class (or classes) and

the structure of its relationships with other entities. Therefore, many SRL models

and languages give users the ability to specify dependencies in this abstract form

and ground out models over specific data sets based on these definitions. In addi-

tion to convenience, recent work in learning theory says that repeated dependencies

with tied parameters can be the key to generalizing from a few—or even one—large,

structured training example(s) (London et al., 2013a).

A related field to SRL is structured prediction (SP) (BakIr et al., 2007), which

generalizes the traditional tasks of binary and multiclass classification using a 0-

1 loss to the task of predicting from a structured space. The loss function used

during learning and evaluation is generalized to a task-appropriate loss function

that scores disagreement between predictions and the true structures. Often, models

for structured prediction take the form of energy functions that are linear in their

parameters. Therefore, prediction with such models is equivalent to MAP inference

for MRFs. A distinct branch of SP is learn-to-search methods, in which the problem

is decomposed into a series of one-dimension prediction problems. The challenge
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is to learn a good order in which to predict the components of the structure, so

that each one-dimension prediction problem can be conditioned on the most useful

information. Examples of learn-to-search methods include incremental structured

perceptron (Collins and Roark, 2004), SEARN (Daumé III et al., 2009), DAgger

(Ross et al., 2011), and AggreVaTe (Ross and Bagnell, 2014).

In this thesis we focus on SP methods that perform joint prediction directly.

Better understanding the differences and relative advantages of joint-prediction

methods and learn-to-search methods is an important direction for future work.

In the rest of the chapter we survey models and domain-specific languages for SP

and SRL (Section 2.1), inference methods (Section 2.2), and learning methods (Sec-

tion 2.3).

2.1 Models and Languages

SP and SRL encompass many approaches. One broad area of work—of which PSL

is a part—uses first-order logic and other relational formalisms to specify templates

for PGMs. Probabilistic relational models (Friedman et al., 1999) define templates

for BNs in terms of a database schema, and they can be grounded out over instances

of that schema to create BNs. Relational dependency networks (Neville and Jensen,

2007) template RNs usings server query language (SQL) queries over a relational

schema. Markov logic networks (MLNs) (Richardson and Domingos, 2006) use first-

order logic to define Boolean MRFs. Each logical clause in a first-order knowledge

base is a template for a set of potentials when the MLN is grounded out over a set of
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propositions. Whether each proposition is true is a Boolean random variable, and the

potential has a value of one when the corresponding ground clause is satisfied by the

propositions and zero when it is not. (MLNs are formulated such that higher values

of the energy function are more probable.) Clauses can either be weighted, in which

case the potential has the weight of the clause that templated it, or unweighted,

in which case in must hold universally, as in ILP. In these ways, MLNs are similar

to PSL. Whereas MLNs are defined over Boolean variables, PSL is a templating

language for HL-MRFs, which are defined over continuous variables. However, these

continuous variables can be used to model discrete quantities. See Section 3.1 for

more information on the relationships between HL-MRFs and discrete MRFs, and

Section 6.4 for empirical comparisons between the two. As we show, HL-MRFs and

PSL scale much better while retaining the rich expressivity and accuracy of their

discrete counterparts. In addition, HL-MRFs and PSL can reason directly about

continuous data.

Another logic-based language is probabilistic similarity logic (Broecheler et al.,

2010a), which is a predecessor of probabilistic soft logic. Probabilistic similarity

logic defines distributions for reasoning about similarity in relational data, many

of which can be viewed as instances of HL-MRFs. Probabilistic soft logic is a

more general language for defining HL-MRFs, so it can be applied to both discrete

data and continuous data, including similarity. Further, probabilistic soft logic

provides syntax for defining arithmethic rules (Section 4.1.5) that can express many

important modeling dependencies like domain and range rules (Section 4.3.1) and

aggregates (Section 4.3.5).
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PSL is part of a broad family of probabilistic programming languages (Gordon

et al., 2014). The goals of probabilistic programming and SRL often overlap. Prob-

abilistic programming seeks to make constructing probabilistic models easy for the

end user, and separate model specification from the development of inference and

learning algorithms. If algorithms can be developed for the entire space of models

covered by a language, then it is easy for users to experiment with including and

excluding different model components. It also makes it easy for existing models to

benefit from improved algorithms. Separation of model specification and algorithms

is also useful in SRL for the same reasons. In this thesis we emphasize designing

algorithms that are flexible enough to support the full class of HL-MRFs. Examples

of probabilistic programming languages include IBAL (Pfeffer, 2001), BLOG (Milch

et al., 2005), ProbLog (De Raedt et al., 2007), Church (Goodman et al., 2008),

Figaro (Pfeffer, 2009), and FACTORIE (McCallum et al., 2009).

2.2 Inference

Whether viewed as MAP inference for an MRF or SP without probabilistic seman-

tics, searching over a structured space to find the optimal prediction is an impor-

tant but difficult task. It is NP-hard in general (Shimony, 1994), so much work

has focused on approximations and identifying classes of problems for which it is

tractable. A well-studied approximation technique is local consistency relaxation

(LCR) (Wainwright and Jordan, 2008). Inference is first viewed as an equivalent

optimization over the realizable expected values of the potentials, called the marginal

19



polytope. When the variables are discrete and each potential is an indicator that a

subset of variables is in a certain state, this optimization becomes a linear program.

Each variable in the program is the marginal probability that a variable is a partic-

ular state or the variables associated with a potential are in a particular joint state.

The marginal polytope is then the set of marginal probabilities that are globally

consistent. The number of linear constraints required to define the marginal poly-

tope is exponential in the size of the problem, however, so the linear program has to

be relaxed in order to be tractable. In a local consistency relaxation, the marginal

polytope is relaxed to the local polytope, in which the marginals over variables

and potential states are only locally consistent in the sense that each marginal over

potential states sums to the marginal distributions over the associated variables.

A large body of work has focused on solving the LCR objective quickly. Typi-

cally, off-the-shelf convex optimization methods do not scale well for large graphical

models and structured predictors (Yanover et al., 2006), so a large branch of re-

search has investigated highly scalable message-passing algorithms. One approach

is dual decomposition (DD) Sontag et al. (2011), which solves a problem dual to the

LCR objective. Many DD algorithms use coordinate descent, such as TRW-S (Kol-

mogorov, 2006), MSD (Werner, 2007), MPLP (Globerson and Jaakkola, 2007), and

ADLP (Meshi and Globerson, 2011), Other DD algorithms use subgradient-based

approaches (e.g., Jojic et al., 2010; Komodakis et al., 2011; Schwing et al., 2012b).

Another approach to solving the LCR objective uses message-passing algo-

rithms to solve the problem directly in its primal form. One well-known algorithm

is that of Ravikumar et al. (2010), which uses proximal optimization, a general
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approach that iteratively improves the solution by searching for nearby improve-

ments. The authors also provide rounding guarantees for when the relaxed solution

is integral, i.e., the relaxation is tight, allowing the algorithm to converge faster. An-

other message-passing algorithm that solves the primal objective is AD3 (Martins

et al., 2015), which uses the alternating direction method of multipliers (ADMM).

AD3 optimizes objective (3.10) for binary, pairwise MRFs and supports the addi-

tion of certain deterministic constraints on the variables. A third example of a

primal message-passing algorithm is APLP (Meshi and Globerson, 2011), which is

the primal analog of ADLP. Like AD3, it uses ADMM to optimize the objective.

Other approaches to approximate inference include tighter linear programming

relaxations (Sontag et al., 2008, 2012). These tighter relaxations enforce local con-

sistency on variable subsets that are larger than individual variables, which makes

them higher-order local consistency relaxations. Mezuman et al. (2013) developed

techniques for special cases of higher-order relaxations, such as when the MRF con-

tains cardinality potentials, in which the probability of a configuration depends on

the number of variables in a particular state. Some papers have also explored non-

linear convex programming relaxations, e.g., Ravikumar and Lafferty (2006) and

Kumar et al. (2006).

Previous analyses have identified particular subclasses whose local consistency

relaxations are tight, i.e., the maximum of the relaxed program is exactly the max-

imum of the original problem. These special classes include graphical models with

tree-structured dependencies, models with submodular potential functions, mod-

els encoding bipartite matching problems, and those with nand potentials and
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perfect graph structures (Wainwright and Jordan, 2008; Schrijver, 2003; Jebara,

2009; Foulds et al., 2011). Researchers have also studied performance guarantees of

other subclasses of the first-order local consistency relaxation. Kleinberg and Tardos

(2002) and Chekuri et al. (2005) considered the metric labeling problem. Feldman

et al. (2005) used the local consistency relaxation to decode binary linear codes.

In this thesis we examine the classic problem of MAX SAT—finding a joint

Boolean assignment to a set of propositions that maximizes the sum of a set of

weighted clauses that are satisfied—as an instance of SP. Researchers have also

considered approaches to solving MAX SAT other than the one one we study, the

randomized algorithm of Goemans and Williamson (1994). One line of work focusing

on convex programming relaxations has obtained stronger rounding guarantees than

Goemans and Williamson (1994) by using nonlinear programming, e.g., Asano and

Williamson (2002) and references therein. Other work does not use the probabilistic

method but instead searches for discrete solutions directly, e.g., Mills and Tsang

(2000), Larrosa et al. (2008), and Choi et al. (2009). We note that one such approach,

that of Wah and Shang (1997), is essentially a type of DD formulated for MAX SAT.

A more recent approach blends convex programming and discrete search via mixed

integer programming (Davies and Bacchus, 2013). Additionally, Huynh and Mooney

(2009) introduced a linear programming relaxation for MLNs inspired by MAX SAT

relaxations, but the relaxation of general Markov logic provides no known guarantees

on the quality of solutions.
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2.3 Learning

Taskar et al. (2004) connected SP and PGMs by showing how to train MRFs with

large-margin estimation, a generalization of the large-margin objective for binary

classification used to train support vector machines (Vapnik, 2000). Large-margin

learning is a well-studied approach to train structured predictors because it directly

incorporates the structured loss function into a convex upper bound on the true

objective: the regularized expected risk. The learning objective is to find the pa-

rameters with smallest norm such that a linear combination of feature functions

assign a better score to the training data than all other possible predictions. The

amount by which the score of the correct prediction must beat the score of other

predictions is scaled using the structured loss function. The objective is therefore

encoded as a norm minimization problem subject to many linear constraints, one

for each possible prediction in the structured space.

Structured SVMs (Tsochantaridis et al., 2005) extend large-margin estimation

to a broad class of structured predictors and admit a tractable cutting-plane learn-

ing algorithm. This algorithm will terminate in a number of iterations linear in the

size of the problem, and so the computational challenge of large-margin learning for

structured prediction comes down to the task of finding the most violated constraint

in the learning objective. This can be accomplished by optimizing the energy func-

tion plus the loss function. In other words, the task is to find the structure that

is the best combination of being favored by the energy function but unfavored by

the loss function. Often, the loss function decomposes over the components of the

23



prediction space, so the combined energy function and loss function can often be

viewed as simply the energy function of another structured predictor that is equally

challenging or easy to optimize, such as when the space of structures is a set of

discrete vectors and the loss function is the Hamming distance.

It is common during large-margin estimation that no setting of the parameters

can predict all the training data without error. In this case, the training data is

said to not be separable, again generalizing the notion of linear separability in the

feature space from binary classification. The solution to this problem is to add slack

variables to the constraints that require the training data to be assigned the best

score. The magnitude of the slack variables are penalized in the learning objective,

so estimation must trade off between the norm of the parameters and violating

the constraints. Joachims et al. (2009) extend this formulation to a “one slack”

formulation, in which a single slack variable is used for all the constraints across all

training examples, which is more efficient. We use this framework for large-margin

estimation for HL-MRFs in Section 6.3.

The repeated inferences required for large-margin learning, one to find the

most-violated constraint at each iteration, can become computationally expensive.

Therefore researchers have explored speeding up learning by interleaving the infer-

ence problem with the learning problem. In the cutting-plane formulation discussed

above, the objective is equivalently a saddle-point problem, with the solution at

the minimum with respect to the parameters and the maximum with respect to the

inference variables. Taskar et al. (2005) proposed dualizing the inner inference prob-

lem to form a joint minimization. For SP problems with a tight duality gap, i.e.,
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the dual problem has the same optimal value as the primal problem, this approach

leads to an equivalent, convex optimization that can be solved for all variables simul-

taneously. In other words, the learning and most-violated constraint problems are

solved simultaneously, greatly reducing training time. For problems with non-tight

duality gaps, e.g., MAP inference in general, discrete MRFs, Meshi et al. (2010)

showed that that the same principle can be applied by using approximate inference

algorithms like dual decomposition to bound the primal objective.
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Chapter 3: Hinge-Loss Markov Random Fields

In this chapter we present hinge-loss Markov random fields (HL-MRFs), a new kind

of probabilistic graphical model designed to make structured prediction highly scal-

able. We first unify several approaches to scalable structured prediction based on

logical formalisms in Section 3.1. We show that different approaches to approximat-

ing NP-hard inference problems in discrete models via convex inference lead to the

same inference objective, and that this objective is also the exact inference objective

for continuous structured predictors defined using  Lukasiewicz logic, a fuzzy logic

for continuous values. To the best of our knowledge, we are the first to show their

equivalence. That they are the equivalent is significant because it means that the

same class of models and set of algorithms can be used to reason scalably in a wide

range of discrete and continuous domains. In Section 3.2 we generalize this unified

inference objective to add additional functionality, and in Section 3.3 we use the

generalized inference objective as an energy function to define HL-MRFs.

3.1 Unifying Inference in Logic-Based Models

In many structured domains, propositional and first-order logics are useful tools for

describing the intricate dependencies that connect the unknown variables. However,
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these domains are usually noisy; dependencies among the variables do not always

hold. To address this, logical semantics can be incorporated into probability dis-

tributions to create models that capture both the structure and the uncertainty in

machine learning tasks. One common way to do this is to use logic to define feature

functions in a probabilistic model. We focus on Markov random fields (MRFs), a

popular class of probabilistic graphical models for rich, structured data. Informally,

an MRF is a distribution that assigns probability mass using a scoring function that

is a weighted combination of feature functions called potentials. We will use logical

clauses to define these potentials. We first define MRFs more formally to introduce

necessary notation:

Definition 1 Let x = (x1, . . . , xn) be a vector of random variables and let φ =

(φ1, . . . , φm) be a vector of potentials, where each potential φj(x) assigns configura-

tions of the variables a real-valued score. Also, let w = (w1, . . . , wn) be a vector of

real-valued weights. Then, a Markov random field is a probability distribution of

the form

P (x) ∝ exp
(
w>φ(x)

)
. (3.1)

In an MRF, the potentials should capture how the domain behaves, assigning higher

scores to more probable configurations of the variables. If a modeler does not know

how the domain behaves, the potentials should capture how it might behave, so that

a learning algorithm can find weights that lead to accurate predictions. Logic pro-

vides an excellent formalism for defining such potentials in structured and relational

domains.
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We now introduce some notation to make this logic-based approach more for-

mal. Consider a set of logical clauses C = {C1, . . . , Cm} where each clause Cj ∈ C

is a disjunction of literals and each literal is a variable x or its negation ¬x drawn

from the variables x such that each variable xi ∈ x appears at most once in Cj. Let

I+
j (resp. I−j ) ⊂ {1, . . . , n} be the set of indices of the variables that are not negated

(resp. negated) in Cj. Then Cj can be written as

∨
i∈I+j

xi

∨
∨
i∈I−j

¬xi

 . (3.2)

Logical clauses of this form are very expressive because they can be viewed

equivalently as implications from conditions to consequences:

∧
i∈I−j

xi =⇒
∨
i∈I+j

xi . (3.3)

This “if-then” reasoning is intuitive and can describe many dependencies in struc-

tured data. Further, multiple clauses can together express dependencies that cannot

be expressed in a single clause, such as multiple sets of conditions implying one set

of possible consequences, or one set of conditions implying multiple sets of possible

consequences. See Section 4.2 for more information on the expressivity of models

defined with disjunctive clauses.

Assuming we have a logical knowledge base C describing a structured domain,

we can embed it in an MRF by defining each potential φj using a corresponding

clause Cj. If an assignment to the variables x satisfies Cj, then we let φj(x) equal 1,
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and we let it equal 0 otherwise. For our subsequent analysis we now let wj ≥ 0 (∀j =

1, . . . ,m). The resulting MRF preserves the structured dependencies described inC,

but enables much more flexible modeling. Clauses no longer have to hold always, and

the model can express our uncertainty over different possible worlds. The weights

express how strongly we expect each corresponding clause to hold; the higher the

weight, the more probable that it is true according to the model.

This notion of embedding weighted, logical knowledge bases in MRFs is an ap-

pealing one. For example, Markov logic networks (Richardson and Domingos, 2006)

are a popular formalism that induce MRFs from weighted first-order knowledge

bases.1 Given a data set, the first-order clauses are grounded using the constants

in the data to create the set of propositional clauses C. Each propositional clause

has the weight of the first-order clause from which it was grounded. In this way,

a weighted, first-order knowledge base can compactly specify an entire family of

MRFs for a structured machine-learning task.

Although we now have a method for easily defining rich, structured models

for a wide range of problems, there is a new challenge: finding a most probable

assignment to the variables, i.e., MAP inference, is NP-hard (Shimony, 1994; Garey

et al., 1976). This means that (unless P=NP) our only hope for performing tractable

inference is to perform it approximately. Observe that MAP inference for an MRF

1Markov logic networks also allow clauses that contain conjunctions, as well as negative or
infinite weights, and therefore subsume the models discussed in this section. However, the full
class of Markov logic networks does not admit any known polynomial-time approximation schemes
for MAP inference.
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defined by C is the integer linear program

arg max
x∈{0,1}n

P (x) ≡ arg max
x∈{0,1}n

w>φ(x)

≡ arg max
x∈{0,1}n

∑
Cj∈C

wj min


∑
i∈I+j

xi +
∑
i∈I−j

(1− xi), 1

 .

(3.4)

While this program is intractable, it does admit convex programming relaxations.

In this section, we show how convex programming can be used to perform

tractable inference in MRFs defined by weighted knowledge bases. We first discuss

in Section 3.1.1 an approach developed by Goemans and Williamson (1994) that

views MAP as an instance the classic MAX SAT problem and relaxes it to a con-

vex program from that perspective. This approach has the advantage of providing

strong guarantees on the quality of the discrete solutions it obtains. However, it has

the disadvantage that general-purpose convex programming toolkits do not scale

well to relaxed MAP inference for large graphical models (Yanover et al., 2006).

In Section 3.1.2 we then discuss a seemingly distinct approach, local consistency

relaxation, with complementary advantages and disadvantages: it offers highly scal-

able message-passing algorithms but come with no quality guarantees. We then

unite these approaches by proving that they solve equivalent optimization problems

with identical solutions. Then, in Section 3.1.3, we show that the unified inference

objective is also equivalent to exact MAP inference if the knowledge base C is inter-

preted not with Boolean logic but with  Lukasiewicz logic, an infinite-valued logic for

reasoning about naturally continuous quantities such as similarity, vague or fuzzy
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concepts, and real-valued data.

That these three interpretations all lead to the same inference objective—

whether reasoning about discrete or continuous information—is extremely useful.

To the best of our knowledge, we are the first to show their equivalence. It indicates

that the same modeling formalism, inference algorithms, and learning algorithms

can be used to reason scalably and accurately about both discrete and continuous

information in structured domains. We will generalize the unified inference objective

in Section 3.2 to derive hinge-loss MRFs, and in the rest of the thesis we will develop

a probabilistic programming language and algorithms that realize the goal of a

scalable and accurate framework for structured data, both discrete and continuous.

3.1.1 MAX SAT Relaxation

One approach to approximating objective (3.4) is to use relaxation techniques de-

veloped in the randomized algorithms community for the MAX SAT problem. For-

mally, the MAX SAT problem is to find a Boolean assignment to a set of variables

that maximizes the total weight of satisfied clauses in a knowledge base composed

of disjunctive clauses annotated with nonnegative weights. In other words, objec-

tive (3.4) is an instance of MAX SAT. Randomized approximation algorithms can

be constructed for MAX SAT by independently rounding each Boolean variable xi

to true with probability pi. Then, the expected weighted satisfaction ŵj of a clause

Cj is

ŵj = wj

1−
∏
i∈I+j

(1− pi)
∏
i∈I−j

pi

 , (3.5)
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also known as a (weighted) noisy-or function, and the expected total score Ŵ is

Ŵ =
∑
Cj∈C

wj

1−
∏
i∈I+j

(1− pi)
∏
i∈I−j

pi

 . (3.6)

Optimizing Ŵ with respect to the rounding probabilities would give the exact MAX

SAT solution, so this randomized approach hasn’t made the problem any easier yet,

but Goemans and Williamson (1994) showed how to bound Ŵ below with a tractable

linear program.

To approximately optimize Ŵ , associate with each Boolean variable xi a cor-

responding continuous variable ŷi with domain [0, 1]. Then let ŷ? be the optimum

to the linear program

arg max
ŷ∈[0,1]n

∑
Cj∈C

wj min


∑
i∈I+j

ŷi +
∑
i∈I−j

(1− ŷi), 1

 . (3.7)

Observe that objectives (3.4) and (3.7) are of the same form, except that the vari-

ables are relaxed to the unit hypercube in objective (3.7). Goemans and Williamson

(1994) showed that if pi is set to ŷ?i for all i, then Ŵ ≥ .632 Z?, where Z? is the

optimal total weight for the MAX SAT problem. If each pi is set using any function

in a special class, then this lower bound improves to a .75 approximation. One

simple example of such a function is

pi =
1

2
ŷ?i +

1

4
. (3.8)
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In this way, objective (3.7) leads to an expected .75 approximation of the MAX SAT

solution.

The method of conditional probabilities (Alon and Spencer, 2008) can find a

single Boolean assignment that achieves at least the expected score from a set of

rounding probabilities, and therefore at least .75 of the MAX SAT solution when

objective (3.7) and function (3.8) are used to obtain them. Each variable xi is

greedily set to the value that maximizes the expected weight over the unassigned

variables, conditioned on either possible value of xi and the previously assigned vari-

ables. This greedy maximization can be applied quickly because, in many models,

variables only participate in a small fraction of the clauses, making the change in

expectation quick to compute for each variable. Specifically, referring to the defini-

tion of Ŵ (3.6), the assignment to xi only needs to maximize over the clauses Cj in

which xi participates, i.e., i ∈ I+
j ∪ I−j , which is usually a small set.

This approximation is powerful because it is a tractable linear program that

comes with strong guarantees on solution quality. However, even though it is

tractable, general-purpose convex optimization toolkits do not scale well to large

MAP problems. In the following subsection, we unify this approximation with a

complementary one developed in the probabilistic graphical models community.

3.1.2 Local Consistency Relaxation

Another approach to approximating objective (3.4) is to apply a relaxation devel-

oped for Markov random fields called local consistency relaxation (Wainwright and
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Jordan, 2008). This approach starts by viewing MAP inference as an equivalent

optimization over marginal probabilities.2 For each φj ∈ φ, let θj be a marginal

distribution over joint assignments xj. For example, θj(xj) is the probability that

the subset of variables associated with potential φj is in a particular joint state xj.

Also, let xj(i) denote the setting of the variable with index i in the state xj.

With this variational formulation, inference can be relaxed to an optimization

over the first-order local polytope L. Let µ = (µ1, . . . , µn) be a vector of probability

distributions, where µi(k) is the marginal probability that xi is in state k. The

first-order local polytope is

L ,


(θ,µ) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
xj |xj(i)=k θj(xj) = µi(k) ∀i, j, k

∑
xj
θj(xj) = 1 ∀j

∑Ki−1
k=0 µi(k) = 1 ∀i


, (3.9)

which constrains each marginal distribution θj over joint states xj to be consistent

only with the marginal distributions µ over individual variables that participate in

the potential φj.

MAP inference can then be approximated with the first-order local consistency

relaxation:

arg max
(θ,µ)∈L

m∑
j=1

wj
∑
xj

θj(xj) φj(xj), (3.10)

which is an upper bound on the true MAP objective. Much work has focused on

2This treatment is for discrete MRFs. We have omitted a discussion of continuous MRFs for
conciseness.
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solving the first-order local consistency relaxation for large-scale MRFs, which we

discuss further in Section 2. These algorithms are appealing because they are well-

suited to the sparse dependency structures common in MRFs, so they can scale to

very large problems. However, in general, the solutions are fractional, and there are

no guarantees on the approximation quality of a tractable discretization of these

fractional solutions.

We show that for MRFs with potentials defined byC and nonnegative weights,

local consistency relaxation is equivalent to MAX SAT relaxation.

Theorem 2 For an MRF with potentials corresponding to disjunctive logical clauses

and associated nonnegative weights, the first-order local consistency relaxation of

MAP inference is equivalent to the MAX SAT relaxation of Goemans and Williamson

(1994). Specifically, any partial optimum µ? of objective (3.10) is an optimum ŷ?

of objective (3.7), and vice versa.

We prove Theorem 2 in Appendix A. Our proof analyzes the local consistency re-

laxation to derive an equivalent, more compact optimization over only the variable

pseudomarginals µ that is identical to the MAX SAT relaxation. Theorem 2 is sig-

nificant because it shows that the rounding guarantees of MAX SAT relaxation also

apply to local consistency relaxation, and the scalable message-passing algorithms

developed for local consistency relaxation also apply to MAX SAT relaxation.
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3.1.3  Lukasiewicz Logic

The previous two subsections showed that the same convex program can approxi-

mate MAP inference in discrete, logic-based models, whether viewed from the per-

spective of MAX SAT or of probabilistic models. In this subsection, we show that

this convex program can also be used to reason about naturally continuous infor-

mation, such as similarity, vague or fuzzy concepts, and real-valued data. Instead

of interpreting the clauses C using Boolean logic, we can interpret them using

 Lukasiewicz logic (Klir and Yuan, 1995), which extends Boolean logic to infinite-

valued logic in which the propositions x can take truth values in the continuous

interval [0, 1]. Extending truth values to a continuous domain enables them to rep-

resent concepts that are vague, in the sense that they are often neither completely

true nor completely false. For example, the propositions that a sensor value is high,

two entities are similar, or a protein is highly expressed can all be captured in a

more nuanced manner in  Lukasiewicz logic. We can also use the now continuous

valued x to represent quantities that are naturally continuous (scaled to [0,1]), such

as actual sensor values, similarity scores, and protein expression levels. The ability

to reason about continuous values is very valuable, as many important applications

are not entirely discrete.

The extension to continuous values requires a corresponding extended inter-

pretation of the logical operators ∧ (conjunction), ∨ (disjunction), and ¬ (negation).

The  Lukasiewicz t-norm and t-co-norm are ∧ and ∨ operators that correspond to
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the Boolean logic operators for integer inputs (along with the negation operator ¬):

x1 ∧ x2 = max {x1 + x2 − 1, 0} (3.11)

x1 ∨ x2 = min {x1 + x2, 1} (3.12)

¬x = 1− x . (3.13)

The analogous MAX SAT problem for  Lukasiewicz logic is therefore

arg max
x∈[0,1]n

∑
Cj∈C

wj min


∑
i∈I+j

xi +
∑
i∈I−j

(1− xi), 1

 , (3.14)

which is identical in form to objective (3.7). Therefore, if an MRF is defined over

continuous variables with domain [0, 1]n and the logical knowledge base C defining

the potentials is interpreted using  Lukasiewicz logic, then exact MAP inference

is identical to finding the optimum using the unified, relaxed inference objective

derived for Boolean logic in the previous two subsections. This shows the equivalence

of all three approaches: MAX SAT relaxation, local consistency relaxation, and

 Lukasiewicz logic.

3.2 Generalizing Convex Inference

We have shown that a single convex program can be used to reason scalably and

accurately about both discrete and continuous information. In this subsection, we

generalize this inference objective to derive hinge-loss Markov random fields (HL-

MRFs), a new kind of probabilistic graphical model. HL-MRFs will preserve convex,
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scalable MAP inference and the expressivity of logic-based modeling, but will ad-

ditionally support an even richer space of dependencies. To begin, we will define

HL-MRFs as density functions over continuous variables y = (y1, . . . , yn) with joint

domain [0, 1]n, but we will remain agnostic about the semantics of these variables.

Since we are generalizing the interpretations explored in Section 3.1, their MAP

states can be viewed as rounding probabilities or pseudomarginals, or they can rep-

resent naturally continuous information. More generally, they can be viewed simply

as degrees of belief, confidences, or rankings of possible states; and they can describe

discrete, continuous, or mixed domains.

To derive HL-MRFs, we will generalize the unified inference objective of Sec-

tion 3.1 in several ways, which we restate for our semantics-agnostic variables:

arg max
y∈[0,1]n

∑
Cj∈C

wj min


∑
i∈I+j

yi +
∑
i∈I−j

(1− yi), 1

 . (3.15)

For now, we are still assuming that the objective terms are defined using a weighted

knowledge base C, but we will quickly drop this requirement. To do so, we examine

one term in isolation. Observe that the maximum value of any unweighted term is

1, which is achieved when a linear function of the variables is at least 1. We say

that the term is satisfied whenever this occurs. When a term is unsatisfied, we can

refer to its distance to satisfaction, how far it is from achieving its maximum value.

Also observe that we can rewrite the optimization explicitly in terms of distances
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to satisfaction:

arg min
y∈[0,1]n

∑
Cj∈C

wj max

1−
∑
i∈I+j

yi −
∑
i∈I−j

(1− yi), 0

 , (3.16)

so that the objective is equivalently to minimize the total weighted distance to satis-

faction. Each unweighted objective term now measures how far the linear constraint

1−
∑
i∈I+j

yi −
∑
i∈I−j

(1− yi) ≤ 0 (3.17)

is from being satisfied.

3.2.1 Relaxed Linear Constraints

With this view of each term as a relaxed linear constraint, we can easily generalize

them to arbitrary linear constraints. We no longer require that the inference ob-

jective be defined using only logical clauses, and instead each term can be defined

using any function `j(y) that is linear in y. Then, the new inference objective is

arg min
y∈[0,1]n

m∑
j=1

wj max {`j(y), 0} . (3.18)

Now each term represents the distance to satisfaction of a linear constraint `j(y) ≤ 0.

That constraint could be defined using logical clauses as discussed above, or it could

be defined using other knowledge about the domain. The weight wj indicates how

important it is to satisfy a constraint relative to others by scaling the distance to
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satisfaction. The higher the weight, the more distance to satisfaction is penalized.

Additionally, two relaxed inequality constraints, `j(y) ≤ 0 and −`j(y) ≤ 0, can be

combined to represent a relaxed equality constraint `j(y) = 0.

3.2.2 Hard Linear Constraints

Now that our inference objective admits arbitrary relaxed linear constraints, it is

natural to also allow hard constraints that must be satisfied at all times. Hard con-

straints are important modeling tools. They enable groups of variables to represent

a multinomial or categorical variable, mutually exclusive possibilities, and functional

or partial functional relationships Hard constraints can also represent background

knowledge about the domain, restricting the domain to regions that are feasible in

the real world. Additionally, they can encode more complex components such as

defining a random variable as an aggregate over other unobserved variables, which

we discuss further in Section 4.3.5.

We can think of including hard constraints as allowing a weight wj to take

an infinite value. Again, two inequality constraints can be combined to represent

an equality constraint. However, when we introduce an inference algorithm for HL-

MRFs in Section 5, it will be useful to treat hard constraints separately from relaxed

ones, and further, treat hard inequality constraints separately from hard equality

constraints. Therefore, in the definition of HL-MRFs, we will define these three

components separately.
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3.2.3 Generalized Hinge-Loss Functions

The objective terms measuring each constraint’s distance to satisfaction are hinge

losses. There is a flat region, on which the distance to satisfaction is 0, and an angled

region, on which the distance to satisfaction grows linearly away from the hyperplane

`j(y) = 0. This loss function is very useful—as we discuss in the previous section,

it is a bound on the expected loss in the discrete setting, among other things—but

it is not appropriate for all modeling situations.

A piecewise-linear loss function makes MAP inference “winner take all,” in the

sense that it is preferable to fully satisfy the most highly weighted objective terms

completely before reducing the distance to satisfaction of terms with lower weights.

For example, consider the following optimization problem:

arg min
y1∈[0,1]

5 max {y1, 0}+ 2 max {1− y1, 0} . (3.19)

The optimizer is y1 = 0 because the term with weight 5 that prefers y1 = 0 overrules

the term with weight 2 that prefers y1 = 1. The result does not indicate any ambi-

guity or uncertainty, but if the two objective terms are potentials in a probabilistic

model, it is sometimes preferable that the result reflect this conflicting information.

We can change the inference problem so that it smoothly trades off satisfying con-

flicting objective terms by squaring the hinge losses. Observe that in the modified

problem

arg min
y1∈[0,1]

5 (max {y1, 0})2 + 2 (max {1− y1, 0})2 (3.20)
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the optimizer is y1 = 2
7
, reflecting the relative influence of the two loss functions.

Another advantage of squared hinge-loss functions is that they can behave

more intuitively in the presence of hard constraints. Consider the problem

arg min
(y1,y2)∈[0,1]2

max {0.9− y1, 0}+ max {0.6− y2, 0}

such that y1 + y2 ≤ 1 .

(3.21)

The first term prefers y1 ≥ 0.9, the second term prefers y2 ≥ 0.6, and the constraint

requires that y1 and y2 are mutually exclusive. Such problems are very common and

arise when conflicting evidence of different strengths support two mutually exclu-

sive possibilities. The evidence values 0.9 and 0.6 could come from many sources,

including base models trained to make independent predictions on individual ran-

dom variables, domain-specialized similarity functions, or sensor readings. For this

problem, any solution y1 ∈ [0.4, 0.9] and y2 = 1− y1 is an optimizer. This includes

counterintuitive optimizers like y1 = 0.4 and y2 = 0.6, even though the evidence

supporting y1 is stronger. Again, squared hinge losses ensure the optimizers better

reflect the relative strength of evidence. For the problem

arg min
(y1,y2)∈[0,1]2

(max {0.9− y1, 0})2 + (max {0.6− y2, 0})2

such that y1 + y2 ≤ 1 ,

(3.22)

the only optimizer is y1 = 0.65 and y2 = 0.35, which is a more informative solution.
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We therefore complete our generalized inference objective by allowing either

hinge-loss or squared hinge-loss functions. Users of HL-MRFs have the choice of

either one for each potential, depending on which is appropriate for their task.

3.3 Definition

We can now formally state the full definition of HL-MRFs. They are defined so that a

MAP state is a solution to the generalized inference objective derived in the previous

subsection. We state the definition in a conditional form for later convenience, but

this definition is fully general since the vector of conditioning variables may be

empty.

Definition 3 Let y = (y1, . . . , yn) be a vector of n variables and x = (x1, . . . , xn′)

a vector of n′ variables with joint domain D = [0, 1]n+n′. Let φ = (φ1, . . . , φm) be a

vector of m continuous potentials of the form

φj(y,x) = (max {`j(y,x), 0})pj (3.23)

where `j is a linear function of y and x and pj ∈ {1, 2}. Let c = (c1, . . . , cr) be a

vector of r linear constraint functions associated with index sets denoting equality

constraints E and inequality constraints I, which define the feasible set

D̃ =

(y,x) ∈D

∣∣∣∣∣∣∣∣
ck(y,x) = 0,∀k ∈ E

ck(y,x) ≤ 0,∀k ∈ I

 . (3.24)
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For (y,x) ∈ D, given a vector of m nonnegative free parameters, i.e., weights,

w = (w1, . . . , wm), a constrained hinge-loss energy function fw is defined as

fw(y,x) =
m∑
j=1

wjφj(y,x) . (3.25)

We now define HL-MRFs by placing a probability density over the inputs

to a constrained hinge-loss energy function. Note that we negate the hinge-loss

energy function so that states with lower energy are more probable, in contrast with

Definition 1. This change is made for later notational convenience.

Definition 4 A hinge-loss Markov random field P over random variables y

and conditioned on random variables x is a probability density defined as follows: if

(y,x) /∈ D̃, then P (y|x) = 0; if (y,x) ∈ D̃, then

P (y|x) =
1

Z(w,x)
exp (−fw(y,x)) (3.26)

where

Z(w,x) =

∫
y|(y,x)∈D̃

exp (−fw(y,x)) dy . (3.27)

In the rest of this thesis, we will explore how to use HL-MRFs to solve a wide

range of structured machine learning problems. We first introduce a probabilistic

programming language that makes HL-MRFs easy to define for large, rich domains.

44



Chapter 4: Probabilistic Soft Logic

In this chapter we introduce a general-purpose probabilistic programming language,

probabilistic soft logic (PSL). PSL allows HL-MRFs to be easily applied to a broad

range of structured machine learning problems by defining templates for potentials

and constraints. In models for structured data, there are very often repeated pat-

terns of probabilistic dependencies. A few of the many examples include the strength

of ties between similar people in social networks, the preference for triadic closure

when predicting transitive relationships, and the “exactly one active” constraints

on functional relationships. Often, to make graphical models that are both easy to

define and which generalize across different data sets, these repeated dependencies

are defined using templates. Each template defines an abstract dependency, such as

the form of a potential function or constraint, along with any necessary parameters,

such as the weight of the potential, each of which has a single value across all depen-

dencies defined by that template. Given input data, an undirected graphical model

is constructed from a set of templates by first identifying the random variables in

the data and then “grounding out” each template by introducing a potential or

constraint into the graphical model for each subset of random variables to which

the template applies.
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A PSL program is written in a first-order syntax and defines a class of HL-

MRFs that are parameterized by the input data. PSL provides a natural interface

to represent hinge-loss potential templates using two types of rules: logical rules

and arithmetic rules. Logical rules are based on the mapping from logical clauses

to hinge-loss potentials introduced in Section 3.1. Arithmetic rules provide addi-

tional syntax for defining an even wider range of hinge-loss potentials and hard

constraints.

4.1 Definition

In this section we define PSL. Our definition covers the essential functionality that

should be supported by all implementations, but many extensions are possible. The

PSL syntax we describe can capture a very wide range of HL-MRFs, but new settings

and scenarios could motivate the development of additional syntax to make the

construction of different kinds of HL-MRFs more convenient.

4.1.1 Preliminaries

We begin with a high-level definition of PSL programs.

Definition 5 A PSL program is a set of rules, each of which is a template for

hinge-loss potentials or hard linear constraints. When grounded over a base of ground

atoms, a PSL program induces a HL-MRF conditioned on any specified observations.

In the PSL syntax, many of components are named using identifiers, which are

strings that begin with a letter (from the set {A, . . . , Z, a, . . . , z}), followed by zero
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or more letters, numeric digits, or underscores.

PSL programs are grounded out over data, so the universe over which to

ground must be defined.

Definition 6 A constant is a string that denotes an element in the universe over

which a PSL program is grounded.

Constants are the elements in a universe of discourse. They can be entities or

attributes. For example, the constant "person1" can denote a person, the constant

"Adam" can denote a person’s name, and the constant "30" can denote a person’s

age. In PSL programs, constants are written as strings in double or single quotes.

Constants use backslashes as escape characters, so they can be used to encode

quotes within constants. It is assumed that constants are unambiguous, i.e., different

constants refer to different entities and attributes.1 Groups of constants can be

represented using variables.

Definition 7 A variable is an identifier for which constants can be substituted.

Variables and constants are the arguments to logical predicates. Together, they are

generically referred to as terms.

Definition 8 A term is either a constant or a variable.

Terms are connected by relationships called predicates.

Definition 9 A predicate is a relation defined by a unique identifier and a positive

1Note that ambiguous references to underlying entities can be modeled by using different con-
stants for different references and representing whether they refer to the same underlying entity
as a predicate.
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integer called its arity, which denotes the number of terms it accepts as arguments.

Every predicate in a PSL program must have a unique identifier as its name.

We refer to a predicate using its identifier and arity appended with a slash. For

example, the predicate Friends/2 is a binary predicate, i.e., taking two arguments,

which represents whether two constants are friends. As another example, the predi-

cate Name/2 can relate a person to the string that is that person’s name. As a third

example, the predicate EnrolledInClass/3 can relate two entities, a student and

professor, with an additional attribute, the subject of the class.

Predicates and terms are combined to create atoms.

Definition 10 An atom is a predicate combined with a sequence of terms of length

equal to the predicate’s arity. This sequence is called the atom’s arguments. An

atom with only constants for arguments is called a ground atom.

Ground atoms are the basic units of reasoning in PSL. Each represents an un-

known or observation of interest and can take any value in [0, 1]. For example,

the ground atom Friends("person1", "person2") represents whether "person1"

and "person2" are friends. Atoms that are not ground are placeholders for sets of

ground atoms. For example, the atom Friends(X, Y) stands for all ground atoms

that can be obtained by substituting constants of type Person for variables X and

Y.
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4.1.2 Inputs

As we have already stated, PSL defines templates for hinge-loss potentials and hard

linear constraints that are grounded out over a data set to induce a HL-MRF. We

now describe how that data set is represented and provided as the inputs to a PSL

program. The first two inputs are two sets of predicates, a set C of closed predicates,

the atoms of which are completely observed, and a set O of open predicates, the

atoms of which may be unobserved. The third input is the base A, which is the set

of all ground atoms under consideration. All atoms in A must have a predicate in

either C or O. These are the atoms which can be substituted into the rules and

constraints of a PSL program, and each will later be associated with a HL-MRF

random variable with domain [0, 1]. The final input is a function O : A → [0, 1]∪{∅}

that maps the ground atoms in the base to either an observed value in [0, 1] or a

symbol ∅ indicating that it is unobserved. The function O is only valid if all atoms

with a predicate in C are mapped to a [0, 1] value. Note that this makes the sets C

and O redundant in a sense, since they can be derived from A and O, but it will be

convenient later to have C and O explicitly defined.

Ultimately, the method for specifying PSL’s inputs is implementation specific,

since different choices make it more or less convenient for different scenarios. In this

thesis, we will assume that C, O, A, and O exist and remain agnostic about how

they were specified. However, to make this aspect of using PSL more concrete, we

will describe one possible method for defining them here.

Our example method for specifying PSL’s inputs is text-based. The first sec-
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tion of the text input is a definition of the constants in the universe, which are

grouped into types. An example universe definition is given:

Person = {"Alexis", "Bob", "Claudia", "Don"}

Professor = {"Alexis", "Bob"}

Student = {"Claudia", "Don"}

Subject = {"Computer Science", "Statistics"}

This universe includes six constants, four with two types ("Alexis", "Bob", "Claudia",

and "Don") and two with one type ("Computer Science" and "Statistics").

The next section of input is the definition of predicates. Each predicate in-

cludes the types of constants it takes as arguments and whether it is closed. For

example, we can define predicates for an advisor-student relationship prediction task

as follows:

Advises(Professor, Student)

Department(Person, Subject) (closed)

EnrolledInClass(Student, Subject, Professor) (closed)

In this case, there is one open predicate (Advises) and two closed predicates (Department

and EnrolledInClass).

The final section of input is any associated observations. They can be specified
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in a list, for example:

Advises("Alexis", "Don") = 1

Department("Alexis", "Computer Science") = 1

Department("Bob", "Computer Science") = 1

Department("Claudia", "Statistics") = 1

Department("Don", "Statistics") = 1

In addition, values for atoms with the EnrolledInClass predicate could also be

specified. If a ground atom does not have a specified value, it will have a default

observed value of 0 if its predicate is closed or remain unobserved if its predicate is

open.

We now describe how this text input is processed into the formal inputs C, O,

A, and O. First, each predicate is added to either C or O based on whether it is

annotated with the (closed) tag. Then, for each predicate in C or O, ground atoms

of that predicate are added to A with each sequence of constants as arguments that

can be created by selecting a constant of each of the predicate’s argument types.

For example, assume that the input file contains a single predicate definition

Category(Document, Cat Name)

where the universe is Document = {"d1", "d2"} and Cat Name = {"politics", "sports"}.
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Then,

A =



Category("d1", "politics"),

Category("d1", "sports"),

Category("d2", "politics"),

Category("d2", "sports")


. (4.1)

Finally, we define the function O. Any atom in the explicit list of observations is

mapped to the given value. Then, any remaining atoms in A with a predicate in C

are mapped to 0 and any with a predicate in O are mapped to ∅.

Before moving on, we also note that PSL implementations can support predi-

cates and atoms that are defined functionally. Such predicates can be thought of as

a type of closed predicates. Their observed values are defined as a function of their

arguments. One of the most common examples is inequality, atoms of which can be

represented with the shorthand infix operator !=. For example, the following atom

has a value of 1 when two variables A and B are replaced with different constants

and 0 when replaced with the same:

A != B

Such functionally defined predicates can be implemented without requiring their

values over all arguments to be specified by the user.
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4.1.3 Rules and Grounding

Before introducing the syntax and semantics of specific PSL rules, we define the

grounding procedure that induces HL-MRFs in general. Given the inputs C, O, A,

and O, PSL induces a HL-MRF P (y|x) as follows. First, each ground atom a ∈ A is

associated with a random variable with domain [0, 1]. If O(a) = ∅, then the variable

is included in the free variables y, and otherwise it is included in the observations

x with a value of O(a).

With the variables in the distribution defined, each rule in the PSL program is

applied to the inputs and produces hinge-loss potentials or hard linear constraints,

which are added to the HL-MRF. In the rest of this subsection, we describe two

kinds of PSL rules: logical rules and arithmetic rules.

4.1.4 Logical Rules

The first kind of PSL rule is a logical rule, which is made up of literals.

Definition 11 A literal is an atom or a negated atom.

In PSL, the prefix operator ! or ~ is used for negation. A negated atom refers to one

minus the value of that atom. For example, if Friends("person1", "person2")

has a value of 0.7, then !Friends("person1", "person2") has a value of 0.3.

Definition 12 A logical rule is a disjunctive clause of literals. Logical rules are

either weighted or unweighted. If a logical rule is weighted, it is annotated with a

nonnegative weight and optionally a power of two.
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Logical rules express logical dependencies in the model. As in Boolean logic, the

negation, disjunction (written as || or |), and conjunction (written as && or &) op-

erators obey De Morgan’s Laws. Also, an implication (written as -> or <-) can be

rewritten as the negation of the body disjuncted with the head. For example

P1(A, B) && P2(A, B) -> P3(A, B) || P4(A,B)

≡ !(P1(A, B) && P2(A, B)) || P3(A, B) || P4(A,B)

≡ !P1(A, B) || !P2(A, B) || P3(A, B) || P4(A,B)

Therefore, any formula written as an implication with a literal or conjunction or

literals in the body, and a literal or disjunction of literals in the head is also a valid

logical rule, because it is equivalent to a disjunctive clause.

There are two kinds of logical rules, weighted or unweighted. A weighted

logical rule is a template for a hinge-loss potential that penalizes how far the rule is

from being satisfied. A weighted logical rule begins with a nonnegative weight and

optionally ends with an exponent of two (^2). For example, the weighted logical

rule

10 : Advisor(Prof, S) && Department(Prof, Sub) -> Department(S, Sub)

has a weight of 10 and induces potentials propagating department membership from

advisors to advisees. An unweighted logical rule is a template for a hard linear con-

straint that requires that the rule always be satisfied. For example, the unweighted

54



logical rule

Friends(X, Y) && Friends(Y, Z) -> Friends(X, Z) .

induces hard linear constraints enforcing the transitivity of the Friends/2 predicate.

Note the period (.) that is used to emphasize that this rule is always enforced and

disambiguate it from weighted rules.

A logical rule is grounded out by performing all possible substitutions of

ground atoms in the base A for atoms in the rule, such that the replaced constants

agree with the substituted atoms and variables are consistently mapped to the same

constants within each grounding. This produces a set of ground rules, which are

rules containing only ground atoms. Each ground rule will then be interpreted as

either a potential or hard constraint in the induced HL-MRF. For notational conve-

nience, we will assume without loss of generality that all the random variables are

unobserved, i.e., O(a) = ∅,∀a ∈ A. If the input data contain any observations, the

following description still applies, except that some free variables will be replaced

with observations from x. The first step in interpreting a ground rule is to map its

disjunctive clause to a linear constraint. This is done using the mapping to the uni-

fied inference objective derived in Section 3.1. Any ground PSL rule is a disjunction

of literals, some of which are negated. Let I+ be a set of the indices of the variables

that correspond to atoms that are not negated in the ground rule, expressed as a

disjunctive clause, and, likewise, let I− be the indices of the variables corresponding
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to atoms that are negated. Then, the clause is mapped to the inequality

1−
∑
i∈I+

yi −
∑
i∈I−

(1− yi) ≤ 0 . (4.2)

If the logical rule that templated the ground rule is weighted with a weight of w

and is not annotated with ^2, then the potential

φ(y,x) = max

{
1−

∑
i∈I+

yi −
∑
i∈I−

(1− yi), 0

}
(4.3)

is added to the HL-MRF with a parameter of w. If the rule is weighted with a

weight w and annotated with ^2, then the potential

φ(y,x) =

(
max

{
1−

∑
i∈I+

yi −
∑
i∈I−

(1− yi), 0

})2

(4.4)

is added to the HL-MRF with a parameter of w. If the rule is unweighted, then the

function

c(y,x) = 1−
∑
i∈I+

yi −
∑
i∈I−

(1− yi) (4.5)

is added to the set of constraint functions and its index is included in the set I to

define a hard inequality constraint c(y,x) ≤ 0.

As an example of the grounding process, consider the following logical rule:

3 : Friends(A, B) && Friends(B, C) -> Friends(C, A) ^2
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Imagine that the input data are C = {}, O = {Friends/2},

A =



Friends("p1", "p2"),

Friends("p1", "p3"),

Friends("p2", "p1"),

Friends("p2", "p3"),

Friends("p3", "p1"),

Friends("p3", "p2")



, (4.6)

and O(a) = ∅,∀a ∈ A. Then, the rule will induce six ground rules. One such ground

rule is

3 : Friends("p1", "p2") && Friends("p2", "p3")

-> Friends("p3", "p1") ^2

which is equivalent to

3 : !Friends("p1", "p2") || !Friends("p2", "p3")

|| Friends("p3", "p1") ^2

If the atoms Friends("p1", "p2"), Friends("p2", "p3"), and Friends("p3",

"p1") correspond to the random variables y1, y2, and y3, respectively, then this

57



ground rule is interpreted as the weighted hinge-loss potential

3 (max{y1 + y2 − y3 − 1, 0})2 . (4.7)

Since the grounding process uses the mapping from Section 3.1, logical rules can be

used to reason accurately and efficiently about both discrete and continuous infor-

mation. They are a convenient method for constructing HL-MRFs with the unified

inference objective for weighted logical knowledge bases as their MAP inference ob-

jective. They also allow the user to seamlessly incorporate some of the additional

features of HL-MRFs, such as squared potentials and hard constraints. Next, we

introduce an even more flexible class of PSL rules.

4.1.5 Arithmetic Rules

Arithmetic rules in PSL are more general templates for hinge-loss potentials and

hard linear constraints. Like logical rules, they come in weighted and unweighted

variants, but instead of using logical operators they use arithmetic operators. In

general, an arithmetic rule relates two linear combinations of atoms with a nonstrict

inequality or an equality. A simple example enforces the mutual exclusivity of liberal

and conservative ideologies:

Liberal(P) + Conservative(P) = 1 .
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Just as logical rules are grounded out by performing all possible substitutions of

ground atoms, arithmetic rules are grounded out to define potentials and hard

constraints over ground atoms. In this example, each possible substitution for

Liberal(P) and Conservative(P) is constrained to sum to 1. Since this is an

unweighted arithmetic rule, it defines a hard constraint c(y,x) and its index will be

included in E because it is an equality constraint.

To make arithmetic rules more flexible and easy to use, we define some addi-

tional syntax. The first is a generalized definition of atoms that can be substituted

with sums of ground atoms, rather than just a single atom.

Definition 13 A sum-augmented atom is an atom that takes terms and/or sum

variables as arguments. A sum-augmented atom represents the sum of all ground

atoms that can be obtained by substituting constants for the sum variables.

A sum variable is represented by prepending a plus symbol (+) to a variable. For

example, the sum-augmented atom

Friends(P, +F)

is a placeholder for the sum of all ground atoms inA that have a given first argument.

Sum-augmented atoms are useful because they can describe dependencies without

needing to specify the number of atoms that can participate. For example, the

arithmetic rule

Label(X, +L) = 1 .
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says that labels for each constant substituted for X should sum to one, without

needing to specify how many possible labels there are.

The substitutions for sum variables can be restricted using select statements.

Definition 14 A select statement is a logical clause defined for a sum variable

in an arithmetic rule. The logical clause contains only atoms with predicates that

appear in C and that take constants, variables that appear in the arithmetic rule,

and the sum variable for which it is defined as arguments.

Select statements restrict the substitutions for a sum variable in the corresponding

arithmetic rule by only including substitutions for which the statement evaluates to

true. Select statements only affect variables in the first arithmetic rule preceding

it, not variables in any other rules. The clauses in select statements are evaluated

using Boolean logic. For each ground atom a, it is treated as having a value of 0 if

and only if O(a) = 0. Otherwise, it is treated as having a value of 1. For example,

imagine that we want to restrict the summation in the following arithmetic rule to

only constants that satisfy a property Property/1.

Link(X, +Y) <= 1 .

Then, we can add the following select statement:

{Y: Property(Y)}

Then, the hard linear constraints templated by the arithmetic rule will only sum
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over constants substituted for Y such that Property(Y) is non-zero.

In arithmetic rules, atoms can also be modified with coefficients. These coef-

ficients can be hard-coded, e.g.,

0.5 P1(X) + 0.5 P2(X) >= 1 .

or they can use PSL’s additional coefficient-defining syntax. The first piece of coef-

ficient syntax is a cardinality function that counts the number of terms substituted

for a sum variable. Cardinality is denoted by enclosing a sum variable without the

+ in pipes. For example, the following arithmetic rule says that the average value

of a set of atoms must be at least 0.5:

P(+X) / |X| >= 0.5 .

Cardinality functions enable rules that depend on the number of substitutions in

order to be scaled correctly, such as averaging.

The second piece of coefficient syntax is built-in coefficient functions. The

exact set of supported functions is implementation specific, but standard functions

like maximum and minimum should be included. Coefficient functions are prepended

with @ and use square brackets instead of parentheses to distinguish them from

predicates. Coefficient functions can take either scalars or cardinality functions

as arguments. For example, the following rule includes a coefficient that is the
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maximum of the number of summands and a scalar:

@Max[2, |X|] P(+X) <= 5 .

In this example, the coefficient for the P/1 atoms will be the maximum of 2 and the

number of atoms.

So far we have focused on using arithmetic rules to define templates for hard

linear constraints, but they can also be used to define hinge-loss potentials. For

example, the arithmetic rule

5 : 2 P(+X) <= 1 ^2

is a template for weighted hinge-loss potentials of the form

5

(
max

{
2
∑
i

yi − 1, 0

})2

. (4.8)

Note that the weight of 5 is distinct from the coefficients in the linear constraint

`(y,x) ≤ 0 defining the hinge-loss potential. If the arithmetic rule were an equality

instead of an inequality, each grounding would be two hinge-loss potentials, one

using `(y,x) ≤ 0 and one using −`(y,x) ≤ 0. In this way, arithmetic rules can

define general hinge-loss potentials.

For completeness, we state the full, formal definition of an arithmetic rule and

define its grounding procedure.
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Definition 15 An arithmetic rule is a nonstrict inequality or equality relating two

linear combinations of sum-augmented atoms. An arithmetic rule can be annotated

with a select statement for each sum variable that restricts its groundings. Arithmetic

rules are either weighted or unweighted. If an arithmetic rule is weighted, it is

annotated with a nonnegative weight and optionally a power of two.

An arithmetic rule is grounded out by performing all possible substitutions of ground

atoms in the baseA for atoms in the rule, such that the replaced constants agree with

the substituted atoms and variables are consistently mapped to the same constants.

In addition, sum-augmented atoms are replaced by the appropriate summations

over ground atoms (possibly restricted by a corresponding select statement) and

the coefficient is distributed across the summands. This leads to a set of ground

rules for each arithmetic rule given a set of inputs. If the arithmetic rule is an

unweighted inequality, each ground rule can be algebraically manipulated to be of

the form c(y,x) ≤ 0. Then c(y,x) is added to the set of constraint functions and

its index is added to I. If instead the arithmetic rule is an unweighted equality, each

ground rule is manipulated to c(y,x) = 0, c(y,x) is added to the set of constraint

functions, and its index is added to E . If the arithmetic rule is a weighted inequality

with weight w, each ground rule is manipulated to `(y,x) ≤ 0 and included as a

potential of the form

φ(y,x) = max {`(y,x), 0} (4.9)

with a weight of w. If the arithmetic rule is a weighted equality with weight w, each
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ground rule is again manipulated to `(y,x) ≤ 0 and two potentials are included,

φ1(y,x) = max {`(y,x), 0}, φ2(y,x) = max {−`(y,x), 0} , (4.10)

each with a weight of w. In either case, if the weighted arithmetic rule is annotated

with ^2, then the induced potentials are squared.

4.2 Expressivity

An important question is the expressivity of PSL, which uses disjunctive clauses

with positive weights for its logical rules. Other logic-based languages support dif-

ferent types of clauses, such as Markov logic networks (Richardson and Domingos,

2006), which support clauses with conjunctions and clauses with negative weights.

As we discuss in this section, PSL’s logical rules capture a general class of struc-

tural dependencies, capable of modeling arbitrary probabilistic relationships among

Boolean variables, such as those defined by Markov logic networks. The advantage

of PSL is that it defines HL-MRFs, which are much more scalable than discrete

MRFs and often just as accurate, as we show in Section 6.4.

The expressivity of PSL is tied to the expressivity of the MAX SAT problem,

since they both use the same class of weighted clauses. There are two conditions on

the clauses: (1) they have nonnegative weights, and (2) they are disjunctive. We first

consider the nonnegativity requirement and show that can actually be viewed as a

restriction on the structure of a clause. To illustrate, consider a weighted disjunctive
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clause of the form

−w :

∨
i∈I+j

xi

∨
∨
i∈I−j

¬xi

 . (4.11)

If it were part of a generalized MAX SAT problem, in which there were no restrictions

on weight sign or clause structure, but the goal were still to maximize the sum of the

weights of the satisfied clauses, then this clause could be replaced with an equivalent

one without changing the optimizer:

w :

∧
i∈I+j

¬xi

∧
∧
i∈I−j

xi

 . (4.12)

Note that the clause has been changed in three ways: (1) the sign of the weight has

been changed, (2) the disjunctions have been replaced with conjunctions, and (3) the

literals have all been negated. Due to this equivalence, the restriction on the sign of

the weights is subsumed by the restriction on the structure of the clauses. In other

words, any set of clauses can be converted to a set with nonnegative weights that

has the same optimizer, but it might require including conjunctions in the clauses.

It is also easy to verify that if Equation (4.11) is used to define a potential in a

discrete MRF, replacing it with a potential defined by (4.12) leaves the distribution

unchanged, due to the normalizing partition function.

We now consider the requirement that clauses be disjunctive and illustrate

how conjunctive clauses can be replaced by an equivalent set of disjunctive clauses.

The idea is to construct a set of disjunctive clauses such that all assignments to

the variables are mapped to the same score, plus or minus a constant factor. The
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simplest example is replacing a conjunction of two variables

w1 : x1 ∧ x2 (4.13)

with three disjunctions

w2 : x1 ∨ x2 (4.14)

w2 : ¬x1 ∨ x2 (4.15)

w2 : x1 ∨ ¬x2 (4.16)

where w2 is chosen to ensure that the optimizer remains the same. This can be

done by choosing a constant such that all the weights of each disjunctive clause are

equal to the weight of the corresponding conjunctive clause plus that constant. We

describe this further in the next paragraph.

These examples can be generalized to a procedure for encoding any Boolean

MRF into a set of disjunctive clauses with nonnegative weights. Park (2002) showed

that the MAP problem for any discrete Bayesian network can be represented as an

instance of MAX SAT. For distributions of bounded factor size, the MAX SAT

problem has size polynomial in the number of variables and factors of the distri-

bution. We describe how any Boolean MRF can be represented with disjunctive

clauses and nonnegative weights. Given a Boolean MRF with arbitrary potentials

defined by mappings from joint states of subsets of the variables to scores, a new

MRF is created as follows. For each potential in the original MRF, a new set of
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potentials defined by disjunctive clauses is created. A conjunctive clause is created

corresponding to each entry in the potential’s mapping with a weight equal to the

score assigned by the weighted potential in the original MRF. Then, these clauses

are converted to equivalent disjunctive clauses as in the example of Equations (4.11)

and (4.12) by also flipping the sign of their weights and negating the literals. Once

this is done for all entries of all potentials, what remains is an MRF defined by dis-

junctive clauses, some of which might have negative weights. We make all weights

positive by adding a sufficiently large constant to all weights of all clauses, which

leaves the distribution unchanged due to the normalizing partition function.

It is important to note two caveats when converting arbitrary Boolean MRFs

to MRFs defined by disjunctive clauses with nonnegative weights. First, the number

of clauses required to represent a potential in the original MRF is exponential in

the size of the potential. In practice, this is rarely a significant limitation, since

MRFs often contain low-degree potentials. The other important point is that the

step of adding a constant to all the weights increases the total score of the MAP

state. Since the bound of Goemans and Williamson (1994) is relative to this score,

the bound is loosened for the original problem the larger the constant added to the

weights is. This is to be expected, since even approximating MAP is NP-hard in

general (Abdelbar and Hedetniemi, 1998).

We have described how general structural dependencies can be modeled with

the logical rules of PSL. It is possible to represent arbitrary logical relationships with

them. The process for converting general rules to PSL’s logical rules can be done

automatically and made transparent to the user. We have elected to define PSL’s
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logical rules without making this conversion automatic to make clear the underlying

formalism.

4.3 Modeling Patterns

PSL is a very flexible language, and there are some patterns of usage that come up

in many applications. We illustrate some of them in this subsection with a number

of examples.

4.3.1 Domain and Range Rules

In many problems, the number of relations that can be predicted among some con-

stants is known. For binary predicates, this background knowledge can be viewed

as constraints on the domain (first argument) or range (second argument) of the

predicate. For example, it might be background knowledge that each entity, such

as a document, has exactly one label. An arithmetic rule to express this is

Label(Document, +LabelName) = 1 .

The predicate Label is said to be functional.

Alternatively, sometimes it is the first argument that should be summed over.

For example, imagine the task of predicting relationships among students and profes-

sors. Perhaps it is known that each student has exactly one advisor. This constraint
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can be written as

Advisor(+Professor, Student) = 1 .

The predicate Advisor is said to be inverse functional.

Finally, imagine a scenario in which two social networks are being aligned. The

goal is to predict whether each pair of people, one from each network, is the same

person, which is represented with atoms of the Same predicate. Each person aligns

with at most one person in the other network, but might not align with anyone.

This can be expressed with two arithmetic rules:

Same(Person1, +Person2) <= 1 .

Same(+Person1, Person2) <= 1 .

The predicate Same is said to be both partial functional and partial inverse func-

tional.

Many variations on these examples are possible. For example, they can be

generalized to predicates with more than two arguments. Additional arguments can

either be fixed or summed over in each rule. As another example, domain and range

rules can incorporate multiple predicates, so that an entity can participate in a fixed

number of relations counted among multiple predicates.

69



4.3.2 Similarity

Many problems require explicitly reasoning about similarity, rather than simply

whether entities are the same or different. For example, reasoning with similarity

has been explored using kernel methods, such as kFoil (Landwehr et al., 2010) that

bases similarity computation on the relational structure of the data. The continuous

variables of HL-MRFs make modeling similarity straightforward, and PSL’s support

for function predicates make it even easier. For example, in an entity resolution task,

the degree to which two entities are believed to be the same might depend on how

similar their names are. A rule expressing this dependency is

1.0 : Name(P1, N1) && Name(P2, N2) && Similar(N1, N2)

-> Same(P1, P2)

This rule uses the Similar predicate to measure similarity. Since it is a function

predicate, it can be implemented as one of many different, possibly domain special-

ized, string similarity functions. Any similarity function that can output values in

the range [0, 1] can be used.

4.3.3 Priors

If no potentials are defined over a particular atom, then it is equally probable that

it has any value between zero and one. Often, however, it should be most probable

that an atom has a value of zero, unless there is evidence that it has a nonzero
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value. Since atoms typically represent the existence of some entity, attribute, or

relation, this bias promotes sparsity among the things inferred to exist. Further, if

there is a potential that prefers that an atom should have a value that is at least

some other continuous value, such as when reasoning with similarities as discussed

in Section 4.3.2, it should also be more probable that an atom is no higher in value

than is necessary to satisfy that potential. To accomplish both these goals, simple

“priors” can be used to state that atoms should have low values in the absence of

evidence to overrules those priors. A prior in PSL can be a rule consisting of just a

negative literal with a small weight. For example, in a link prediction task, imagine

that this preference should apply to atoms of the Link predicate. A prior is then

0.1 : !Link(A, B)

This rule acts as a regularizer on Link atoms.

4.3.4 Blocks and Canopies

In many tasks, the number of unknowns can quickly grow large, even for modest

amounts of data. For example, in a link prediction task, the goal is to predict

relations among entities. The number of possible links grows quadratically with the

number of entities. If handled naively, this could make scaling to large data sets

difficult, but this problem is often handled by constructing blocks (e.g., Newcombe

and Kennedy, 1962) or canopies (McCallum et al., 2000) over the entities, so that a

limited subset of all possible links are actually considered. Blocking partitions the

71



entities so that only links among entities in the same partition element, i.e., block,

are considered. Alternatively, for a finer grained pruning, a canopy is defined for

each entity, which is the set of other entities to which it could possibly link. Blocks

and canopies can be computed using specialized, domain-specific functions, and PSL

can incorporate them by including them as atoms in the bodies of rules. Since blocks

can be seen as a special case of canopies, we let the atom InCanopy(A, B) be 1 if B

is in the canopy or block of A, and 0 if it is not. Including InCanopy(A, B) atoms as

additional conditions in the bodies of logical rules will ensure that the dependencies

only exist between the desired entities.

4.3.5 Aggregates

One of the most powerful features of PSL is its ability to easily define aggregates,

which are rules that define random variables to be deterministic functions of sets of

other random variables. The advantage of aggregates is that they can be used to

define dependencies that do not scale in magnitude with the number of groundings in

the data. For example, consider a model for predicting interests in a social network.

A fragment of a PSL program for doing this is

1.0 : Interest(P1, I) && Friends(P1, P2) -> Interest(P2, I)

1.0 : Age(P, "20-29") && Lives(P, "California")

-> Interest(P, "Surfing")
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These two rules express the belief that interests are correlated along friendship links

in the social network, and also that certain demographic information is predictive

of specific interests. The question any domain expert or learning algorithm faces is

how strongly each rule should be weighted relative to each other. The challenge of

answering this question when using templates is that the number of groundings of

the first rule varies from person to person based on the number of friends, while the

groundings of the second remain constant (one per person). This variable scaling

of the two types of dependencies makes it difficult to find weights that accurately

reflect the relative influence each type of dependency should have across people with

different numbers of friends.

Using an aggregate can solve this problem of variable scaling. Instead of using

a separate ground rule to relate the interest of each friend, we can define that is

only grounded once for each person, relating an average interest across all friends

to each person’s own interests. A PSL fragment for this is

1.0 : AverageFriendInterest(P, I) -> Interest(P, I)

AverageFriendInterest(P, I) = Interest(+F, I) / |F| .

{F: Friends(P, F)}

/* Demographic dependencies are also included. */

Here the predicate AverageFriendInterest/2 is an aggregate that is constrained
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to be the average amount of interest each friend of a person P has in an interest I.

The weight w1 can now be scaled more accurately relative to other types of features

because there is only one grounding per person.

For a more complex example, consider the problem of determining whether

two references in the data refer to the same underlying person. One useful feature

to use is whether they have similar sets of friends in the social network. Again, a

rule could be defined that is grounded out for each friendship pair, but this would

suffer from the same scaling issues as the previous example. Instead, we can use an

aggregate to directly express how similar the two references’ sets of friends are. A

function that measures the similarity of two sets A and B is Jaccard similarity :

J(A,B) =
|A ∩B|
|A ∪B|

.

Jaccard similarity is a nonlinear function, meaning that it cannot be used directly

without breaking the log-concavity of HL-MRFs, but we can approximate it with

a linear function. We define SameFriends/2 as an aggregate that approximates
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Jaccard similarity (where SamePerson/2 is functional and inverse functional):

SameFriends(A, B) = SamePerson(+FA, +FB) / @Max[|FA|, |FB|] .

{FA : Friends(A, FA)}

{FB : Friends(B, FB)}

SamePerson(+P1, P2) = 1 .

SamePerson(P1, +P2) = 1 .

The aggregate SameFriends/2 uses the sum of the SamePerson/2 atoms as the

intersection of the two sets, and the maximum of the sizes of the two sets of friends

as a lower bound on the size of their union.
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Chapter 5: MAP Inference

Having defined HL-MRFs and a language for creating them, PSL, we turn to algo-

rithms for inference and learning. The first task we consider is maximum a posteri-

ori (MAP) inference, the problem of finding a most probable assignment to the free

variables y given observations x. In HL-MRFs, the normalizing function Z(w,x)

is constant over y and the exponential is maximized by minimizing its negated

argument, so the MAP problem is

arg max
y

P (y|x) ≡ arg min
y

fw(y,x)

≡ arg min
y∈[0,1]n

w>φ(y,x)

such that ck(y,x) = 0, ∀k ∈ E

ck(y,x) ≤ 0, ∀k ∈ I .

(5.1)

MAP is a fundamental problem because (1) it is the method we will use to make

predictions, and (2) weight learning often requires performing MAP inference many

times with different weights (as we discuss in Section 6). Here, HL-MRFs have a

distinct advantage over general discrete models, since minimizing fw is a convex
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optimization rather than a combinatorial one. There are many off-the-shelf solu-

tions for convex optimization, the most popular of which are interior-point methods,

which have worst-case polynomial time complexity in the number of variables, po-

tentials, and constraints (Nesterov and Nemirovskii, 1994). Although in practice

they perform better than their worst-case bounds (Wright, 2005), they do not scale

well to big structured prediction problems (Yanover et al., 2006). We therefore in-

troduce a new algorithm for exact MAP inference designed to scale to very large

HL-MRFs by leveraging the sparse connectivity structure of the potentials and hard

constraints that are typical of models of real-world domains.

5.1 Consensus Optimization Formulation

Our algorithm uses consensus optimization, a technique that divides an optimization

problem into independent subproblems and then iterates to reach a consensus on

the optimum Boyd et al. (2011). Given a HL-MRF P (y|x), we first construct an

equivalent MAP problem in which each potential and hard constraint is a function

of different variables. The variables are then constrained to make the new and

original MAP problems equivalent. We let y(L,j) be a copy of the variables in y

that are used in the potential function φj, j = 1, . . . ,m and y(L,k+m) be a copy of

those used in the constraint function ck, k = 1, . . . , r. We refer to the concatenation

of all of these vectors as yL. We also introduce an indicator function Ik for each

constraint function where Ik

[
ck(y(L,k+m),x)

]
= 0 if the constraint is satisfied and

infinity if it is not. Likewise, let I[0,1] be an indicator function that is 0 if the input
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is in the interval [0, 1] and infinity if it is not. We drop the constraints on the

domain of y, letting them range in principle over Rn and instead use these indicator

functions to enforce the domain constraints. This will make computation easier

when the problem is later decomposed. Finally, let y
(C,̂i)

be the variables in y that

correspond to y
(L,̂i)

, î = 1, . . . ,m+r. Operators between y
(L,̂i)

and y
(C,̂i)

are defined

element-wise, pairing the corresponding copied variables. Consensus optimization

solves the reformulated MAP problem

arg min
(yL,y)

m∑
j=1

wjφj
(
y(L,j),x

)
+

r∑
k=1

Ik
[
ck
(
y(L,k+m),x

)]
+

n∑
i=1

I[0,1] [yi]

such that y
(L,̂i)

= y
(C,̂i)

∀î = 1, . . . ,m+ r .

(5.2)

Inspection shows that problems (5.1) and (5.2) are equivalent.

This reformulation enables us to relax the equality constraints y
(L,̂i)

= y
(C,̂i)

in

order to divide problem (5.2) into independent subproblems that are easier to solve,

using the alternating direction method of multipliers (ADMM) (Glowinski and Mar-

rocco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011). The first step is to form

the augmented Lagrangian function for the problem. Let α = (α1, . . . ,αm+r) be a

concatenation of vectors of Lagrange multipliers. Then the augmented Lagrangian
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is

L(yL,α,y) =
m∑
j=1

wjφj
(
y(L,j),x

)
+

r∑
k=1

Ik
[
ck
(
y(L,k+m),x

)]
+

n∑
i=1

I[0,1] [yi]

+
m+r∑
î=1

α>
î

(
y

(L,̂i)
− y

(C,̂i)

)
+
ρ

2

m+r∑
î=1

∥∥∥y(L,̂i)
− y

(C,̂i)

∥∥∥2

2
(5.3)

using a step-size parameter ρ > 0. ADMM finds a saddle point of L(yL,α,y) by

updating the three blocks of variables at each iteration t:

αt
î
← αt−1

î
+ ρ

(
yt−1

(L,̂i)
− yt−1

(C,̂i)

)
∀î = 1, . . . ,m+ r (5.4)

ytL ← arg min
yL

L
(
yL,α

t,yt−1
)

(5.5)

yt ← arg min
y

L
(
ytL,α

t,y
)

(5.6)

The ADMM updates ensure that y converges to the global optimum y?, the

MAP state of P (y|x), assuming that there exists a feasible assignment to y. We

check convergence using the criteria suggested by Boyd et al. (2011), measuring the

primal and dual residuals at the end of iteration t

‖r̄t‖2 ,

m+r∑
î=1

‖yt
(L,̂i)
− yt

(C,̂i)
‖2

2

 1
2

‖s̄t‖2 , ρ

(
n∑
i=1

Ki(yti − yt−1
i )2

) 1
2

(5.7)

where Ki is the number of copies made of the variable yi, i.e., the number of differ-

ent potentials and constraints in which the variable participates. The updates are
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terminated when both of the following conditions are satisfied

‖r̄t‖2 ≤ εabs

√√√√ n∑
i=1

Ki + εrel max


m+r∑

î=1

‖yt
(L,̂i)
‖2

2

 1
2

,

(
n∑
i=1

Ki(yti)2

) 1
2

 (5.8)

‖s̄t‖2 ≤ εabs

√√√√ n∑
i=1

Ki + εrel

m+r∑
î=1

‖αt
î
‖2

2

 1
2

(5.9)

using convergence parameters εabs and εrel.

5.2 Block Updates

We now describe how to implement the ADMM block updates (5.4), (5.5), and (5.6).

Updating the Lagrange multipliers α is a simple step in the gradient direction (5.4).

Updating the local copies yL (5.5) decomposes over each potential and constraint

in the HL-MRF. For the variables y(L,j) for each potential φj, this requires indepen-

dently optimizing the weighted potential plus a squared norm:

arg min
y
(L,j)

wj
(
max

{
`j(y(L,j),x), 0

})pj +
ρ

2

∥∥∥∥y(L,j) − y(C,j) +
1

ρ
αj

∥∥∥∥2

2

. (5.10)

Although this optimization problem is convex, the presence of the hinge function

complicates it. It could be solved in principle with an iterative method, such as

an interior-point method, but this would become very expensive over many ADMM

updates. Fortunately, we can reduce the problem to checking several cases and find

solutions much more quickly.

There are three cases for y?(L,j), the optimizer of problem (5.10), which corre-
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spond to the three regions in which the solution must lie: (1) the region `(y(L,j),x) <

0, (2) the region `(y(L,j),x) > 0, and (3) the region `(y(L,j),x) = 0. We check each

case by replacing the potential with its value on the corresponding region, optimiz-

ing, and checking if the optimizer is in the correct region. We check the first case by

replacing the potential φj with zero. Then, the optimizer of the modified problem

is y(C,j) − αj/ρ. If `j(y(C,j) − αj/ρ,x) ≤ 0, then y?(L,j) = y(C,j) − αj/ρ, because

it optimizes both the potential and the squared norm independently. If instead

`j(y(C,j) −αj/ρ,x) > 0, then we can conclude that `j(y
?
(L,j),x) ≥ 0, leading to one

of the next two cases.

In the second case, we replace the maximum term with the inner linear func-

tion. Then the optimizer of the modified problem is found by taking the gradient

of the objective with respect to y(L,j), setting the gradient equal to the zero vector,

and solving for y(L,j). In other words, the optimizer is the solution for y(L,j) to the

equation

g∇y
(L,j)

[
wj
(
`j(y(L,j),x)

)pj +
ρ

2

∥∥∥∥y(L,j) − y(C,j) +
1

ρ
αj

∥∥∥∥2

2

]
= 0 . (5.11)

This is a simple system of linear equations. If pj = 1, then the coefficient matrix

is diagonal and trivially solved by inspection. If pj = 2, then the coefficient ma-

trix is symmetric and positive definite, and the system can be solved via Cholesky

decomposition. (Since the potentials of an HL-MRF often have shared structures,

perhaps templated by a PSL program, the Cholesky decompositions can be cached

and shared among potentials for improved performance.) Let y′(L,j) be the optimizer
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of the modified problem, i.e., the solution to equation (5.11). If `j(y
′
(L,j),x) ≥ 0,

then y?(L,j) = y′(L,j) because we know the solution lies in the region `j(y(L,j),x) ≥ 0

and the objective of problem (5.10) and the modified objective are equal on that

region. In fact, if pj = 2, then `j(y
′
(L,j),x) ≥ 0 whenever `j(y(C,j)−αj/ρ,x) ≥ 0, be-

cause the modified term is symmetric about the line `j(y(L,j),x) = 0. We therefore

will only reach the following third case when pj = 1. If `j(y(C,j)−αj/ρ,x) > 0 and

`j(y
′
(L,j),x) < 0, then we can conclude that y?(L,j) is the projection of y(C,j) −αj/ρ

onto the hyperplane ck(y(L,j),x) = 0. This constraint must be active because it is

violated by the optimizers of both modified objectives (Martins et al., 2015, Lemma

17). Since the potential has a value of zero whenever the constraint is active, solving

problem (5.10) reduces to the projection operation.

For the local copies y(L,k+m) for each constraint ck, the subproblem is easier:

arg min
y
(L,k+m)

Ik
[
ck(y(L,k+m),x)

]
+
ρ

2

∥∥∥∥y(L,k+m) − y(C,k+m) +
1

ρ
αk+m

∥∥∥∥2

2

. (5.12)

Whether ck is an equality or inequality constraint, the solution is the projection

of y(C,k+m) − αk+m/ρ to the feasible set defined by the constraint. If ck is an

equality constraint, i.e., k ∈ E , then the optimizer y?(L,k+m) is the projection of

y(C,k+m)−αk+m/ρ onto ck(y(L,k+m),x) = 0. If, on the other hand, ck is an inequality

constraint, i.e., k ∈ I, then there are two cases. First, if ck(y(C,k+m)−αk+m/ρ,x) ≤

0, then the solution is simply y(C,k+m)−αk+m/ρ. Otherwise, it is again the projection

onto ck(y(L,k+m),x) = 0.
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To update the variables y (5.6), we solve the optimization

arg min
y

n∑
i=1

I[0,1] [yi] +
ρ

2

m+r∑
î=1

∥∥∥∥y(L,̂i)
− y

(C,̂i)
+

1

ρ
αî

∥∥∥∥2

2

. (5.13)

The optimizer is the state in which yi is set to the average of its corresponding local

copies added with their corresponding Lagrange multipliers divided by the step size

ρ, and then clipped to the [0, 1] interval. More formally, let copies(yi) be the set

of local copies yc of yi, each with a corresponding Lagrange multiplier αc. Then, we

update each yi using

yi ←
1

|copies(yi)|
∑

yc∈copies(yi)

(
yc +

αc
ρ

)
(5.14)

and clip the result to [0, 1]. Specifically, if, after update (5.14), yi > 1, then we set

yi to 1 and likewise set it to 0 if yi < 0.

Algorithm 1 gives the complete pseudocode for MAP inference. It starts by

initializing local copies of the variables that appear in each potential and constraint,

along with a corresponding Lagrange multiplier for each copy. Then, until conver-

gence, it iteratively performs the updates (5.4), (5.5), and (5.6). In the pseudocode,

we have interleaved updates (5.4) and (5.5), updating both the Lagrange multipliers

αî and the local copies y
(L,̂i)

together for each subproblem, because they are local

operations that do not depend on other variables once y is updated in the previous

iteration. This reveals another advantage of our inference algorithm: it is very easy

to parallelize. The updates (5.4) and (5.5) can be performed in parallel, the results
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Algorithm 1 MAP Inference for HL-MRFs

Input: HL-MRF P (y|x), ρ > 0

Initialize y(L,j) as local copies of variables y(C,j) that are in φj, j = 1, . . . ,m
Initialize y(L,k+m) as local copies of variables y(C,k+m) that are in ck, k = 1, . . . , r

Initialize Lagrange multipliers αî corresponding to copies y
(L,̂i)

, î = 1, . . . ,m+ r

while not converged do

for j = 1, . . . ,m do
αj ← αj + ρ(y(L,j) − y(C,j))

y(L,j) ← y(C,j) −
1
ρ
αj

if `j(y(L,j),x) > 0 then

y(L,j) ← arg miny
(L,j)

wj

(
`j(y(L,j),x)

)pj
+ ρ

2

∥∥∥y(L,j) − y(C,j) + 1
ρ
αj

∥∥∥2

2

if `j(y(L,j),x) < 0 then

y(L,j) ← Proj`j=0(y(C,j) −
1
ρ
αj)

end if
end if

end for

for k = 1, . . . , r do
αk+m ← αk+m + ρ(y(L,k+m) − y(C,k+m))

y(L,k+m) ← Projck(y(C,k+m) −
1
ρ
αk+m)

end for

for i = 1, . . . , n do

yi ← 1
|copies(yi)|

∑
yc∈copies(yi)

(
yc + αc

ρ

)
Clip yi to [0,1]

end for

end while

84



gathered, update (5.6) performed, and the updated y broadcast back to the sub-

problems. Parallelization makes our MAP inference algorithm even faster and more

scalable.

5.3 Lazy MAP Inference

One interesting and useful property of HL-MRFs is that it is not always necessary

to completely materialize the distribution in order to find a MAP state. Consider a

subset φ̂ of the index set {1, . . . ,m} of the potentials φ. Observe that if a feasible

assignment to y minimizes ∑
j∈φ̂

wjφj(y,x) (5.15)

and φj(y,x) = 0,∀j /∈ φ̂, then that assignment must be a MAP state because

0 is the global minimum for any potential. Therefore, if we can identify a set of

potentials that is small, such that all the other potentials are 0 in a MAP state, then

we can perform MAP inference in a reduced amount of time. Of course, identifying

this set is as hard as MAP inference itself, but we can iteratively grow the set by

starting with an initial set, performing inference over the current set, adding any

potentials that have nonzero values, and repeating.

Since the lazy inference procedure requires that the assignment be feasible,

there are two ways to handle any constraints in the HL-MRF. One is to include all

constraints in the inference problem from the beginning. This will ensure feasibil-

ity but the idea of lazy grounding can also be extended to constraints to improve

performance further. Just as we check if potentials are unsatisfied, i.e., nonzero,
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we can also check if constraints are unsatisfied, i.e., violated. So the algorithm now

iteratively grows the set of active potentials and active constraints, adding any that

are unsatisfied until the MAP state of the HL-MRF defined by the active potentials

and constraints is also a feasible MAP state of the true HL-MRF.

The efficiency of lazy MAP inference can be improved heuristically by not

adding all unsatisfied potentials and constraints, but instead only adding those that

are unsatisfied by some threshold. Although the results are no longer guaranteed to

be correct, this can decrease computational cost significantly. Better understanding

the effects of this heuristic and perhaps even bounding the result error when possible

is an important direction for future work.

5.4 Evaluation of MAP Inference

In this section we evaluate the empirical performance of our MAP inference al-

gorithm. We first evaluate its scalability in Section 5.4.1, comparing its running

times against those of MOSEK1 a commercially available convex optimization toolkit

which uses interior-point methods (IPMs). We confirm the results of Yanover et al.

(2006) that IPMs do not scale well to large-scale SP problems, and we show that our

MAP inference algorithm scales very well. In fact, we observe that it scales linearly

in practice with the number of potentials and constraints in the HL-MRF. In Sec-

tion 5.4.2 we show that our algorithm is also an excellent approach to approximating

MAP inference in discrete MRFs defined using logic by solving the local consistency

relaxation (LCR) in its compact, primal form and applying the rounding guarantees

1http://www.mosek.com

86



of Goemans and Williamson (1994) as discussed in Section 3.1. We show that it can

significantly outperform MPLP (Globerson and Jaakkola, 2007), a leading approach

to solving the LCR. The rounding guarantees cannot be applied to MPLP because

it approximates MAP via a dual to the LCR objective. Together, these results show

that HL-MRFs are extremely scalable and can also accurately approximate discrete

inference problems.

5.4.1 Scalability

We evaluate the scalability of MAP inference by generating social networks of vary-

ing sizes, constructing HL-MRFs with them, and measuring the running time re-

quired to find a MAP state. We compare our algorithm to MOSEK’s IPM. The social

networks we generate are designed to be representative of common social-network

analysis tasks. We generate networks of users that are connected by different types

of relationships, such as friendship and marriage, and our goal is to predict the po-

litical preferences, e.g., liberal or conservative, of each user. We also assume that we

have local information about each user, which is common, representing demographic

information and other indicators that are features.

We generate the social networks using power-law distributions according to

a procedure described by Broecheler et al. (2010b) For a target number of users

N , in-degrees and out-degrees d for each edge type are sampled from the power-

law distribution D(k) ≡ αk−γ. Incoming and outgoing edges of the same type are

then matched randomly to create edges until no more matches are possible. The
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number of users is initially the target number plus the expected number of users

with zero edges, and then users without any edges are removed. We use six edge

types with various parameters to represent relationships in social networks with

different combinations of abundance and exclusivity, choosing γ between 2 and 3,

and α between 0 and 1, as suggested by Broecheler et. al. We then annotate each

vertex with a value in [−1, 1] uniformly at random to represent intrinsic opinions

We generate social networks with between 22,050 and 66,150 vertices, which

induce HL-MRFs with between 130,080 and 397,488 total potential functions and

constraints. In all the HL-MRFs, between 83% and 85% of those totals are potential

functions and between 15% and 17% are constraints. For each social network, we

create both a (log) piecewise-linear HL-MRF (pj = 1,∀j = 1, . . . ,m in Definition 3)

and a piecewise-quadratic one (pj = 2, ∀j = 1, . . . ,m). We choose Λopinion = 0.5

and choose Λτ1 , . . . ,Λτ6 between 0 and 1 to model both more and less influential

relationships.

We implement ADMM in Java and compare with MOSEK’s interior-point

method by encoding the entire MPE problem as a linear program or a second-order

cone program as appropriate and passing the encoded problem via the Java native

interface wrapper. All experiments are performed on a single machine with a 4-

core 3.4 GHz Intel Core i7-3770 processor with 32GB of RAM. Each optimizer used

a single thread, and all results are averaged over 3 runs. All differences between

ADMM and the interior-point method on piecewise-linear problems are significant

at p = 0.0005 using a paired t-test. All differences between ADMM and the interior-

point method on piecewise quadratic problems are significant at p = 0.0000005.
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Figure 5.1: Average running times to find a MAP state for HL-MRFs.
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We first evaluate the scalability of ADMM when solving piecewise-linear MAP

problems and compare with MOSEK’s interior-point method. Figures 5.1a (normal

scale) and 5.1c (log scale) show the results. The running time of the interior-point

method quickly explodes as the problem size increases. The IPM’s average running

time on the largest problem is about 2,200 seconds (37 minutes). This demonstrates

the limited scalability of the interior-point method. In contrast, ADMM displays

excellent scalability. The average running time on the largest problem is about

70 seconds. Further, the running time grows linearly in the number of potential

functions and constraints in the HL-MRF, i.e., the number of subproblems that

must be solved at each iteration. The line of best fit for all runs on all sizes has

R2 = 0.9972. Combined with Figure 5.1a, this shows that ADMM scales linearly

with increasing problem size in this experiment. We emphasize that the implemen-

tation of ADMM is research code written in Java and the interior-point method is

a commercial package running as native code.

We then evaluate the scalability of ADMM when solving piecewise-quadratic

MAP problem and again compare with MOSEK. Figures 5.1b (normal scale) and 5.1d

(log scale) show the results. Again, the running time of the interior-point method

quickly explodes. We can only test it on the three smallest problems, the largest

of which took an average of about 21,900 seconds to solve (over 6 hours). ADMM

again scales linearly to the problem (R2 = 0.9854). It is just as fast for quadratic

problems as linear ones, taking average of about 70 seconds on the largest prob-

lem. The dramatic differences in running times illustrate the superior utility of our

ADMM-based algorithm for these problems.
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One of the advantages of interior-point methods is great numerical stability and

accuracy, Consensus optimization, which treats both objective terms and constraints

as subproblems, often returns points that are only optimal and feasible to moderate

precision for non-trivially constrained problems (Boyd et al., 2011). Although this is

often acceptable, we quantify the mix of infeasibility and suboptimality by repairing

the infeasibility and measuring the resulting total suboptimality. We first project

the solutions returned by consensus optimization onto the feasible region, which

took a negligible amount of computational time. Let pADMM be the value of the

objective in Problem (5.2) at such a point and let pIPM be the value of the objective

at the point returned by the interior-point method. Then the relative error on that

problem is (pADMM−pIPM)/pIPM. The relative error was consistently small; it varied

between 0.2% and 0.4%, and did not trend upward as the problem size increased.

This shows that ADMM was very accurate, in addition to being dramatically more

scalable.

5.4.2 Accuracy for Approximate Discrete Inference

In this section, we compare using HL-MRFs for approximating MAP inference in

discrete MRFs to using coordinate descent dual decomposition (DD), a popular

approach to which rounding procedures cannot be applied (because it does not

find a primal solution µ?). We show that our proposed technique of combining

the rounding procedure with message-passing algorithms can significantly improve

the quality of approximate inference. We refer to our technique as rounded linear
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Table 5.1: Average sizes for each group of MAP tasks.

Group Target Users Variables Clauses

1 10,000 10,019 214,163
2 20,000 20,037 446,109
3 30,000 30,055 685,415
4 40,000 40,073 924,082
5 50,000 50,091 1,156,125

programming or rounded LP. We compare rounded LP with MPLP (Globerson

and Jaakkola, 2007), which is a state-of-the-art coordinate descent DD algorithm.

Recent work, e.g., Jojic et al. (2010) and Meshi and Globerson (2011), notes that

MPLP often finds the best discrete, primal solutions.

We evaluate rounded LP and MPLP on randomly generated social network

analysis problems, in which the task is to predict whether users share the same po-

litical ideology, e.g., liberal or conservative. The networks are composed of upvote

and downvote edges, representing whether each user liked or disliked something an-

other user said. We assume that we have some attribute information about each

user, summarized in an ideology score uniformly distributed in the [−1, 1] interval.

This score could be the output of a classifier or an aggregate over features. It rep-

resents local information about each user, which the model considers in conjunction

with the structure of the interactions.

As in Section 5.4.1, we generate networks based on the procedure of Broecheler

et al. (2010b). Here we let α = 3 and γ = 2.5. We generated 25 such networks in five

groups. Table 5.1 lists the groups, target numbers of users, and the average numbers

of variables and clauses in the corresponding MAP tasks, which is determined by
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the networks’ structures.

We construct a HL-MRF and a corresponding discrete MRF for each network

to model user ideology. We describe these MRFs using PSL, since the corresponding

discrete MRF except that the variables are Boolean, not continuous. A predicate

will represent the ideology of users. We arbitrarily associate the true state with

a liberal ideology and the false state with a conservative ideology, so we define

this predicate as Liberal/1. For each user "u i", we define in a PSL program a

specialized rule with a weight defined by that user’s ideology score. If the sign of

the ideology score is positive then we add the rule

w∼[0,1] : Liberal("u i")

and if its sign is negative we add the rule

w∼[0,1] : !Liberal("u i")

In either case, each clause is weighted with the magnitude of the ideology score. For

upvote edges from user X1 to X2 we encode a preference for agreeing ideology with

the rules

1.0 : Upvote(U1, U2) && Liberal(U1) -> Liberal(U2)

1.0 : Upvote(U1, U2) && Liberal(U2) -> Liberal(U1)
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Figure 5.2: Primal objective scores relative to the score of MPLP.

and likewise for downvote edges we encode a preference for disagreeing ideology with

the rules

1.0 : Upvote(U1, U2) && Liberal(U1) -> !Liberal(U2)

1.0 : Upvote(U1, U2) && !Liberal(U2) -> Liberal(U1)

While these models are motivated by social network analysis, they are of a similar

form to many other problems and domains involving node labeling with attractive

and repulsive dependencies.

For each of the 25 pairs of MRFs, we performed approximate MAP inference

using rounded LP and MPLP. For rounded LP, we solved the local consistency
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relaxation by performing MAP inference in the HL-MRF. We measured the initial

linear program objective score (“LP Upper Bound”), which is an upper bound on any

discrete primal solution, the expected score Ŵ (3.6) using pi = f(µ?i ) (“Rounded

LP (Exp)”), and the final score after rounding using the method of conditional

probabilities (“Rounded LP”), as described in Section 3.1.1. For MPLP on the

discrete MRF, we used the implementation of Globerson et al. (2012) with default

settings. We measured the results of both the first-order local consistency relaxation

(“MPLP”) and iterative cycle tightening (“MPLP w/ Cycles”) (Sontag et al., 2008,

2012), which searches for tighter relaxations to use. The results are summarized in

Figure 5.2. All differences in scores between the ten pairs of methods, e.g., “Rounded

LP (Exp)” and “MPLP w/ Cycles,” are statistically significant using a paired t-test

with rejection threshold p < 0.001, except “MPLP” and “MPLP w/ Cycles.”

On these problems, rounded LP always outperforms MPLP. It finds solutions

that are better in expectation than MPLP’s solutions, and those solutions are im-

proved further after rounding. What makes these problems difficult is that each

pair of clauses for either an upvote or downvote edge is a supermodular potential

or submodular potential, respectively. The first-order local consistency relaxation

would be tight for a completely supermodular problem (Wainwright and Jordan,

2008), but this mix of potentials makes the problems hard to solve. We found (in

experiments not shown) that MPLP’s relative performance improves on problems

that have many more supermodular potentials than submodular ones, presumably

because they are very close to polynomial-time solvable problems. Cycle tighten-

ing improves the performance of MPLP, but its impact is limited because there are
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so many frustrated cycles in these problems. Rounded LP is highly scalable, tak-

ing only a minute to solve problems with over one million clauses. Our experiments

demonstrate tangible consequences of the approximation guarantee for rounded LP.
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Chapter 6: Supervised Weight Learning

In this chapter we present three weight learning methods for HL-MRFs, each with a

different objective function. The first method maximizes the likelihood of the train-

ing data. The second method maximizes the pseudolikelihood. The third method

finds a large-margin solution, preferring weights that discriminate the ground truth

from other states. Since weights are often shared among many potentials defined

by a template, such as all the groundings of a PSL rule, we describe these learning

algorithms in terms of templated HL-MRFs. We introduce some necessary notation

for HL-MRF templates. Let T = (t1, . . . , ts) denote a vector of templates with asso-

ciated weights W = (W1, . . . ,Ws). We partition the potentials by their associated

templates and let tq also denote the set of indices of the potentials defined by that

template. So, j ∈ tq is a shorthand for saying that the potential φj(y,x) was defined

by template tq. Then, we refer to the sum of the potentials defined by a template

as

Φq(y,x) =
∑
j∈tq

φj(y,x) . (6.1)

In the defined HL-MRF, the weight of the j-th hinge-loss potential is set to the

weight of the template from which it was derived, i.e., wj = Wq, for each j ∈ tq.
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Equivalently, we can rewrite the hinge-loss energy function as

fw(y,x) = W>Φ(y,x) , (6.2)

where Φ(y,x) = (Φ1(y,x), . . . ,Φs(y,x)). We now describe below how to apply

these learning strategies to templated HL-MRFs.

6.1 Maximum Likelihood Estimation and Structured Perceptron

The canonical approach for learning parametersW is to maximize the log-likelihood

of training data. The partial derivative of the log-likelihood with respect to a pa-

rameter Wq is

∂ logP (y|x)

∂Wq

= EW [Φq(y,x)]− Φq(y,x), (6.3)

where EW is the expectation under the distribution defined by W . The voted

perceptron algorithm (Collins, 2002) optimizes W by taking steps of fixed length in

the direction of the gradient, then averaging the points after all steps. Any step that

is outside the feasible region is projected back before continuing. For a smoother

ascent, it is often helpful to divide the q-th component of the gradient by the number

of groundings |tq| of the q-th template (Lowd and Domingos, 2007), which we do

in our experiments. Computing the expectation is intractable, so we use a common

approximation: the values of the potential functions at the most probable setting

of y with the current parameters. Using this approximation makes this approach a

variant of structured perceptron.
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6.2 Maximum Pseudolikelihood Estimation

Since exact maximum likelihood estimation is intractable in general, we can in-

stead perform maximum-pseudolikelihood estimation (MPLE) (Besag, 1975), which

maximizes the likelihood of each variable conditioned on all other variables, i.e.,

P ∗(y|x) =
n∏
i=1

P ∗(yi|MB(yi),x) (6.4)

=
n∏
i=1

1

Zi(W ,y,x)
exp

[
−f iw(yi,y,x)

]
; (6.5)

Z(w, yi) =

∫
yi

exp
[
−f iw(yi,y,x)

]
; (6.6)

f iw(yi,y,x) =
∑
j:i∈φj

wjφj
(
{yi ∪ y\i},x

)
. (6.7)

Here, i ∈ φj means that yi is involved in φj, and MB(yi) denotes the Markov blanket

of yi—that is, the set of variables that co-occur with yi in any potential function.

The partial derivative of the log-pseudolikelihood with respect to Wq is

∂ logP ∗(y|x)

∂Wq

=
n∑
i=1

Eyi|MB

 ∑
j∈tq :i∈φj

φj(y,x)

− Φq(y,x) . (6.8)

Computing the pseudolikelihood gradient does not require inference and takes time

linear in the size of y. However, the integral in the above expectation does not readily

admit a closed-form antiderivative, so we approximate the expectation. When a

variable in unconstrained, the domain of integration is a one-dimensional interval

on the real number line, so Monte Carlo integration quickly converges to an accurate
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estimate of the expectation.

We can also apply MPLE when the constraints are not too interdependent.

For example, for linear equality constraints over disjoint groups of variables (e.g.,

variable sets that must sum to 1.0), we can block-sample the constrained variables

by sampling uniformly from a simplex. These types of constraints are often used

to represent mutual exclusivity of classification labels. We can compute accurate

estimates quickly because these blocks are typically low-dimensional.

6.3 Large-Margin Estimation

A different approach to learning drops the probabilistic interpretation of the model

and views HL-MRF inference as a prediction function. Large-margin estimation

(LME) shifts the goal of learning from producing accurate probabilistic models to

instead producing accurate MAP predictions. The learning task is then to find the

weights W that provide high-accuracy structured predictions. We describe in this

section a large-margin method based on the cutting-plane approach for structural

support vector machines (Joachims et al., 2009).

The intuition behind large-margin structured prediction is that the ground-

truth state should have energy lower than any alternate state by a large margin. In

our setting, the output space is continuous, so we parameterize this margin criterion

with a continuous loss function. For any valid output state ỹ, a large-margin solution

should satisfy:

fw(y,x) ≤ fw(ỹ,x)− L(y, ỹ), ∀ỹ, (6.9)
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where the loss function L(y, ỹ) measures the disagreement between a state ỹ and the

training label state y. A common assumption is that the loss function decomposes

over the prediction components, i.e., L(y, ỹ) =
∑

i L(yi, ỹi). In this work, we use

the `1 distance as the loss function, so L(y, ỹ) =
∑

i ‖yi − ỹi‖1. Since we do not

expect all problems to be perfectly separable, we relax the large-margin constraint

with a penalized slack ξ. We obtain a convex learning objective for a large-margin

solution

min
W≥0

1

2
||W ||2 + Cξ

s.t. W>(Φ(y,x)− Φ(ỹ,x)) ≤ −L(y, ỹ) + ξ, ∀ỹ,
(6.10)

where Φ(y,x) = (Φ1(y,x), . . . ,Φs(y,x)) and C > 0 is a user-specified parameter.

This formulation is analogous to the margin-rescaling approach by Joachims et al.

(2009). Though such a structured objective is natural and intuitive, its number of

constraints is the cardinality of the output space, which here is infinite. Following

their approach, we optimize subject to the infinite constraint set using a cutting-

plane algorithm: we greedily grow a set K of constraints by iteratively adding the

worst-violated constrain given by a separation oracle, then updating W subject to

the current constraints. The goal of the cutting-plane approach is to efficiently find

the set of active constraints at the solution for the full objective, without having to

enumerate the infinite inactive constraints. The worst-violated constraint is

arg min
ỹ

W>Φ(ỹ,x)− L(y, ỹ). (6.11)

The separation oracle performs loss-augmented inference by adding additional loss-
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augmenting potentials to the HL-MRF. For ground truth in {0, 1}, these loss-

augmenting potentials are also examples of hinge-losses, and thus adding them sim-

ply creates an augmented HL-MRF. The worst-violated constraint is then computed

as standard inference on the loss-augmented HL-MRF. However, ground truth val-

ues in the interior (0, 1) cause any distance-based loss to be concave, which require

the separation oracle to solve a non-convex objective. For interior ground truth val-

ues, we use the difference of convex functions algorithm (An and Tao, 2005) to find a

local optimum. Since the concave portion of the loss-augmented inference objective

pivots around the ground truth value, the subgradients are 1 or −1, depending on

whether the current value is greater than the ground truth. We simply choose an

initial direction for interior labels by rounding, and flip the direction of the subgra-

dients for variables whose solution states are not in the interval corresponding to

the subgradient direction until convergence.

Given a set K of constraints, we solve the SVM objective as in the primal

form

min
W≥0

1

2
||W ||2 + Cξ

s.t. K.

(6.12)

We then iteratively invoke the separation oracle to find the worst-violated constraint.

If this new constraint is not violated, or its violation is within numerical tolerance,

we have found the max-margin solution. Otherwise, we add the new constraint to

K, and repeat.

One fact of note is that the large-margin criterion always requires some slack

for HL-MRFs with squared potentials. Since the squared hinge potential is quadratic
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and the loss is linear, there always exists a small enough distance from the ground

truth such that an absolute (i.e., linear) distance is greater than the squared distance.

In these cases, the slack parameter trades off between the peakedness of the learned

quadratic energy function and the margin criterion.

6.4 Evaluation of Supervised Learning

To demonstrate the flexibility and effectiveness of supervised learning with HL-

MRFs, we test them on four diverse tasks: node labeling, link labeling, link predic-

tion, and image completion. Each of these experiments represents a problem domain

that is best solved with SP approaches because their dependencies are highly struc-

tural. The experiments show that HL-MRFs perform as well as or better than

state-of-the-art approaches.

For these diverse tasks, we compare against a number of competing meth-

ods. For node and link labeling, we compare HL-MRFs to discrete Markov random

fields (MRFs). We construct them with Markov logic networks (MLNs) Richardson

and Domingos (2006), which template discrete MRFs using logical rules similarly to

PSL. We perform inference in discrete MRFs using the sampling algorithm MC-SAT,

and we find approximate MAP states during learning using the search algorithm

MaxWalkSat Richardson and Domingos (2006). For link prediction for preference

prediction, a task that is inherently continuous and nontrivial to encode in dis-

crete logic, we compare against Bayesian probabilistic matrix factorization (BPMF)

(Salakhutdinov and Mnih, 2008). Finally, for image completion, we run the same
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experimental setup as Poon and Domingos (2011) and compare against the results

they report, which include tests using sum product networks, deep belief networks

(Hinton and Salakhutdinov, 2006), and deep Boltzmann machines (Salakhutdinov

and Hinton, 2009).

We train HL-MRFs and discrete MRFs with all three learning methods: max-

imum likelihood estimation (MLE), maximum pseudolikelihood estimation(MPLE),

and large-margin estimation (LME). When appropriate, we evaluate statistical sig-

nificance using a paired t-test with rejection threshold 0.01. We describe the HL-

MRFs used for our experiments using the PSL rules that define them. To investigate

the differences between linear and squared potentials we use both in our experiments.

HL-MRF-L refers to a model with all linear potentials and HL-MRF-Q to one with

all squared potentials. When training with MLE and MPLE, we use 100 steps of

voted perceptron and a step size of 1.0 (unless otherwise noted), and for LME we

set C = 0.1. We experimented with various settings, but the scores of HL-MRFs

and discrete MRFs were not sensitive to changes.

6.4.1 Node Labeling

When classifying documents, links between those documents—such as hyperlinks,

citations, or co-authorship—provide extra signal beyond the local features of indi-

vidual documents. Collectively predicting document classes with these links tends

to improve accuracy (Sen et al., 2008). We classify documents in citation networks

using data from the Cora and Citeseer scientific paper repositories. The Cora data
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set contains 2,708 papers in seven categories, and 5,429 directed citation links. The

Citeseer data set contains 3,312 papers in six categories, and 4,591 directed citation

links. Let the predicate Category/2 represent the category of each document and

Cites/2 represent a citation from one document to another.

The prediction task is, given a set of seed documents whose labels are observed,

to infer the remaining document classes by propagating the seed information through

the network. For each of 20 runs, we split the data sets 50/50 into training and

testing partitions, and seed half of each set. To predict discrete categories with

HL-MRFs we predict the category with the highest predicted value.

We compare HL-MRFs to discrete MRFs on this task. For prediction, we

performed 2500 rounds of MC-SAT, of which 500 were burn in. We construct both

using the same logical rules, which simply encode the tendency for a class to propa-

gate across citations. For each category "C i", we have two separate rules for each

direction of citation:

Category(A, "C i") && Cites(A, B) -> Category(B, "C i")

Category(A, "C i") && Cites(B, A) -> Category(B, "C i")

We also constrain the atoms of the Category/2 predicate to sum to 1.0 for a given

document:

Category(D, +C) = 1.0 .

Table 6.1 lists the results of this experiment. HL-MRFs are the most accurate
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Table 6.1: Average accuracy of classification by HL-MRFs and discrete MRFs.

Scores statistically equivalent to the best scoring method are typed in bold.

Citeseer Cora

HL-MRF-Q (MLE) 0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789

HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789

MRF (MLE) 0.686 0.756
MRF (MPLE) 0.715 0.797
MRF (LME) 0.687 0.783

predictors on both data sets. Both variants of HL-MRFs are also much faster than

discrete MRFs. See Table 6.3 for average inference times on five folds.

6.4.2 Link Labeling

An emerging problem in the analysis of online social networks is the task of inferring

the level of trust between individuals. Predicting the strength of trust relationships

can provide useful information for viral marketing, recommendation engines, and

internet security. HL-MRFs with linear potentials have recently been applied by

Huang et al. (2013) to this task, showing superior results with models based on

sociological theory. We reproduce their experimental setup using their sample of

the signed Epinions trust network, orginally collected by Richardson et al. (2003),

in which users indicate whether they trust or distrust other users. We perform

eight-fold cross-validation. In each fold, the prediction algorithm observes the entire
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Table 6.2: Average area under ROC and precision-recall curves of social-trust pre-

diction by HL-MRFs and discrete MRFs. Scores statistically equivalent to the best

scoring method by metric are typed in bold.

ROC P-R (+) P-R (-)

HL-MRF-Q (MLE) 0.822 0.978 0.452
HL-MRF-Q (MPLE) 0.832 0.979 0.482
HL-MRF-Q (LME) 0.814 0.976 0.462

HL-MRF-L (MLE) 0.765 0.965 0.357
HL-MRF-L (MPLE) 0.757 0.963 0.333
HL-MRF-L (LME) 0.783 0.967 0.453

MRF (MLE) 0.655 0.942 0.270
MRF (MPLE) 0.725 0.963 0.298
MRF (LME) 0.795 0.973 0.441

unsigned social network and all but 1/8 of the trust ratings. We measure prediction

accuracy on the held-out 1/8. The sampled network contains 2,000 users, with 8,675

signed links. Of these links, 7,974 are positive and only 701 are negative, making it

a sparse prediction task.

We use a model based on the social theory of structural balance, which sug-

gests that social structures are governed by a system that prefers triangles that are

considered balanced. Balanced triangles have an odd number of positive trust rela-

tionships; thus, considering all possible directions of links that form a triad of users,

there are sixteen logical implications of the form

Trusts(A,B) && Trusts(B,C) -> Trusts(A,C)

Huang et al. (2013) list all sixteen of these rules, a reciprocity rule, and a prior in
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their Balance-Recip model, which we omit to save space.

Since we expect some of these structural implications to be more or less accu-

rate, learning weights for these rules provides better models. Again, we use these

rules to define HL-MRFs and discrete MRFs, and we train them using various

learning algorithms. For inference with discrete MRFs, we perform 5000 rounds of

MC-SAT, of which 500 are burn in. We compute three metrics: the area under the

receiver operating characteristic (ROC) curve, and the areas under the precision-

recall curves for positive trust and negative trust. On all three metrics, HL-MRFs

with squared potentials score significantly higher. The differences among the learn-

ing methods for squared HL-MRFs are insignificant, but the differences among the

models is statistically significant for the ROC metric. For area under the precision-

recall curve for positive trust, discrete MRFs trained with LME are statistically tied

with the best score, and both HL-MRF-L and discrete MRFs trained with LME are

statistically tied with the best area under the precision-recall curve for negative

trust. The results are listed in Table 6.2.

Though the random fold splits are not the same, using the same experimental

setup, Huang et al. (2013) also scored the precision-recall area for negative trust of

standard trust prediction algorithms EigenTrust and TidalTrust, which scored 0.131

and 0.130, respectively. The logical models based on structural balance that we run

here are significantly more accurate, and HL-MRFs more than discrete MRFs.

In addition to comparing favorably with regard to predictive accuracy, infer-

ence in HL-MRFs is also much faster than in discrete MRFs. Table 6.3 lists average

inference times on five folds of three prediction tasks: Cora, Citeseer, and Epinions.
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Table 6.3: Average inference times (reported in seconds) of single-threaded HL-

MRFs and discrete MRFs.

Citeseer Cora Epinions

HL-MRF-Q 0.42 0.70 0.32
HL-MRF-L 0.46 0.50 0.28
MRF 110.96 184.32 212.36

This illustrates an important difference between performing structured prediction

via convex inference versus sampling in a discrete prediction space: using our MAP

inference algorithm is much faster.

6.4.3 Link Prediction

Preference prediction is the task of inferring user attitudes (often quantified by rat-

ings) toward a set of items. This problem is naturally structured, since a user’s

preferences are often interdependent, as are an item’s ratings. Collaborative filter-

ing is the task of predicting unknown ratings using only a subset of observed ratings.

Methods for this task range from simple nearest-neighbor classifiers to complex la-

tent factor models. More generally, this problem is an instance of link prediction,

since the goal is to predict links indicating preference between users and content.

Since preferences are ordered rather than Boolean, it is natural to represent them

with the continuous variables of HL-MRFs, with higher values indicating greater

preference. To illustrate the versatility of HL-MRFs, we design a simple, inter-

pretable collaborative filtering model for predicting humor preferences. We test this

model on the Jester dataset, a repository of ratings from 24,983 users on a set of
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100 jokes (Goldberg et al., 2001). Each joke is rated on a scale of [−10,+10], which

we normalize to [0, 1]. We sample a random 2,000 users from the set of those who

rated all 100 jokes, which we then split into 1,000 train and 1,000 test users. From

each train and test matrix, we sample a random 50% to use as the observed features

x; the remaining ratings are treated as the variables y.

Our HL-MRF model uses an item-item similarity rule:

SimRating(J1, J2) && Likes(U, J1) -> Likes(U, J2)

where J1 and J2 are jokes and U is a user; the predicate Likes/2 indicates the degree

of preference (i.e., rating value); and SimRating/2 is a closed predicate that mea-

sures the mean-adjusted cosine similarity between the observed ratings of two jokes.

We also include rules to enforce that Likes(U,J) concentrates around the observed

average rating of user U (represented with the predicate AvgUserRating/1) and

item J (represented with the predicate AvgJokeRating/1), and the global average
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(represented with the predicate AvgRating/1):

AvgUserRating(U) -> Likes(U, J)

Likes(U, J) -> AvgUserRating(U)

AvgJokeRating(J) -> Likes(U, J)

Likes(U, J) -> AvgJokeRating(J)

AvgRating("constant") -> Likes(U, J)

Likes(U, J) -> AvgRating("constant")

AvgRating("constant") takes a placeholder constant as an argument, since there

is only one grounding of it for the entire HL-MRF. Again, all three of these predi-

cates are closed and computed using averages of observed ratings. In all cases, the

observed ratings are taken only from the training data for learning (to avoid leaking

information about the test data) and only from the test data during testing.

We compare our HL-MRF model to a current state-of-the-art latent factors

model, Bayesian probabilistic matrix factorization (BPMF) (Salakhutdinov and Mnih,

2008). BPMF is a fully Bayesian treatment and, as such, is considered “parameter-

free;” the only parameter that must be specified is the rank of the decomposition.

Based on settings used by Xiong et al. (2010), we set the rank of the decomposition

to 30 and use 100 iterations of burn in and 100 iterations of sampling. For our

experiments, we use the code of Xiong et al. (2010). Since BPMF does not train a

model, we allow BPMF to use all of the training matrix during the prediction phase.
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Table 6.4: Normalized mean squared/absolute errors (NMSE/NMAE) for preference

prediction using the Jester dataset. The lowest errors are typed in bold.

NMSE NMAE

HL-MRF-Q (MLE) 0.0554 0.1974
HL-MRF-Q (MPLE) 0.0549 0.1953
HL-MRF-Q (LME) 0.0738 0.2297

HL-MRF-L (MLE) 0.0578 0.2021
HL-MRF-L (MPLE) 0.0535 0.1885
HL-MRF-L (LME) 0.0544 0.1875

BPMF 0.0501 0.1832

Table 6.5: Mean squared errors per pixel for image completion. HL-MRFs produce

the most accurate completions on the Caltech101 and the left-half Olivetti faces,

and only sum-product networks produce better completions on Olivetti bottom-half

faces. Scores for other methods are taken from Poon and Domingos (2011).

HL-MRF-Q (MLE) SPN DBM DBN PCA NN

Caltech-Left 1741 1815 2998 4960 2851 2327
Caltech-Bottom 1910 1924 2656 3447 1944 2575
Olivetti-Left 927 942 1866 2386 1076 1527
Olivetti-Bottom 1226 918 2401 1931 1265 1793

Table 6.4 lists the normalized mean squared error (NMSE) and normalized

mean absolute error (NMAE), averaged over 10 random splits. Though BPMF

produces the best scores, the improvement over HL-MRF-L (LME) is not significant

in NMAE.
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Figure 6.1: Example results on image completion of Caltech101 (left) and Olivetti

(right) faces. From left to right in each column: (1) true face, left side predictions

by (2) HL-MRFs and (3) SPNs, and bottom half predictions by (4) HL-MRFs and

(5) SPNs. SPN completions are downloaded from Poon and Domingos (2011).

6.4.4 Image Completion

Digital image completion requires models that understand how pixels relate to each

other, such that when some pixels are unobserved, the model can infer their values

from parts of the image that are observed. We construct pixel-grid HL-MRFs for

image completion. We test these models using the experimental setup of Poon and

Domingos (2011): we reconstruct images from the Olivetti face data set and the

Caltech101 face category. The Olivetti data set contains 400 images, 64 pixels wide

and tall, and the Caltech101 face category contains 435 examples of faces, which

we crop to the center 64 by 64 patch, as was done by Poon and Domingos (2011).

Following their experimental setup, we hold out the last fifty images and predict

either the left half of the image or the bottom half.

The HL-MRFs in this experiment are much more complex than the ones in
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our other experiments because we allow each pixel to have its own weight for the

following rules, which encode agreement or disagreement between neighboring pixels:

Bright("P ij", I) && North("P ij", Q) -> Bright(Q, I)

Bright("P ij", I) && North("P ij", Q) -> !Bright(Q, I)

!Bright("P ij", I) && North("P ij", Q) -> Bright(Q, I)

!Bright("P ij", I) && North("P ij", Q) -> !Bright(Q, I)

where Bright("P ij", I) is the normalized brightness of pixel "P ij" in image

I, and North("P ij", Q) indicates that Q is the north neighbor of "P ij". We

similarly include analogous rules for the south, east, and west neighbors, as well as

the pixels mirrored across the horizontal and vertical axes. This setup results in

up to 24 rules per pixel, (boundary pixels may not have north, south, east, or west

neighbors) which, in a 64 by 64 image, produces 80,896 PSL rules.

We train these HL-MRFs using MLE with a 5.0 step size on the first 200 images

of each data set and test on the last fifty. For training, we maximize the data log-

likelihood of uniformly random held-out pixels for each training image, allowing for

generalization throughout the image. Table 6.5 lists our results and others reported

by Poon and Domingos (2011) for sum-product networks (SPN), deep Boltzmann

machines (DBM), deep belief networks (DBN), principal component analysis (PCA),

and nearest neighbor (NN). HL-MRFs produce the best mean squared error on the

left- and bottom-half settings for the Caltech101 set and the left-half setting in the

Olivetti set. Only sum product networks produce lower error on the Olivetti bottom-
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half faces. Some reconstructed faces are displayed in Figure6.1, where the shallow,

pixel-based HL-MRFs produce comparably convincing images to sum-product net-

works, especially in the left-half setting, where HL-MRFs can learn which pixels are

likely to mimic their horizontal mirror. While neither method is particularly good at

reconstructing the bottom half of faces, the qualitative difference between the deep

SPN and the shallow HL-MRF completions is that SPNs seem to hallucinate differ-

ent faces, often with some artifacts, while HL-MRFs predict blurry shapes roughly

the same pixel intensity as the observed, top half of the face. The tendency to better

match pixel intensity helps HL-MRFs score better quantitatively on the Caltech101

faces, where the lighting conditions are more varied than in Olivetti faces.

Training and predicting with these HL-MRFs takes little time. In our exper-

iments, training each model takes about 45 minutes on a 12-core machine, while

predicting takes under a second per image. While Poon and Domingos (2011) re-

port faster training with SPNs, both HL-MRFs and SPNs clearly belong to a class

of faster models when compared to DBNs and DBMs, which can take days to train

on modern hardware.
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Chapter 7: Learning with Latent Variables

Latent variables can capture structure in complicated domains and have been used

extensively in social and biological network analysis, Web analytics, computer vi-

sion, and many other domains that study large-scale, structured data. However,

including latent variables sacrifices scalability for expressiveness because the values

of latent variables are—by definition—unknown. Algorithms for learning with latent

variables often require repeated inference to iteratively update parameters, and each

inference alone can be expensive for a large model. For example, inference methods

like Gibbs sampling and belief propagation require many iterations to converge, and

learning methods like EM alternate between fully inferring latent variable values

and updating parameters.

Latent variables are particularly valuable in rich, structured models, but the

computational costs become even more challenging. Our contribution is a new learn-

ing framework for rich, structured, continuous latent-variable models that addresses

this computational bottleneck.

Overcoming the need for repeated inference requires contending with chal-

lenges that arise from a continuous representation, including the need for efficient

alternatives to representing distributions over uncountable state spaces and eval-
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uating irreducible integrals. For fully-supervised learning, large-margin methods

can use the dual of loss-augmented inference to form a joint convex minimization

(Taskar et al., 2005; Meshi et al., 2010). Schwing et al. (2012a) extended this idea to

latent-variable learning for discrete MRFs, using a method specifically formulated

to pass messages corresponding to the discrete states of the variables. While these

methods are incompatible with continuous models, dualization is also a key to faster

training of continuous models with latent variables.

In Section 7.2, we propose paired-dual learning, a framework that quickly trains

HL-MRFs with latent variables by avoiding repeated inferences. Traditional meth-

ods for learning with latent variables require repeated inferences for two distributions

to compute gradients. The unobserved random variables are grouped into two sets,

those with training labels and those without, i.e., the latent variables. One distri-

bution is joint over the labeled variables and the latent variables, and the other is

over the latent variables conditioned on the labels. Paired-dual learning uses an

equivalent variational learning objective that substitutes dual problems for the two

corresponding inference problems, augmented with entropy surrogates to make the

learning problem well-formed. We describe how to design suitable entropy surro-

gates that retain the useful properties of entropy while still admitting fast HL-MRF

inference. We can therefore compute the gradient of the paired-dual learning ob-

jective with respect to the parameters using the intermediate states of inference,

enabling a fast, block-coordinate joint optimization.

We show in Section 7.4 that paired-dual learning drastically reduces the time

required for learning without sacrificing accuracy on three real-world problems:
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social-group detection, trust prediction in social networks, and image reconstruc-

tion. Paired-dual learning cuts training time by as much as 90%, often converging

before traditional methods make a single update to the parameters.

7.1 Background on Variational Expectation Maximization

Paired-dual learning quickly optimizes a standard learning objective, which we re-

view in this subsection. When learning models with latent variables, the usual goal

is to maximize the marginal likelihood of the labels ŷ given observed variables x,

marginalizing out over all possible configurations of latent variables z. For a param-

eter setting w and any state of the latent variables z, the log marginal likelihood

can be expressed as a log ratio of joint and conditional likelihoods, which simplifies

to the difference of two normalizing partition functions:

logP (ŷ|x;w) = logP (ŷ, z|x;w)− logP (z|x, ŷ;w) (7.1)

=−w>φ(ŷ, z,x)− logZ(x;w)

+w>φ(ŷ, z,x) + logZ(x, ŷ;w) (7.2)

= logZ(x, ŷ;w)− logZ(x;w) . (7.3)
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Each of these partition functions has a variational form (Wainwright and Jordan,

2008), yielding the identity

logZ(x, ŷ;w)− logZ(x;w) = min
ρ∈∆(y,z)

max
q∈∆(z)

Eρ
[
w>φ(x,y, z)

]
−H(ρ)

−Eq
[
w>φ(x, ŷ, z)

]
+H(q) ,

(7.4)

where ρ is a joint distribution over the y and z variables from the space of all joint

distributions ∆(y, z), q is a conditional distribution over the the z variables from

the space of all conditional distributions ∆(z), and H is the entropy.

Using the variational form, Equation 7.4, regularized maximum likelihood is

the following saddle-point optimization:

arg min
w

min
ρ∈∆(y,z)

max
q∈∆(z)

λ

2
‖w‖2+ Eρ

[
w>φ(x,y, z)

]
−H(ρ)

− Eq
[
w>φ(x, ŷ, z)

]
+H(q)

(7.5)

where λ ≥ 0 is a tunable regularization parameter.1 We solve the learning problem

in its variational form because it enables principled approximations of intractable

problems by restricting the spaces of distributions ∆(y, z) and ∆(z).

A traditional approach for optimizing Equation 7.5 computes subgradients of

the outer minimization over w by exactly solving the inner min-max and differenti-

ating. Another approach iteratively solves the conditional inference over z′, fixes z′,

and solves the remaining min-max over w and y, z as a fully-observed maximum-

1We use L2 regularization in our derivations and experiments, but paired-dual learning is easily
adapted to include any regularization function whose subdifferentials are computable.
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likelihood estimation.2 Each of these approaches performs a block coordinate ascent-

descent that requires fully solving two (or more) inferences per iteration of the outer

optimization.

The inner minimization and maximization have the same form as marginal

inference. This equivalence suggests that the likelihood can be evaluated by per-

forming these two inferences. When variational distributions ρ and q are optimized

over the full class of all possible distributions, objective (7.5) exactly corresponds

to the true marginal likelihood. However, it contains quantities—the expectations

and the entropies—that are intractable to compute.

7.2 Paired-Dual Learning

In this section, we present paired-dual learning, a framework for training HL-MRFs

with latent variables. Optimizing the variational learning objective, Equation 7.5, is

intractable because the expectations and entropies are irreducible integrals. Tradi-

tional methods approximate the objective by restricting the variational distributions

ρ and q to tractable families, and we adopt this approach as well. However, tradi-

tional methods fit and refit ρ and q exactly before each update of the parameters

w. Paired-dual learning speeds up training by interleaving updates of w into dual

optimizations over ρ and q. Dualizing these inference problems allows training to

use the intermediate solutions produced by ADMM. To enable this interleaved joint

optimization, we first construct surrogates for the entropy functions H(ρ) and H(q)

2This strategy is equivalent to variational expectation maximization (EM), or “hard” EM if
using point distributions, and it generalizes the standard approach for latent structured SVM (Yu
and Joachims, 2009).
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so that, when the variational families ∆(y, z) and ∆(z) are restricted to point es-

timates, fitting the distributions ρ and q is subsumed by MAP inference, while still

preserving the desired properties of entropy functions in learning. To optimize over

the model parameters w, we consider the ADMM duals of both variational infer-

ence problems, forming a new saddle-point objective that can be differentiated with

respect to w during intermediate stages of ADMM.

7.2.1 Tractable Entropy Surrogates

As with many continuous models, optimizing Equation 7.5 exactly for HL-MRFs is

intractable because the expectations and the entropies are irreducible integrals. To

remove this intractability, we first adopt the common approximation of restricting

∆(y, z) and ∆(z) to tractable families of variational distributions. We restrict the

variational families to point distributions, enabling highly scalable MAP inference

techniques to optimize over them. In other words, the minimizing distribution ρ?

places all probability on the point (y, z) that minimizesw>φ(x,y, z)−H(ρ), and q?

places all probability on the point z that minimizes w>φ(x, ŷ, z)−H(q). Moreover,

the entropies H(ρ) and H(q) are always zero for point distributions, so finding ρ?

and q? for a particular w are instances of MAP inference.

Using this approximation alone, Equation 7.5 always has a degenerate global

optimum at w = 0. This degeneracy reveals the importance of having nontrivial

entropy terms to reward high-entropy states. To remove this degenerate solution, we

need to include tractable surrogates for the entropies in Equation 7.5 that behave as
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the true entropies should: biasing the objective away from the labeled state so that

stronger weights are necessary to produce good predictions. Therefore, the surrogate

entropy and the weight-norm regularization will have opposite effects, removing the

degenerate zero solution.

We can preserve this non-degeneracy effect without complicating MAP in-

ference by choosing hinge functions as entropy surrogates and treating them as

potentials with fixed weights. For example, if a HL-MRF variable y represents the

degree to which a person is in each of two latent groups—with y = 0.0 being com-

pletely in a group and y = 1.0 being completely in the other—then, the following

pair of squared-hinge potentials can act as a suitable entropy surrogate for the point

distribution at y:

−w
(
max{y, 0}2 + max{1− y, 0}2

)
. (7.6)

This entropy surrogate penalizes solutions where y deviates from 0.5, making the

learning objective prefer models strong enough to push y towards one extreme.

During learning, the associated parameter w is fixed, but during MAP inference

the surrogate can be treated as another pair of hinge potentials, preserving the

scalability of inference.

The function that acts as a surrogate does not need a probabilistic interpre-

tation, and the appropriate choice of these surrogates can generalize the objectives

of latent structured SVM (LSSVM) (Yu and Joachims, 2009) and variants of expec-

tation maximization (EM). The LSSVM objective uses a loss between the currents

prediction y and the labels ŷ as a surrogate for H(ρ) and no surrogate, i.e., 0, for
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H(q). The `1 loss function can be represented with simple hinge functions, enabling

HL-MRF inference. We discuss these connections further in Section 7.3.

Let h be any surrogate entropy of point distributions. The tractable latent

variable HL-MRF learning objective is

arg min
w

min
y,z

max
z′

λ

2
‖w‖2+ w>φ(x,y, z)− h(y, z)

− w>φ(x, ŷ, z′) + h(ŷ, z′) .

(7.7)

7.2.2 Joint Optimization

The traditional approaches involving repeatedly performing complete inference, i.e.,

finding y, z, and z′ in Equation 7.7, can be very expensive in large-scale settings.

Instead, we derive a method that exploits that HL-MRF inference can be solved via

ADMM. In particular, this method enables optimization using partial solutions to

inference. That is, the optimization can proceed before the inference optimization

completes its computation.

We form a new joint optimization by rewriting Equation 7.7 with the cor-

responding augmented Lagrangians used to solve the inner optimizations. Let

Lw(v,α, v̄) be the augmented Lagrangian for minimizing w>φ(x,y, z) − h(y, z).

We subscript the augmented Lagrangian with the parameters w to emphasize that

it is also a function of the current parameters. Let L′w(v′,α′, v̄′) be the analogous

augmented Lagrangian for minimizing w>φ(x, ŷ, z′)− h(ŷ, z′). Substituting them
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into Equation 7.7, we write the equivalent paired-dual learning objective:

arg min
w

min
v,v̄

max
α

max
v′,v̄′

min
α′

λ

2
‖w‖2 + Lw(v,α, v̄)− L′w(v′,α′, v̄′) . (7.8)

Since the inner optimizations are guaranteed to converge to the global optima for

fixed w, Equations 7.7 and 7.8 are identical. With this view, we no longer need to

solve the optimizations to completion as they appear in the primal Equations 7.7.

Instead, a finer-grained block-coordinate optimization over the variables that appear

in the paired-dual Equation 7.8, interleaving subgradient steps over w and ADMM

iterations over the other variables, reaches an optimum more quickly.

This objective is non-convex, and determining whether any block-coordinate

optimization scheme for it will converge is an open question. If the inner opti-

mizations were solved to convergence between updates of w, then the optimization

provably converges as an instance of the concave-convex procedure (Yuille and Ran-

garajan, 2003), in the same manner as LSSVM (Yu and Joachims, 2009). Schwing

et al. (2012a) derived a convergent algorithm for training discrete Markov random

fields with latent variables that dualizes the optimization over (discrete) y and z and

interleaves updating the corresponding dual variables and the parameters w—while

still solving the optimization over z′ to convergence at each iteration. This algo-

rithm updates beliefs over discrete variables but is not applicable to the continuous,

non-linear potentials of HL-MRFs. While no guarantees for paired-dual learning are

known, it always converges in our diverse experiments (see Section 6.4).

124



7.2.3 Learning Algorithm

The complete learning algorithm is summarized in Algorithm 2. We first construct

the augmented Lagrangian Lw(v,α, v̄) for MAP inference in P (y, z|x;w) and the

analogous augmented Lagrangian L′w(v′,α′, v̄′) for inference in P (z|x, ŷ;w), as de-

scribed in Section 5. Then, at each iteration t, we first execute ADMM iterations,

which update the Lagrangian Lw(v,α, v̄) by taking a step in the dual space over

the variables α, then optimizing v, and finally optimizing v̄. We limit ADMM to

N iterations before moving on, where N is a user-specified parameter.3 In our ex-

periments, we found that higher values result in slower training, and in Section 6.4,

we discuss results that suggest setting N = 1, i.e., single updates of all variables,

provides the best speed and accuracy.

We then update the other Lagrangian L′w(v′,α′, v̄′). At the end of each iter-

ation t, we update w via the derivative of the joint objective, Equation 7.8. The

gradients ∇w for Lw and L′w are straightforward. The gradient for a potential φ

is the potential function value at the current setting of the local copies v and v′.

This computation only differs from how one computes the gradient in the primal

setting in that it is evaluated for variable copies that might not agree during this

intermediate stage. Since the weights w do not interact with any of the dual terms

in the augmented Lagrangian, these terms do not affect the gradient.

Naive interleaving of learning with inference could be implemented with early

stopping and warm starting of ADMM inference. Without the paired-dual view, one

3If Lw(v,α, v̄) converges for the current setting of w, we terminate the inner loop early. There-
fore, each inner loop performs between 1 and N ADMM iterations at each outer iteration t.
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Algorithm 2 Paired-Dual Learning

Input: model P (y, z|x;w), labeled data ŷ, initial parameters w

Form augmented Lagrangian Lw(v,α, v̄) for arg minz,y w
>φ(x,y, z)− h(y, z)

Form augmented Lagrangian L′w(v′,α′, v̄′) for arg minz′ w
>φ(x, ŷ, z′)− h(ŷ, z′)

for t from 1 to T do
for n from 1 to N or until converged do
α← α+ ρc(v, v̄)

v ← arg minv Lw(v,α, v̄)

v̄ ← arg minv̄ Lw(v,α, v̄)
end for

for n from 1 to N or until converged do
α′ ← α′ + ρc′(v′, v̄′)

v′ ← arg minv′ L′w(v′,α′, v̄′)

v̄′ ← arg minv̄′ L′w(v′,α′, v̄′)
end for

if t > K then
∇w ← ∇w

[
λ
2
‖w‖2 + Lw(v,α, v̄)− L′w(v′,α′, v̄′)

]
Update w via ∇w

end if
end for
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could use the gradient of the primal objective using the consensus variables v̄ and

v̄′ (or some other estimate of the inference variables), but these gradients would not

correspond to Equation 7.8, or to any principled objective function. Instead, the

paired-dual learning objective enables joint optimization of a principled objective,

with gradient computations no more complicated than in the primal setting.

Finally, one can “warm up” the ADMM variables by updating v, α, v̄, v′, α′,

and v̄′ for a few iterations before beginning to update the parameters w. Setting

warm-up parameter K greater than zero can improve the initial search direction for

w by reducing the gap between the gradient

∇w
[
λ

2
‖w‖2 + min

v,v̄
max
v′,v̄′

Lw(v,α, v̄)− L′w(v′,α′, v̄′)

]
. (7.9)

and the paired-dual learning approximation

∇w
[
λ

2
‖w‖2 + Lw(v,α, v̄)− L′w(v′,α′, v̄′)

]
(7.10)

for the initial setting of w. In our experiments (Section 6.4), K = 0 often suffices,

but for one task, using K = 10 produces a better start to optimization. The

cost of this warmup is negligible, since learning often requires hundreds of ADMM

iterations, but the benefits of taking a better initial gradient step can be significant

in practice.

Variants of paired-dual learning easily fit into this framework. We can stop

after a fixed number of iterations or when w has converged. We can transparently

127



apply existing strategies for smoother gradient-based optimization, e.g., adaptive

rescaling (Duchi et al., 2011) or averaging.

7.3 Related Approaches for Discrete Models

There exist many approaches to learning discrete, discriminative models with latent

variables. Existing classes of probabilistic models include hidden-unit conditional

random fields (van der Maaten et al., 2011), a class of undirected graphical models

similar to linear conditional random fields, except that a latent variable mediates

the interaction between each observation and target variable on the chain. This re-

stricted structure allows the latent variables to be marginalized out during inference

and learning but cannot express more complex dependencies. More expressive dis-

criminative models have been trained via specialized inference algorithms designed

for specific models (e.g., Kok and Domingos, 2007; Poon and Domingos, 2009). An-

other class of probabilistic models are sum-product networks (Poon and Domingos,

2011), or SPNs, which represent distributions as networks of sum and product op-

erations. Interior nodes in an SPN have a natural interpretation as latent variables,

and SPNs can be trained with EM.

The variational objective, Equation 7.7, relates to several important ideas in

probabilistic inference and latent variable learning. For discrete MRFs, surrogates

enable efficient and accurate inference (e.g., Heskes, 2006; Weiss et al., 2007; Wain-

wright and Jordan, 2008; Meshi et al., 2009). Especially for learning, no statistical

interpretation of the surrogates is necessary. For example, using the family of point
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distributions and replacing the entropy with a distance metric between the point

and the labels, we obtain the objective for LSSVM (Yu and Joachims, 2009). Simi-

larly, using point expectations and using null surrogates, i.e., h(ρ) = 0, the objective

becomes analogous to structured perceptron (Collins, 2002; Richardson and Domin-

gos, 2006). Lastly, using tractable families of distributions for both the expectation

and the entropies makes the learning objective that of variational EM (Neal and

Hinton, 1999).

Replacing inference problems with duals to speed up learning has also been

explored for discrete models. For fully-supervised settings, Taskar et al. (2005) du-

alize the loss-augmented inference problem as part of large-margin learning, making

a joint quadratic program. Meshi et al. (2010) improve on this approach to use dual

decomposition for LP relaxations of inference in discrete graphical models. Schwing

et al. (2012a) extend this idea to latent-variable models. By dualizing one of the

two inference subroutines and passing messages corresponding to the discrete states,

they speed up learning of discrete models with latent variables. Related to this line

of work, Domke (2013) uses dualization as part of a technique to reduce structured

prediction to non-structured logistic regression.

7.4 Evaluation of Learning with Latent Variables

In this section, we evaluate paired-dual learning by comparing it with traditional

learning methods on real-world problems. We test two variants of paired-dual learn-

ing: the finest grained interleaving with only two ADMM iterations per weight up-
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date (N = 1) and a coarser grained 20 ADMM iterations per update (N = 10).

We compare with primal subgradient, which evaluates subgradients of Equation 7.7

by solving the inner optimizations to convergence (N =∞), and expectation maxi-

mization (EM), which fits the parameters via multiple subgradient descent steps for

each point estimate of the latent variables z′.

We consider three problems: group detection in social media, social-trust pre-

diction, and image completion. For each problem, we build HL-MRFs that include

latent variables and surrogate entropies, run each learning algorithm, and evaluate

on held-out test data. The iterations of ADMM constitute most of the compu-

tational cost during learning, so we measure the quality of the learned models as

a function of the number of ADMM iterations taken during learning. Since each

ADMM step is exactly the same amount of computation, regardless of the learning

algorithm or the current model, the number of ADMM steps represents the com-

putational cost, avoiding confounding factors such as differences in hardware used

in these experiments. During each outer iteration of each algorithm, we store the

current weights and later use these weights offline to measure the primal objective,

Equation 7.7, and predictive performance on held out data. We provide high-level

details on each experiment and defer additional details to the appendix.

For all four methods, we update weights using a standard subgradient descent

approach for large-scale MRFs (e.g., Lowd and Domingos, 2007) very similar to our

algorithm for approximate maximum likelihood estimation (Section 6.1), in which

we take steps in the direction dictated by the subgradient, scaled by the number

of potentials sharing each weight, and return the final average weight vector over
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all iterations of learning. EM and primal subgradient solve inference problems to

convergence for each update of the parameters, but we warm-start them at each

iteration from the optima for the previous iteration to avoid artificially inflating

their running times. During learning, the regularization parameter λ is 0.01, and

the ADMM parameter ρ is 1.0. These parameters were selected with some light

tuning on development sets. The differences among the performances of the learners

were not sensitive to changes. For EM, during each M step, we fit the parameters

by taking ten subgradient steps, using the MPE state of P (y, z|x;w) to estimate

E [φ(y, z|x;w)] in the maximum likelihood gradient.

7.4.1 Discovering Latent Groups in Social Media

Groups of people can form online around common traits, interests, or opinions. Of-

ten these groups are not explicitly defined in social media, but can be discovered

by modeling group membership as latent variables that depend on user behavior.

To test paired-dual learning on this task, we collected roughly 4.275M tweets from

about 1.350M Twitter users, from a 48-hour window around the Venezuelan presi-

dential election on Oct. 7, 2012. The two major candidates were Hugo Chávez, the

incumbent, and Henrique Capriles. We model the supporters of the two candidates

by introducing two latent groups.

In order to model membership in these groups, we must construct an SP task

for which modeling the groups will improve predictive performance. We construct a

model to predict a set of users’ interactions with a smaller set of top users of interest,
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Figure 7.1: Objective score and performance with respect to ADMM iterations for

one fold, as well as a subset of points for all folds. On all three problems—group

detection, trust prediction, and image completion—paired-dual learning (PDL) re-

duces the primal learning objective and improves predictive performance much faster

than expectation maximization (EM) or primal subgradient (Primal), often reaching

a good model before the existing algorithms complete their first parameter update.

Full results are in Appendix B.
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e.g., political figures, news organizations, and entertainment accounts, given the

users’ hashtag usage and their interactions with regular users, others outside the

set of top users. Since our data set focuses on a presidential election, we assume

that their are two latent groups, one associated with each major candidate, and we

will interpret the learned parameters as the strengths of associations between each

group and particular hashtags or top users. We filter the regular users to to include

only those that used at least one hashtag and interacted with at least one top user

in the data, leaving 1,678 users.

Whether each regular user tweeted a hashtag is represented with the PSL pred-

icate UsedHashtag/2. Tweets that mention or retweet a top user are not counted.

For example, if we observe that User "A" tweeted a tweet that contains the hashtag

"#hayuncamino" then UsedHashtag("A", "#hayuncamino") has an observed truth

value of 1.0. The PSL predicate RegularUserLink/2 represents whether a regular

user retweeted or mentioned any user in the full data set that is not a top user,

regardless of whether that mentioned or retweeted user is a regular user. Whether

a regular user retweeted or mentioned a top user is represented with the PSL pred-

icate TopUserLink/2. Finally, the latent group membership of each regular user is

represented with the PSL predicate InGroup/2.

The dependencies share parameters such that there is a parameter for each

hashtag-group pair and each group-top-user interaction pair. We evaluate each

model’s ability to predict interactions with top users, measuring the area under the

precision recall curve (AuPR) using ten folds of cross-validation. In this experiment,

we set K = 0, immediately starting learning.
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7.4.1.1 Latent Group Model

When defining our model, let H be the set of hashtags used by at least 15 different

regular users (|H| = 33), let T be the set of top users (|T | = 20), and let G = {g0, g1}

be the set of latent groups.

We first include rules that relate hashtag usage to group membership. For

each hashtag in H and each latent group, we include a rule of the form

wh,g : UsedHashtag(U, "h") -> InGroup(U, "g") ^2

(∀ "h" ∈ H,∀ "g" ∈ G)

so that there is a different rule weight governing how strongly each commonly used

hashtag is associated with each latent group. Second, we include a rule associating

social interactions with group commonality:

wsocial : RegularUserLink(U1, U3) && RegularUserLink(U2, U3)

&& U1 != U2 && InGroup(U1, G) ->InGroup(U2, G) ^2

This rule encodes the intuition that regular users who interact with the same people

on Twitter are more likely to belong to the same latent group. Adding this rule

leverages one the advantages of general log-linear models with latent variables: the

ability to easily include dependencies among latent variables. Third, we include
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rules of the form

wg,t : InGroup(U, "g") -> TopUserLink(U, "t") ^2

(∀ "g" ∈ G, ∀ "t" ∈ T )

for each latent group and each top user so that there is a parameter governing

how strongly each latent group tends to interact with each top user. For entropy

surrogates we add the following rules, all with fixed weights of 10.0:

10 : !InGroup(U, "g") ^2 (∀ "g" ∈ G)

10 : !TopUserLink(U1, U2) ^2

Last, we constrain the InGroup atoms for each regular user to sum to 1.0, making

InGroup a mixed-membership assignment:

InGroup(U, +G) = 1.0 .

We specify initial parameters w by initializing wh,g to 2.0 for all hashtags

and groups, wsocial to 2.0, and wg,t to 5.0 for all top users and groups, except two

hashtags and two top users which we assign as seeds. We initially associate the top

user "hayuncamino" (Henrique Capriles’s campaign account) and the hashtag for

Capriles’s campaign slogan "#hayuncamino" with Group 0 by initializing the param-

eters associating them with Group 0 to 10.0 and those associating them with Group
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1 to 0.0. We initially associate the top user "chavezcandanga" (Hugo Chávez’s ac-

count) and the hashtag for Chávez’s campaign slogan "#elmundoconchávez" with

Group 1 in the same way.

7.4.1.2 Predictive Performance

As Figure 7.1 shows, paired-dual learning optimizes the objective value significantly

faster than all other methods, and this faster optimization translates to the faster

learning of a more accurate model on test data. In fact, the curves for primal subgra-

dient and EM begin at their first parameter updates, so paired-dual learning reaches

a high quality model before the primal methods update their parameters for the first

time. Since the methods (except for PDL when N = 1 update their parameters at

irregular intervals, averaging scores across folds is not possible. (The updates are

irregular because inner inference problems reach convergence after different numbers

of iterations.) Therefore, the top row of Figure 7.1 plots the objective and AuPR for

one fold and a scatter plot of the AuPR on all ten folds for a subset of the points.

Results for all folds are in Appendix B.

7.4.1.3 Discovered Groups

In addition to providing strong predictive performance, the learned parameters are

interesting for their interpretability. To examine them, we retrain an HL-MRF on

the full data set (all ten folds) with paired-dual learning.

Figure 7.2 shows the differences in learned parameters (wh,g0 − wh,g1) associ-
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ating hashtag usage with latent groups (excluding the two seeded hashtags). The

hashtags are sorted by differences in parameter values from Capriles to Chávez. Our

assignment of seeds associated pro-Capriles users with Group 0 and pro-Chávez users

with Group 1. The results show a very clean ordering of hashtags based on ideology.

Many of the hashtags most strongly associated with the latent Capriles group are ex-

plicitly pro-Capriles, e.g., "#mivotoesxcapriles", "#votemosdeprimeroxcapriles",

and "#hayuncamimo", an alternative spelling of Capriles’s campaign slogan. Oth-

ers are also clearly anti-Chávez: "#venezueladeluto" (“Venezuela in mourning”

after Chávez’s reelection) and "#hugochávezfrı́astequeda1dı́a" (roughly “Hugo

Chávez has one day left”).

One surprising result is that "#6a~nosmas" (“six more years”) is strongly asso-

ciated with the latent Capriles group despite superficially appearing to support the

incumbent. However, upon inspection of the tweets that use this hashtag, most in

our data set use it ironically, predicting “six more years” of “poverty, marginaliza-

tion, anarchy, crime, corruption, division, hatred, impunity, death” (roughly trans-

lated). On the other hand, the hashtags most strongly associated with the Chávez

group are all explicitly pro-Chávez. Interestingly, the semantically neutral hashtags

promoting voter turnout, such as "#tuvoto", "#vota", and "#vo7a", are inferred

to favor the Capriles group. We believe this trend is the result of the social media

campaign for increasing voter turnout, which was stronger from the Capriles side.

Figure 7.3 shows the differences in learned parameters (wt,g0 −wt,g1) associat-

ing interactions with top users with latent groups (again excluding the two seeded

top users). According to the learned model, users in the latent Capriles group

137



Figure 7.2: Differences in learned parameters associating hashtags with latent

groups.
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Figure 7.3: Differences in learned parameters associating social interactions with

latent groups.
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are most likely to interact with "hcapriles" (Capriles’s personal account) and in-

dependent media outlets and journalists such as "globovision", "la patilla",

"nelsonbocaranda", "luischataing", and "eluniversal". On the other side of

the spectrum, users in the latent Chávez group are most likely to interact with

"vtvcanal8", the Twitter account of the state-owned television network.

7.4.2 Latent User Attributes in Trust Networks

Next we revisit predicting trust in social networks, which we first considered in Sec-

tion 6.4.2. In examining the ground-truth data, one finds that distrust links tend

not to be evenly distributed throughout the data, but instead are clustered around

particular users. This suggests that there might be underlying user attributes that

are latent but govern users’ behavior as they form trust and distrust links. To

model this concept, we introduce two latent attributes for each user, Trusting/1

and Trustworthy/1. We then introduce dependencies between each trusting prop-

erty and all possible outgoing trust relationships in which the corresponding user

participates, and between each trustworthy property and all possible incoming trust

relationships. These latent properties act as aggregators, modeling the trends in

each user’s trust relationships.

As in the fully supervised setting, we use a model that encodes the concept

of structural balance in social networks. Instead of only including rules preferring

balanced triads, however, we also include rules that prefer unbalance triads, so the

learning algorithm can attribute weight to any configuration if it helps optimize its
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objective. Removing symmetries, there are 12 distinct logical formulas. Four are

for a cyclic structure:

w1
cyc : Trusts(A,B) && Trusts(B,C) -> Trusts(C,A) ^2

w2
cyc : Trusts(A,B) && !Trusts(B,C) -> Trusts(C,A) ^2

w3
cyc : Trusts(A,B) && Trusts(B,C) -> !Trusts(C,A) ^2

w4
cyc : !Trusts(A,B) && !Trusts(B,C) -> Trusts(C,A) ^2

And eight are for a non-cyclic “v” structure:

w1
v : Trusts(A,B) && Trusts(B,C) -> Trusts(C,B) ^2

w2
v : Trusts(A,B) && !Trusts(B,C) -> !Trusts(C,B) ^2

w3
v : !Trusts(A,B) && Trusts(B,C) -> !Trusts(C,B) ^2

w4
v : !Trusts(A,B) && !Trusts(B,C) -> Trusts(C,B) ^2

w5
v : Trusts(A,B) && Trusts(B,C) -> !Trusts(C,B) ^2

w6
v : Trusts(A,B) && !Trusts(B,C) -> Trusts(C,B) ^2

w7
v : !Trusts(A,B) && Trusts(B,C) -> Trusts(C,B) ^2

w8
v : !Trusts(A,B) && !Trusts(B,C) -> !Trusts(C,B) ^2
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We also include pairwise interactions:

w+
pair : Trusts(A,B) -> Trusts(B,A) ^2

w−pair : !Trusts(A,B) -> !Trusts(B,A) ^2

To add latent variable reasoning, we add five rules. The rules

w1
latent : Trusting(A) -> Trusts(A,B) ^2

w2
latent : Trustworthy(B) -> Trusts(A,B) ^2

w3
latent : Trusting(A) && Trustworthy(B) -> Trusts(A,B) ^2

infer trust from the latent variables, and the rules

w4
latent : Trusts(A,B) -> Trusting(A) ^2

w5
latent : Trusts(A,B) -> Trustworthy(B) ^2

infer the latent values from other trust predictions and observations. All rules

are initialized to weights of 1.0. As in the previous evaluation with the Epinions

network, the structure of the social network is observed, so these rules are grounded

for Trusts(A,B) atoms where A and B are observed to know each other. In PSL

this is implemented by concatenating a Knows(A,B) atom to the body of each rule

with a conjunction, which we omit for readibility. For entropy surrogates, we use
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the following rules, all with fixed weights of 10.0:

10.0 : Trusts(A,B) ^2

10.0 : !Trusts(A,B) ^2

10.0 : Trusting(A,B) ^2

10.0 : !Trusting(A,B) ^2

10.0 : Trustworthy(A,B) ^2

10.0 : !Trustworthy(A,B) ^2

We evaluate on the same eight folds of the Epinions data as in Section 6.4.2

and we plot the objective and AuPR curves for held-out distrust relationships from

one fold and a scatter plot of the AuPR for a subset of the points for all folds. (We

show results for distrust relationships because they account for roughly 10% of all

relationships and are therefore harder to predict with high precision and recall.)

The results in Figure 7.1 again show a faster objective descent for paired-dual

learning, which learns a high-accuracy model well before the other methods begin

learning. Full results are in Appendix B.

7.4.3 Image Completion

Reconstructing part of an obstructed image requires some amount of semantic un-

derstanding of physical objects that images depict. These latent semantics make it

an ideal test setting for latent variable modeling. In these experiments, we learn
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latent variable HL-MRFs that can read half of an image and infer the other half of

the image. Again using the 400-image Olivetti face data set, we reveal the top half

of each face image to the prediction algorithm, and task it with predicting the bot-

tom half. In Section 6.4, we used fully-observed learning to fit non-latent, or “flat”,

HL-MRFs to this task, which were able to reconstruct images with mean-squared

error comparable to state-of-the-art methods. These flat models had a large number

of parameters for potentials between neighboring pixels and “mirror-image” pixels.

Examining the outputs from these HL-MRFs reveals that the models relied heavily

on trivial structural patterns, such as face symmetry. This reliance is especially ob-

vious in the completions by flat HL-MRFs for bottom-halves of faces, which seemed

to mimic the shadows of mouths by reflecting blurry images of top-half eyes. La-

tent variables improve performance by learning actual facial structures, rather than

exploiting trivial patterns. With all the parameters, variables, and dependencies in

the model for each pixel, the efficiency of paired-dual learning becomes critical.

We now use a simpler HL-MRF with a latent layer. We include squared hinge-

loss potentials between six latent state variables and the input-half pixel intensities,

rounded versions of the input pixels, and, finally, the output-half intensities. These

potentials allow the values of the latent variables to mediate interactions between

the inputs and outputs. We additionally include potentials between each latent

state that prefer contiguous regions of latent states, a prior potential for each pixel

to learn an average or background value, and a quadratic prior on all free variables,

which serves as a surrogate entropy. We omit any direct dependencies between

output pixels to isolate the effectiveness of latent variable modeling.
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Our model reasons over variables representing the brightness of pixel values

Bright/2, a binary, thresholded brightness of observed pixels (i.e., an indicator of

whether have intensity greater than 0.5) Binary/2, and a set of six latent states

LatState/2. The intuition behind the model is that the observed pixel intensities

and the thresholded intensities provide evidence about which latent states are active

for a particular image, and these latent states imply patterns in the output pixels.

In the following PSL rules, I ranges over the images in the data, and "S k" and

"P ij" are constants.

For each latent state "S k" and each pixel "P ij", whether observed or not,

we include the rules

w++
bright((i, j), k) : LatState(I, "S k") -> Bright(I, "P ij") ^2

w+−
bright((i, j), k) : LatState(I, "S k") -> !Bright(I, "P ij") ^2

w−+
bright((i, j), k) : !LatState(I, "S k") -> Bright(I, "P ij") ^2

w−−bright((i, j), k) : !LatState(I, "S k") -> !Bright(I, "P ij") ^2

For observed pixels, we encode analogous rules for thresholded pixel intensities to
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provide more information to the model:

w++
binary((i, j), k) : LatState(I, "S k") -> Binary(I, "P ij") ^2

w+−
binary((i, j), k) : LatState(I, "S k") -> !Binary(I, "P ij") ^2

w−+
binary((i, j), k) : !LatState(I, "S k") -> Binary(I, "P ij") ^2

w−−binary((i, j), k) : !LatState(I, "S k") -> !Binary(I, "P ij") ^2

For every pair of latent states "S i" and "S j", we include rules to encode their

tendency or aversion to co-occur:

w+
state(i, j) : LatState(I, "S i") -> LatState(I, "S j") ^2

w−state(i, j) : LatState(I, "S i") -> !LatState(I, "S j") ^2

Finally, we use fixed-weight priors on the free variables:

1.0 : LatState(I, S) ^2

1.0 : !LatState(I, S) ^2

1.0 : Bright(I, P) ^2

1.0 : !Bright(I, P) ^2

which serve as surrogate entropies.

We train on 50 randomly selected images from the first 350, and test on the

last 50 images as was done previously. Because of the higher dimensionality of these
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pixel-based models, we set K = 10, allowing the ADMM variables to warm up before

updating the parameters w. (These warmup ADMM iterations are included in the

plots above.)

We initialize weights using a heuristic to fit the latent states to individual

training images. We first compute the average pixel intensities among all training

images, then for each latent state Sk, we randomly choose a seed image. We set

the positively correlated binary pixel rule weights w++
binary and wbinary−− to 1.0 if the

seed image pixel intensity is higher than the average, and the negatively correlated

binary pixel rules w+−
binary and w−+

binary to 1.0 if the seed image pixel is dimmer than the

average. This scheme makes the initial model assign corresponding latent features

to images that share bright and dark pixel locations with the seed images. Starting

with this initialization, which includes no information about the unthresholded pixel

intensities, the learning algorithms fit the models to also predict pixel intensity.

Again, paired-dual learning with one iteration of ADMM is significantly faster

at optimizing the objective, which directly translates to a reduction in test error,

while the primal methods and the more conservative 10-iteration paired-dual ap-

proach are much slower to improve the objective, as seen in Figure 7.1. The learned

latent variable model fits latent states to archetypal face shapes, as visualized in

Figure 7.4.
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(a) Bottom-half model

(b) Example completions

Figure 7.4: Visual representation of learned face models and outputs. In (a), we

visualize the six latent states learned by the model. The images plot the quad root

(to enhance contrast at low values) of learned weights for the six latent states. The

top row depicts the weights of potentials preferring bright pixels and the bottom

row depicts the weights of potentials preferring dim pixel intensities. In (b), we

compare the completions of bottom-half faces. The left column is the original,and

the middle and right are the latent and flat HL-MRF, respectively.
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Chapter 8: Conclusion

In this thesis I introduced HL-MRFs, a new class of probabilistic graphical models

that unite and generalize several approaches to modeling relational and structured

data: Boolean logic, probabilistic graphical models, and fuzzy logic. They can

capture relaxed, probabilistic inference with Boolean logic and exact, probabilistic

inference with fuzzy logic, making them useful models for both discrete and con-

tinuous data. HL-MRFs also generalize these inference techniques with additional

expressivity, allowing for even more flexibility. HL-MRFs are a significant addition

to the the library of machine learning models because they embody a very useful

point in the spectrum of models that trade off between scalability and expressivity.

As I showed, they can be easily applied to a wide range of structured problems in

machine learning and achieve high-quality predictive performance, competitive with

or surpassing the performance of state-of-the-art models. Howerver, other models

do not scale nearly as well, like discrete MRFs, or are not as versatile in their abil-

ity to capture such a wide range of problems, like Bayesian probabilistic matrix

factorization.

I also introduced PSL, a probabilistic programming language for HL-MRFs.

PSL makes HL-MRFs easy to design, allowing users to encode their ideas for struc-
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tural dependencies using an intuitive syntax based on first-order logic. Our empirical

evaluation shows how easy this process is for the user. PSL also helps improve a very

time-consuming aspect of the modeling process: refining a model. In contrast with

other types of models that require specialized inference and learning algorithms de-

pending on which structural dependencies are included, HL-MRFs can encode many

types of dependencies and scale very well with the same inference and learning al-

gorithms. PSL makes it easy to quickly add, remove, and modify dependencies in

the model and rerun inference and learning, allowing users to quickly improve the

quality of their models. Finally, because PSL uses a first-order syntax, each PSL

program actually specifies an entire class of HL-MRFs, paramterized by the par-

ticular data set over which it is grounded. Therefore, a model or components of a

model refined for one data set can easily be applied to others.

Next, I introduced inference and learning algorithms that scale to very large

problems. The MAP inference algorithm is far more scalable than standard tools

for convex optimization because it leverages the sparsity that is so common to

the structural dependencies in SP problems. I also showed that the inference al-

gorithm is a useful alternative to commonly used message passing algorithm for

approximate inference in discrete MRFs, because it finds the primal solution to the

local consistency relaxation objective for modes defined using logical clauses. In

addition, I introduced algorithms for supervised learning and learning with latent

variables. The supervised learning algorithms extend standard learning objectives

to HL-MRFs. Paired-dual learning, a framework for learning with latent variables,

overcomes the inference bottleneck associated with this task, making latent vari-
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ables easy to include in HL-MRFs and still scale up to big problems. Together, this

combination of an expressive formalism, a user-friendly probabilistic programming

language, and highly scalable algorithms enables researchers and practitioners to

easily build large-scale, accurate models of relational and structured data.

This thesis also lays the foundation for many lines of future work. Our analy-

sis of local consistency relaxation (LCR) as a hierarchical optimization is a general

proof technique, and it could be used to derive compact forms for other LCR ob-

jectives. As in the case of MRFs defined using logical clauses, such compact forms

can simplify analysis and could lead to a greater understanding of LCR for other

classes of MRFs. Another important line of work is understanding what guarantees

apply to the MAP states of HL-MRFs. Can anything be said about their ability to

approximate MAP inference in discrete models that go beyond the models already

covered by the known rounding guarantees? Future directions also include develop-

ing new algorithms for HL-MRFs. One important direction is marginal inference for

HL-MRFs and algorithms for sampling from them. Unlike marginal inference for

discrete distributions, which computes the marginal probability that a variable is

in a particular state, marginal inference for HL-MRFs requires finding the marginal

probability that a variable is in a particular range. One option for doing so, as well

as generating samples from HL-MRFs, is to extend the hit-and-run sampling scheme

of Broecheler and Getoor (2010). This method was developed for continuous con-

strained MRFs with piecewise-linear potentials. There are also many new domains

to which HL-MRFs and PSL can be applied. By providing these modeling tools to

other researchers, I have enabled the design and application of new solutions to SP
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problems.

Finally, I note that HL-MRFs and PSL are already having an impact on many

problem domains, including automatic knowledge base construction (Pujara et al.,

2013), high-level computer vision (London et al., 2013b), drug discovery (Fakhraei

et al., 2014), natural language semantics (Beltagy et al., 2014; Sridhar et al., 2015),

automobile-traffic modeling (Chen et al., 2014), and user attribute (Li et al., 2014)

and trust (Huang et al., 2013; West et al., 2014) prediction in social networks. The

ability to easily incorporate latent variables into HL-MRFs and PSL has enabled in-

novative applications, including modeling latent topics in text (Foulds et al., 2015),

and improving student outcomes in massive open online courses (MOOCs) by mod-

eling latent information about students and their communications (Ramesh et al.,

2014, 2015). Researchers have also studied how to make HL-MRFs and PSL even

more scalable by developing distributed implementations (Miao et al., 2013; Magli-

acane et al., 2015). That they are already being widely applied underscores the

conclusion of this thesis: HL-MRFs and PSL directly address an open need of the

machine learning community.
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Appendix A: Proof of Theorem 2

In this appendix, we prove the equivalence of objectives (3.7) and (3.10). Our proof

analyzes the local consistency relaxation to derive an equivalent, more compact

optimization over only the variable pseudomarginals µ that is identical to the MAX

SAT relaxation. Since the variables are Boolean, we refer to each pseudomarginal

µi(1) as simply µi. Let xFj denote the unique setting such that φj(x
F
j ) = 0. (I.e.,

xFj is the setting in which each literal in the clause Cj is false.)

We begin by reformulating the local consistency relaxation as a hierarchical

optimization, first over the variable pseudomarginals µ and then over the factor

pseudomarginals θ. Due to the structure of local polytope L, the pseudomarginals

µ parameterize inner linear programs that decompose over the structure of the MRF,

such that—given fixed µ—there is an independent linear program φ̂j(µ) over θj for

each clause Cj. We rewrite objective (3.10) as

arg max
µ∈[0,1]n

∑
Cj∈C

φ̂j(µ), (A.1)
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where

φ̂j(µ) = max
θj

wj
∑

xj |xj 6=xF
j

θj(xj) (A.2)

such that
∑

xj |xj(i)=1

θj(xj) = µi ∀i ∈ I+
j (A.3)

∑
xj |xj(i)=0

θj(xj) = 1− µi ∀i ∈ I−j (A.4)

∑
xj

θj(xj) = 1 (A.5)

θj(xj) ≥ 0 ∀xj . (A.6)

It is straightforward to verify that objectives (3.10) and (A.1) are equivalent for

MRFs with disjunctive clauses for potentials. All constraints defining L can be

derived from the constraint µ ∈ [0, 1]n and the constraints in the definition of

φ̂j(µ). We have omitted redundant constraints to simplify analysis.

To make this optimization more compact, we replace each inner linear program

φ̂j(µ) with an expression that gives its optimal value for any setting of µ. Deriving

this expression requires reasoning about any maximizer θ?j of φ̂j(µ), which is guar-

anteed to exist because problem (A.2) is bounded and feasible1 for any parameters

µ ∈ [0, 1]n and wj.

We first derive a sufficient condition for the linear program to not be fully

satisfiable, in the sense that it cannot achieve a value of wj, the maximum value

of the weighted potential wjφj(x). Observe that, by the objective (A.2) and the

1Setting θj(xj) to the probability defined by µ under the assumption that the elements of xj

are independent, i.e., the product of the pseudomarginals, is always feasible.
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simplex constraint (A.5), showing that φ̂j(µ) is not fully satisfiable is equivalent to

showing that θ?j (x
F
j ) > 0.

Lemma 16 If ∑
i∈I+j

µi +
∑
i∈I−j

(1− µi) < 1 , (A.7)

then θ?j (x
F
j ) > 0.

Proof By the simplex constraint (A.5),

∑
i∈I+j

µi +
∑
i∈I−j

(1− µi) <
∑
xj

θ?j (xj) . (A.8)

Also, by summing all the constraints (A.3) and (A.4),

∑
xj |xj 6=xF

j

θ?j (xj) ≤
∑
i∈I+j

µi +
∑
i∈I−j

(1− µi) , (A.9)

because all the components of θ? are nonnegative, and—except for θ?j (x
F
j )—they all

appear at least once in constraints (A.3) and (A.4). These bounds imply

∑
xj |xj 6=xF

j

θ?j (xj) <
∑
xj

θ?j (xj) , (A.10)

which means θ?j (x
F
j ) > 0, completing the proof.

We next show that if φ̂j(µ) is parameterized such that it is not fully satisfiable,

as in Lemma 16, then its optimum always takes a particular value defined by µ.
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Lemma 17 If wj > 0 and θ?j (x
F
j ) > 0, then

∑
xj |xj 6=xF

j

θ?j (xj) =
∑
i∈I+j

µi +
∑
i∈I−j

(1− µi) . (A.11)

Proof We prove the lemma via the Karush-Kuhn-Tucker (KKT) conditions (Karush,

1939; Kuhn and Tucker, 1951). Since problem (A.2) is a maximization of a linear

function subject to linear constraints, the KKT conditions are necessary and suffi-

cient for any optimum θ?j .

Before writing the relevant KKT conditions, we introduce some necessary no-

tation. For a state xj, we need to reason about the variables that disagree with the

unsatisfied state xFj . Let

d(xj) ,
{
i ∈ I+

j ∪ I−j |xj(i) 6= xFj (i)
}

(A.12)

be the set of indices for the variables that do not have the same value in the two

states xj and xFj .

We now write the relevant KKT conditions for θ?j . Let λ,α be real-valued

vectors where |λ| = |I+
j | + |I−j | + 1 and |α| = |θj|. Let each λi correspond to a

constraint (A.3) or (A.4) for i ∈ I+
j ∪ I−j , and let λ∆ correspond to the simplex

constraint (A.5). Also, let each αxj
correspond to a constraint (A.6) for each xj.
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Then, the following KKT conditions hold:

αxj
≥ 0 ∀xj (A.13)

αxj
θ?j (xj) = 0 ∀xj (A.14)

λ∆ + αxF
j

= 0 (A.15)

wj +
∑

i∈d(xj)

λi + λ∆ + αxj
= 0 ∀xj 6= xFj . (A.16)

Since θ?j (x
F
j ) > 0, by condition (A.14), αxF

j
= 0. By condition (A.15), then

λ∆ = 0. From here we can bound the other elements of λ. Observe that for every

i ∈ I+
j ∪ I−j , there exists a state xj such that d(xj) = {i}. Then, it follows from

condition (A.16) that there exists xj such that, for every i ∈ I+
j ∪ I−j ,

wj + λi + λ∆ + αxj
= 0 . (A.17)

Since αxj
≥ 0 by condition (A.13) and λ∆ = 0, it follows that λi ≤ −wj. With these

bounds, we show that, for any state xj, if |d(xj)| ≥ 2, then θ?j (xj) = 0. Assume

that for some state xj, |d(xj)| ≥ 2. By condition (A.16) and the derived constraints

on λ,

αxj
≥ (|d(xj)| − 1)wj > 0 . (A.18)

With condition (A.14), θ?j (xj) = 0. Next, observe that for all i ∈ I+
j (resp. i ∈ I−j )

and for any state xj, if d(xj) = {i}, then xj(i) = 1 (resp. xj(i) = 0), and for any

other state x′j such that x′j(i) = 1 (resp. x′j(i) = 0), d(x′j) ≥ 2. By constraint (A.3)

157



(resp. constraint (A.4)), θ?(xj) = µi (resp. θ?(xj) = 1− µi).

We have shown that if θ?j (x
F
j ) > 0, then for all states xj, if d(xj) = {i} and

i ∈ I+
j (resp. i ∈ I−j ), then θ?j (xj) = µi (resp. θ?j (xj) = 1 − µi), and if |d(xj)| ≥ 2,

then θ?j (xj) = 0. This completes the proof.

Lemma 16 says if
∑

i∈I+j
µi +

∑
i∈I−j

(1 − µi) < 1, then φ̂j(µ) is not fully

satisfiable, and Lemma 17 provides its optimal value. We now reason about the

other case, when
∑

i∈I+j
µi +

∑
i∈I−j

(1− µi) ≥ 1, and we show that it is sufficient to

ensure that φ̂j(µ) is fully satisfiable.

Lemma 18 If wj > 0 and

∑
i∈I+j

µi +
∑
i∈I−j

(1− µi) ≥ 1 , (A.19)

then θ?j (x
F
j ) = 0.

Proof We prove the lemma by contradiction. Assume that wj > 0,
∑

i∈I+j
µi +∑

i∈I−j
(1− µi) ≥ 1, and that the lemma is false, θ?j (x

F
j ) > 0. Then, by Lemma 17,

∑
xj |xj 6=xF

j

θ?j (xj) ≥ 1 . (A.20)

The assumption that θ?j (x
F
j ) > 0 implies

∑
xj

θ?j (xj) > 1, (A.21)
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which is a contradiction, since it violates the simplex constraint (A.5). The possi-

bility that θ?j (x
F
j ) < 0 is excluded by the nonnegativity constraints (A.6).

For completeness and later convenience, we also state the value of φ̂j(µ) when it is

fully satisfiable.

Lemma 19 If θ?j (x
F
j ) = 0, then

∑
xj |xj 6=xF

j

θ?j (xj) = 1 . (A.22)

Proof The lemma follows from the simplex constraint (A.5).

We can now combine the previous lemmas into a single expression for the value

of φ̂j(µ).

Lemma 20 For any feasible setting of µ,

φ̂j(µ) = wj min


∑
i∈I+j

µi +
∑
i∈I−j

(1− µi), 1

 . (A.23)

Proof The lemma is trivially true if wj = 0 since any assignment will yield zero

value. If wj > 0, then we consider two cases. In the first case, if
∑

i∈I+j
µi +∑

i∈I−j
(1− µi) < 1, then, by Lemmas 16 and 17,

φ̂j(µ) = wj

∑
i∈I+j

µi +
∑
i∈I−j

(1− µi)

 . (A.24)
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In the second case, if
∑

i∈I+j
µi +

∑
i∈I−j

(1− µi) ≥ 1, then, by Lemmas 18 and 19,

φ̂j(µ) = wj . (A.25)

By factoring out wj, we can rewrite this piecewise definition of φ̂j(µ) as wj multi-

plied by the minimum of
∑

i∈I+j
µi +

∑
i∈I−j

(1− µi) and 1, completing the proof.

This leads to our final equivalence result.

Theorem 2 For an MRF with potentials corresponding to disjunctive logical clauses

and associated nonnegative weights, the first-order local consistency relaxation of

MAP inference is equivalent to the MAX SAT relaxation of Goemans and Williamson

(1994). Specifically, any partial optimum µ? of objective (3.10) is an optimum ŷ?

of objective (3.7), and vice versa.

Proof Substituting the solution of the inner optimization from Lemma 20 into the

local consistency relaxation objective (A.1) gives a projected optimization over only

µ which is identical to the MAX SAT relaxation objective (3.7).

160



Appendix B: Additional Results on Learning with Latent Variables

In our experiments with paired-dual learning (PDL) in Chapter 7, we compared

different learning methods and measured the value of the objective function and

the predictive performance of the learned model after different numbers of inference

steps. Averaging these values across folds of the data is not possible because the

methods (except for PDL when N = 1) update the parameters at irregular intervals.

The updates are irregular because inner inference problems reach convergence after

different numbers of iterations. We therefore present the full results for all folds

for predicting interactions in social media to evaluate our discovered latent groups

(Section 7.4.1) and predicting trust in social networks using latent user attributes

(Section 7.4.2). Note that there are no additional results for image completion

using latent variables (Section 7.4.3) because we performed that evaluation using a

standard test set.
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Figure B.1: Results for interaction prediction on Twitter data set, folds 1-3.
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Figure B.2: Results for interaction prediction on Twitter data set, folds 4-6.
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Figure B.3: Results for interaction prediction on Twitter data set, folds 7-9.
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Figure B.4: Results for interaction prediction on Twitter data set, fold 10.
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Figure B.5: Results for social-trust prediction on Epinions data set, folds 1-2.
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Figure B.6: Results for social-trust prediction on Epinions data set, folds 3-5.
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Figure B.7: Results for social-trust prediction on Epinions data set, folds 6-8.
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