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This Talk

= |n rich, structured domains, latent variables can capture
fundamental aspects and increase accuracy

= Learning with latent variables needs repeated inferences

= Recent work has overcome the inference bottleneck in

discrete models, but using continuous variables
introduces new challenges

= We introduce paired-dual learning (PDL)

= PDL is so fast that is often finishes before traditional
methods make a single parameter update



Latent Variable
Models






Latent User Attributes
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Image Reconstruction

= | atent variables can represent archetypical components
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» L earned components for face reconstruction:



Learning with
Latent Variables



Model

= Observations @

= Targets y with ground-truth labels ¥y
= Latent (unlabeled) z

= Parameters w

P(y, z|z; w) = Z(ww) P (—w' p(x,y, 2))




Learning Objective

log P(y|z; w) = log Z(x, y; w) — log Z(z; w)
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Traditional Method

= Perform full inference in each distribution
= Compute the gradient with respect to w

» Update w using the gradient
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How can we solve the
inference bottleneck?




Smart Supervised Learning

= Supervised learning objective contains an inner inference

* |[nterleave inference and learning

- e.g., Taskar et al. [ICML 2005], Meshi et al. [ICML 2010], Hazan
and Urtasun [NIPS 2010]

= |dea: turn saddle-point optimization into joint
minimization by dualizing inner inference problem:




Smart Latent Variable Learning

* For discrete models, Schwing et al. [ICML 2012] proposed
dualizing one of the inferences and interleaving with

parameter updates
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How can we solve the
inference bottleneck for
continuous models?




Continuous Structured Prediction

= The learning objective contains expectations and entropy
functions that are intractable for continuous distributions

= Recently, there’s been a lot of work on developing
- continuous probabilistic graphical models
- continuous probabilistic programming languages




Hinge-Loss Markov Random Fields

= Natural language processing
- Beltagy et al. [ACL 2014], Foulds et al. [ICML 2015]

= Social network analysis
- Huang et al. [SBP 2013], West et al. [TACL 2014], Li et al. [2014]

= Massive open online course (MOOC) analysis
- Ramesh et al. [AAAI 2014, ACL 2015]

= Bioinformatics
- Fakhraei et al. [TCBB 2014]




Hinge-Loss Markov Random Fields

= MRFs over continuous variables in [0,1] and hinge-loss
potential functions

P(y ocexp( Zw] (max {¢;(y })p”)

where /; is a linear function and p; € {1,2}




MAP Inference in HL-MRFs

= Exact MAP inference in HL-MRFs is very fast, thanks to the
alternating direction method of multipliers (ADMM)

= ADMM decomposes inference by
- Forming augmented Lagrangian
- Iteratively updating blocks of variables
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Paired-Dual Learning



Continuous Latent Variables

* The objective is the same, but the expectations and
entropies are intractable

arg min  max min
w pEA(y,z) q€A(z2)
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Variational Approximations

= We can restrict the distribution families to single points
- In other words, we can approximate expectations with MAP
- Great for models with fast, convex inference, like HL-MRFs

= But, the entropy of a point distribution is always zero

arg min max min
w Y,z z’

A

Slwl* = w' (@, y,2) + w' ¢z, 9, 2)

= Therefore, w = 0 is always a global optimum




Entropy Surrogates

= We design surrogates to fill the role of entropy terms
- They need to be tractable
- Choice should be tailored to problem and model
- Options include curvature and one-sided vs. two-sided

= Goal: require non-zero parameters to predict ground truth

= Example: — max{y,0}* — max{1 — y,0}?




Paired-Dual Learning

arg min max min
w Y,z z'
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= Repeatedly solving the inner inference problems with
ADMM still becomes expensive

= But we can replace the inference problems with their
augmented Lagrangians



Paired-Dual Learning
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» |[f the inner maxes and mins were solved to convergence
this objective would be equivalent

= |nstead, paired-dual learning iteratively updates the
parameters and blocks of Lagrangian variables



Evaluation



Evaluation

= Three real-world problems:
- Community detection
- Latent user attributes
- Image reconstruction

= | earning methods:
- Paired-dual learning (PDL) (N=1, N=10)
- Expectation maximization (EM)
- Primal gradient descent (Primal)

= Evaluated:
- Learning objective
- Predictive performance
- Vs. ADMM (inference) iterations




Community Detection

= Case Study: 2012 Venezuelan Presidential Election
- Incumbent: Hugo Chavez
- Challenger: Henrique Capriles

Chavez Capriles

Left: This photograph was produced by Agéncia Brasil, a public Brazilian news agency. This file is licensed under the Creative Commons Attribution 3.0 Brazil license
Right: This photograph was produced by Wilfredor. This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
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Twitter (One Fold)
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Latent User Attributes

= Task: trust prediction in Epinions social network
[Richardson et al., ISWC 2003]

= |Latent variables represent whether users are:
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Epinions (One Fold)
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Epinions (One Fold)
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Image Reconstruction

= Tested on Olivetti faces [Famaria and Harter, 1994], using
experimental protocol of Poon and Domingos [UAI 2012]

= Latent variables capture facial structure
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Image Reconstruction

me= PDL, N=1
m==PDL, N=10
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Image Reconstruction
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Conclusion



Conclusion

= Continuous latent variables
- Capture rich, nuanced information in structured domains

Thank You!

bach@cs.umd.edu @stevebach

- Makes large-scale, latent variable hinge-loss MRFs practical

= Open questions
- Convergence proof for paired-dual learning
- Should we also use it for discrete models?



