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This Talk 
§  In rich, structured domains, latent variables can capture 

fundamental aspects and increase accuracy 

§  Learning with latent variables needs repeated inferences 

§  Recent work has overcome the inference bottleneck in 
discrete models, but using continuous variables 
introduces new challenges 

§  We introduce paired-dual learning (PDL) 

§  PDL is so fast that is often finishes before traditional 
methods make a single parameter update 



Latent Variable 
Models 
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Latent User Attributes 

!  

!  
!  

!  

!  
!  
!  

!  
!  

Popular? 

Introverted? 

Connector? 
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Image Reconstruction 
§  Latent variables can represent archetypical components 

 

§  Learned components for face reconstruction: 

Originals With LVs Without 



Learning with 
Latent Variables 
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Model 
§  Observations 
§  Targets     with ground-truth labels  
§  Latent (unlabeled) 

§  Parameters 
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Learning Objective 

Optimize 
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Traditional Method 
§  Perform full inference in each distribution 

§  Compute the gradient with respect to 

§  Update     using the gradient 
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How can we solve the 
inference bottleneck? 
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Smart Supervised Learning 
§  Supervised learning objective contains an inner inference 

§  Interleave inference and learning 
-  e.g., Taskar et al. [ICML 2005], Meshi et al. [ICML 2010], Hazan 

and Urtasun [NIPS 2010] 

§  Idea: turn saddle-point optimization into joint 
minimization by dualizing inner inference problem: 
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Smart Latent Variable Learning 
§  For discrete models, Schwing et al. [ICML 2012] proposed 

dualizing one of the inferences and interleaving with 
parameter updates 
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How can we solve the 
inference bottleneck for 

continuous models? 
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Continuous Structured Prediction 
§  The learning objective contains expectations and entropy 

functions that are intractable for continuous distributions 

§  Recently, there’s been a lot of work on developing 
-  continuous probabilistic graphical models 
-  continuous probabilistic programming languages 
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Hinge-Loss Markov Random Fields 
§  Natural language processing 

-  Beltagy et al. [ACL 2014], Foulds et al. [ICML 2015] 

§  Social network analysis 
-  Huang et al. [SBP 2013], West et al. [TACL 2014], Li et al. [2014] 
 

§  Massive open online course (MOOC) analysis 
-  Ramesh et al. [AAAI 2014, ACL 2015] 

§  Bioinformatics 
-  Fakhraei et al. [TCBB 2014] 
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Hinge-Loss Markov Random Fields 
§  MRFs over continuous variables in [0,1] and hinge-loss 

potential functions 
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MAP Inference in HL-MRFs 
§  Exact MAP inference in HL-MRFs is very fast, thanks to the 

alternating direction method of multipliers (ADMM) 

§  ADMM decomposes inference by 
-  Forming augmented Lagrangian 
-  Iteratively updating blocks of variables 

Lw(y, z,↵, ȳ, z̄)



Paired-Dual Learning 
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Continuous Latent Variables 
§  The objective is the same, but the expectations and 

entropies are intractable 
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Variational Approximations 
§  We can restrict the distribution families to single points 

-  In other words, we can approximate expectations with MAP 
-  Great for models with fast, convex inference, like HL-MRFs 

§  But, the entropy of a point distribution is always zero 

§  Therefore,               is always a global optimum 
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Entropy Surrogates 
§  We design surrogates to fill the role of entropy terms 

-  They need to be tractable 
-  Choice should be tailored to problem and model 
-  Options include curvature and one-sided vs. two-sided 

§  Goal: require non-zero parameters to predict ground truth 

§  Example: �max{y, 0}2 �max{1� y, 0}2



23 

Paired-Dual Learning 

§  Repeatedly solving the inner inference problems with 
ADMM still becomes expensive 

§  But we can replace the inference problems with their 
augmented Lagrangians 
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Paired-Dual Learning 

§  If the inner maxes and mins were solved to convergence 
this objective would be equivalent 

§  Instead, paired-dual learning iteratively updates the 
parameters and blocks of Lagrangian variables 
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Evaluation 
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Evaluation 
§  Three real-world problems: 

-  Community detection 
-  Latent user attributes 
-  Image reconstruction 

§  Learning methods: 
-  Paired-dual learning (PDL) (N=1, N=10) 
-  Expectation maximization (EM) 
-  Primal gradient descent (Primal) 

§  Evaluated: 
-  Learning objective 
-  Predictive performance 
-  Vs. ADMM (inference) iterations 
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Community Detection 
§  Case Study: 2012 Venezuelan Presidential Election 

-  Incumbent: Hugo Chávez 
-  Challenger: Henrique Capriles 

Left: This photograph was produced by Agência Brasil, a public Brazilian news agency. This file is licensed under the Creative Commons Attribution 3.0 Brazil license. 
Right: This photograph was produced by Wilfredor. This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. 

Chávez Capriles 
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Latent User Attributes 
§  Task: trust prediction in Epinions social network 

[Richardson et al., ISWC 2003] 

§  Latent variables represent whether users are: 

! "!  
Trusting? Trustworthy? 
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Image Reconstruction 
§  Tested on Olivetti faces [Famaria and Harter, 1994], using 

experimental protocol of Poon and Domingos [UAI 2012] 

§  Latent variables capture facial structure 

Originals With LVs Without 
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Conclusion 
§  Continuous latent variables 

-  Capture rich, nuanced information in structured domains 
-  Learning them introduces new challenges 

§  Paired-dual learning 
-  Learns accurate models much faster than traditional methods, 

often before they make a single parameter update 
-  Makes large-scale, latent variable hinge-loss MRFs practical 

§  Open questions 
-  Convergence proof for paired-dual learning 
-  Should we also use it for discrete models? 

Thank You! 
 

bach@cs.umd.edu     @stevebach 


