
S I 

Q 

L 

N 

Large-margin Structured Learning for Link Ranking
Stephen H. Bach1, Bert Huang1, and Lise Getoor2

1 University of Maryland, College Park
2 University of California, Santa Cruz

http://linqs.cs.umd.edu

Algorithm 1 Gradient Computation for LpROC

Input: model fλ, input X, training output Y = P +N ,
initial guess Ỹ

Output: Y
� = argmaxỸ fλ(Ỹ,X) + LpROC(Y, Ỹ)

while not converged do

Ỹ ← Sort(Ỹ)
c ← UpdateCounts(Ỹ)

Ỹ ← argmaxỸ fλ(Ỹ,X) + 1

|P||N|
�n

i=1
ciỸi

end while

Y
� ← Ỹ

Introduction

• Link prediction is the task of predicting which 
nodes are linked in a network

• We introduce a large-margin method for learning 
to rank in structured domains, where ranking 
positions are interdependent

• By training a structured predictor to rank, we 
improve performance on link prediction as 
measured by a ranking loss

Structured Ranking

Train a structured predictor to rank via large-
margin learning, i.e., use ranking loss for L(Y, Ỹ)

ROC loss (one minus area under ROC curve):

Pseudo ROC loss (convex lower bound):

Preliminary Experimental Results

Predict hyperlinks in set of featured Wikipedia 
articles using text of articles, category of articles, 
and structural dependencies among links.

Hinge-loss Markov random fields [Bach et al., 
UAI 2013] are scalable graphical models over 
continuous random variables

Most probable assignment to continuous variables 
can be used as a ranking of possible hyperlinks

Large-margin Structured Learning

With observations X and training output Y in 
structured output space Y, find parameters λ of a 
function fλ such that the following condition holds:

which leads to this learning objective:

Perform subgradient descent, taking steps via

where

Computational challenge is finding Y� efficiently, which 
depends on forms of both fλ and L

Gradient Computation

Finding Y� with LpROC is a non-convex objective. 
We iteratively solve a linear approximation to find a 
local optimum and reduce problem size.

Task

Results

Structured Predictor
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fλ(Y,X) ≥ fλ(Ỹ,X) + L(Y, Ỹ), ∀Ỹ ∈ Y

∇λ = λ+ C (φ(Y�,X)− φ(Y,X))

Y� = argmax
Ỹ

fλ(Ỹ,X) + L(Y, Ỹ)

min
λ

1

2
�λ�2 + Cmax

Ỹ∈Y

�
fλ(Ỹ,X)− fλ(Y,X) + L(Y, Ỹ)

�

LpROC(Y, Ỹ) ≡ 1

|P||N |
�

(i,j)|Yi>Yj

max
�
0, Ỹj − Ỹi

�

LROC(Y, Ỹ) ≡ 1

|P||N |
�

(i,j)|Yi>Yj

I
�
Ỹj > Ỹi

�

Approximate |P||N | terms with |P|+ |N | terms

where P is set of true links and N  is false links
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ROC P-R Acc.

pROC 0.869 (0.046) 0.601 (0.106) 0.804 (0.112)

L1 0.843 (0.047) 0.556 (0.111) 0.852 (0.086)
Perceptron 0.842 (0.049) 0.524 (0.105) 0.667 (0.145)

Table 1: Average area under ROC and precision-recall curves

and 0-1 accuracy with different loss functions during large-margin

learning. Standard deviations are listed in parentheses. Scores

statistically equivalent to the best scoring method by metric are

typed in bold.


