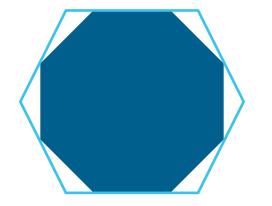
Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees

Stephen H. Bach	Bert Huang	Lise Getoor
Maryland	Virginia Tech	UC Santa Cruz

AISTATS 2015

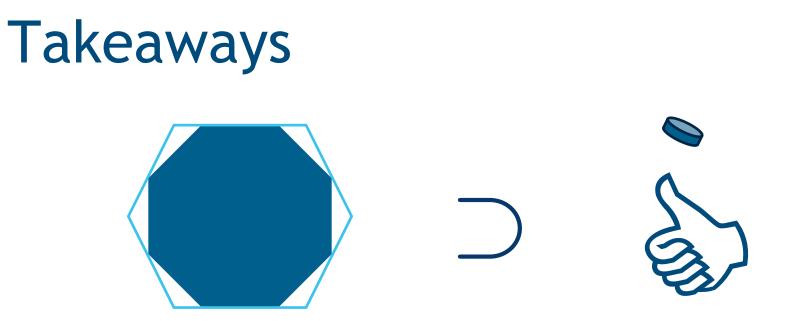
This Talk

- Markov random fields capture rich dependencies in structured data, but inference is NP-hard
- Relaxed inference can help, but techniques have tradeoffs
- Two approaches:



Local Consistency Relaxation

MAX SAT Relaxation



MAX SAT Relaxation

- We can combine their advantages: quality guarantees and highly scalable message-passing algorithms
- New inference algorithm for broad class of structured, relational models

Modeling Relational Data with Markov Random Fields

Markov Random Fields

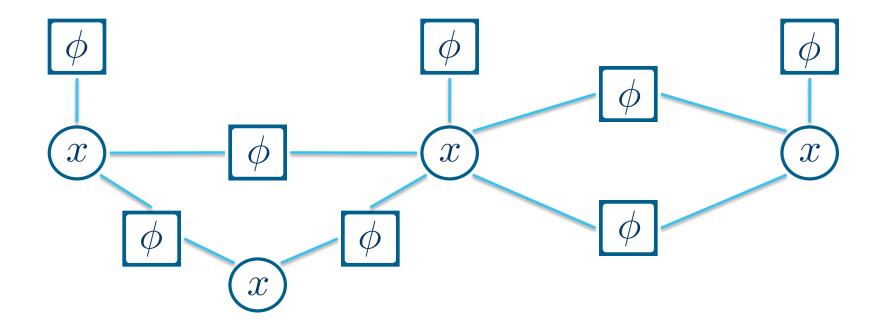
Probabilistic model for high-dimensional data:

$$P(\boldsymbol{x}) \propto \exp\left(\boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x})\right)$$

- The random variables x represent the data, such as whether a person has an attribute or whether a link exists
- The potentials ϕ score different configurations of the data
- The weights w scale the influence of different potentials

Markov Random Fields

Variables and potentials form graphical structure:



Modeling Relational Data

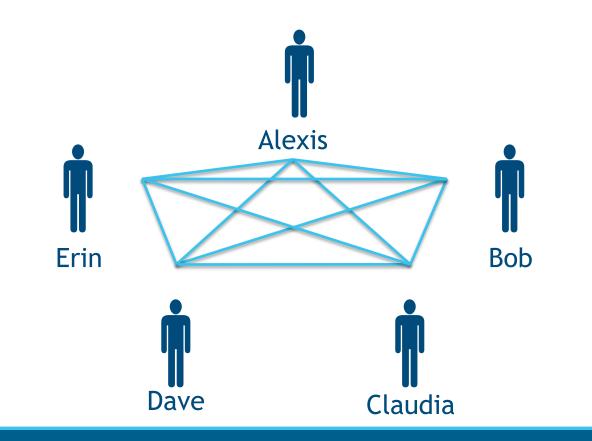
- Many important problems have relational structure
- Common to use logic to describe probabilistic dependencies
- Relations in data map to logical predicates

Logical Potentials

- One way to compactly define MRFs is with first-order logic, e.g., Markov logic networks [Richardson and Domingos, 2006]
- 5.0 : $\operatorname{Friends}(X, Y) \wedge \operatorname{Smokes}(X) \implies \operatorname{Smokes}(Y)$
 - Each first-order rule is a template for potentials
 - Ground out rule over relational data
 - The truth table of each ground rule is a potential
 - Each potential's weight comes from the rule that templated it

Logical Potentials: Grounding

 $5.0:: FF RENES(DE(XS, VO)) \land SMOKES(A(X)) = \implies SSMOKES(A))$



Logical Potentials

Let *R* be a set of rules, where each rule R_j has the general form

$$w_j$$
 : $\left(\bigvee_{i\in I_j^+} x_i\right)\bigvee\left(\bigvee_{i\in I_j^-} \neg x_i\right)$

- Weights $w_j \geq 0$ and sets I_j^- and I_j^+ index variables

MAP Inference

- MAP (maximum a posteriori) inference seeks a mostprobable assignment to the unobserved variables
- MAP inference is

$$\underset{\boldsymbol{x}}{\operatorname{arg\,max}\,} P(\boldsymbol{x}) \equiv \operatorname{arg\,max}_{\boldsymbol{x} \in \{0,1\}^n} \sum_{R_j \in \boldsymbol{R}} w_j \left(\left(\bigvee_{i \in I_j^+} x_i \right) \bigvee \left(\bigvee_{i \in I_j^-} \neg x_i \right) \right)$$

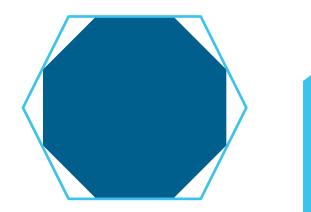
This MAX SAT problem is combinatorial and NP-hard!

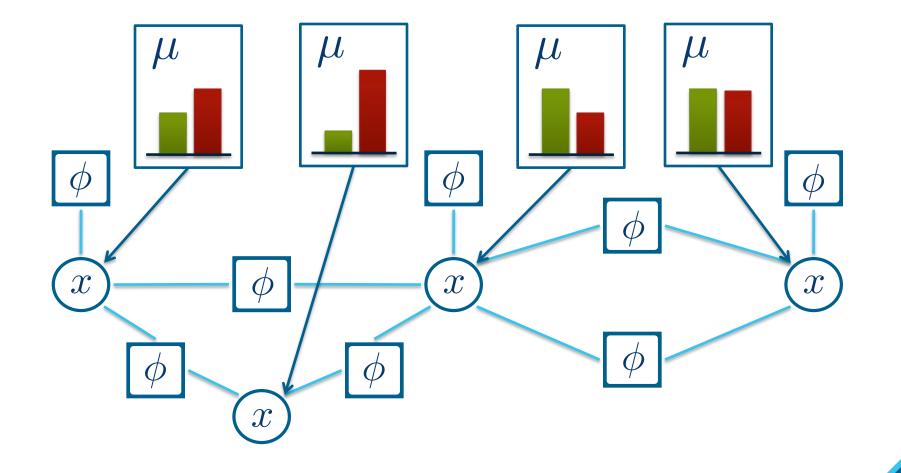
Relaxed MAP Inference

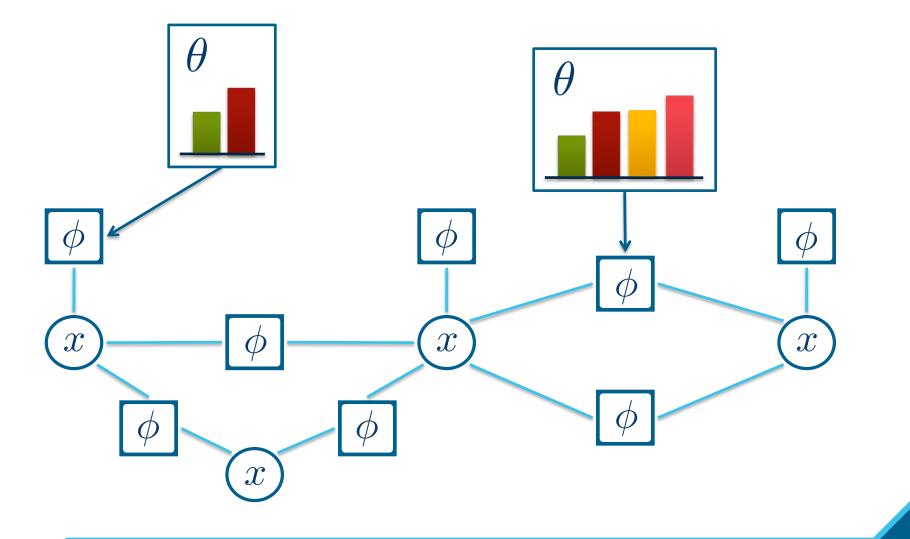
Approaches to Relaxed Inference

- Local consistency relaxation
 - Developed in probabilistic graphical models community
 - ADVANTAGE: Many highly scalable algorithms available
 - DISADVANTAGE: No known quality guarantees for logical MRFs
- MAX SAT relaxation
 - Developed in randomized algorithms community
 - ADVANTAGE: Provides strong quality guarantees
 - DISADVANTAGE: No algorithms designed for large-scale models
- How can we combine these advantages?

- LCR is a popular technique for approximating MAP in MRFs
 - Often simply called linear programming (LP) relaxation
 - Dual decomposition solves dual to LCR objective
- Lots of work in PGM community, e.g.,
 - Globerson and Jaakkola, 2007
 - Wainwright and Jordan, 2008
 - Sontag et al. 2008, 2012
- Idea: relax search over consistent marginals to simpler set







$\underset{(\boldsymbol{\theta},\boldsymbol{\mu})\in\mathbb{L}}{\operatorname{arg\,max}} \quad \sum_{R_j\in\boldsymbol{R}} w_j \sum_{\boldsymbol{x}_j} \theta_j(\boldsymbol{x}_j) \ \phi_j(\boldsymbol{x}_j)$

 μ : pseudomarginals over variable states x

 $oldsymbol{ heta}$: pseudomarginals over joint potential states $oldsymbol{\phi}(oldsymbol{x}_j)$

MAX SAT Relaxation

Approximate Inference

- View MAP inference as optimizing rounding probabilities
- Expected score of a clause is a weighted noisy-or function:

$$w_j \left(1 - \prod_{i \in I_j^+} (1 - p_i) \prod_{i \in I_j^-} p_i \right)$$

Then expected total score is

$$\hat{W} = \sum_{R_j \in \mathbf{R}} w_j \left(1 - \prod_{i \in I_j^+} (1 - p_i) \prod_{i \in I_j^-} p_i \right)$$

• But, $\arg \max_{p} \hat{W}$ is highly non-convex!

Approximate Inference

- It is the products in the objective that make it non-convex
- The expected score can be lower bounded using the relationship between arithmetic and harmonic means:

$$\frac{p_1 + p_2 + \dots + p_k}{k} \ge \sqrt[k]{p_1 p_2 \cdots p_k}$$

This leads to the lower bound

$$\sum_{R_j \in \mathbf{R}} w_j \left(1 - \prod_{i \in I_j^+} (1 - p_i) \prod_{i \in I_j^-} p_i \right) \ge \left(1 - \frac{1}{e} \right) \sum_{R_j \in \mathbf{R}} w_j \min \left\{ \sum_{i \in I_j^+} p_i + \sum_{i \in I_j^-} (1 - p_i), 1 \right\}$$

Approximate Inference

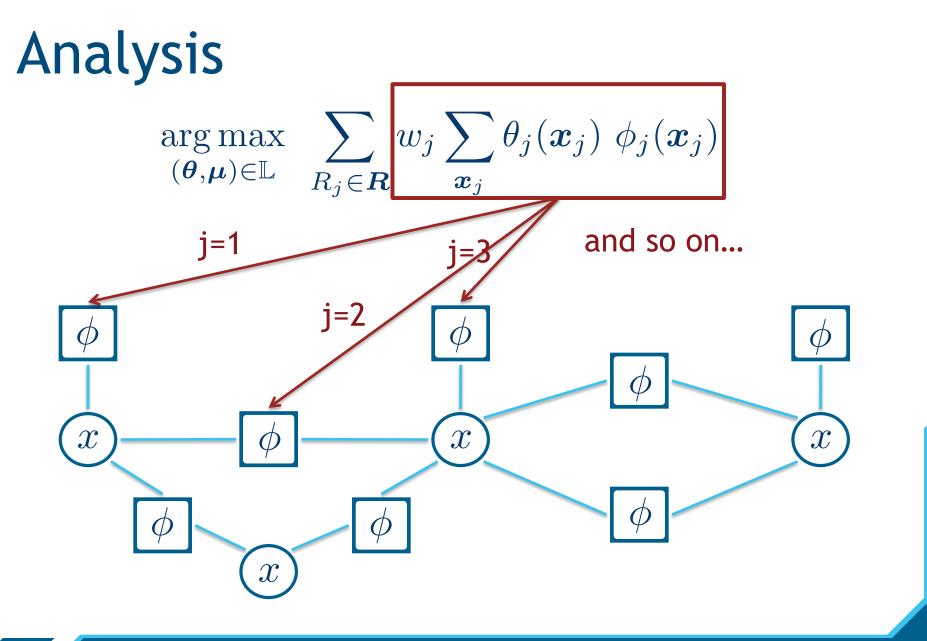
So, we solve the linear program

$$\underset{\boldsymbol{y}\in[0,1]^n}{\arg\max}\sum_{R_j\in\boldsymbol{R}}w_j\min\left\{\sum_{i\in I_j^+}y_i+\sum_{i\in I_j^-}(1-y_i),1\right\}$$

• If we set $p_i = y_i$, a greedy rounding method will find a $\left(1 - \frac{1}{e}\right)$ -optimal discrete solution

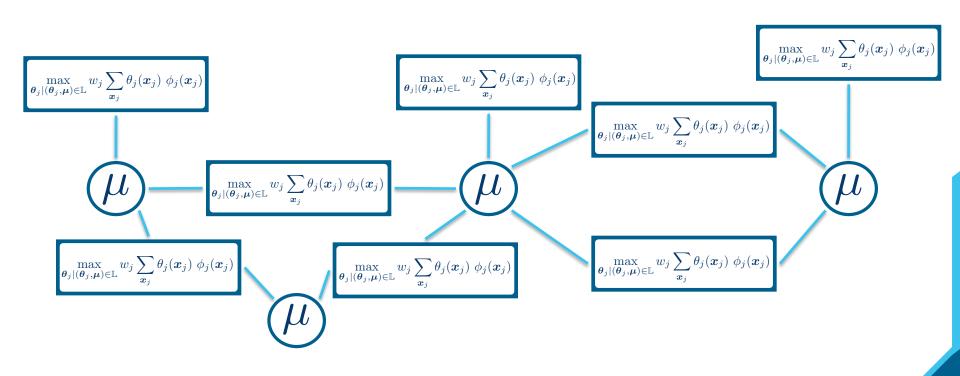
• If we set
$$p_i = \frac{1}{2}y_i + \frac{1}{4}$$
 , it improves to ¾-optimal

Unifying the Relaxations



Analysis

 $\underset{\boldsymbol{\mu}\in[0,1]^n}{\arg\max}\sum_{R_j\in\boldsymbol{R}}\hat{\phi}_j(\boldsymbol{\mu})$



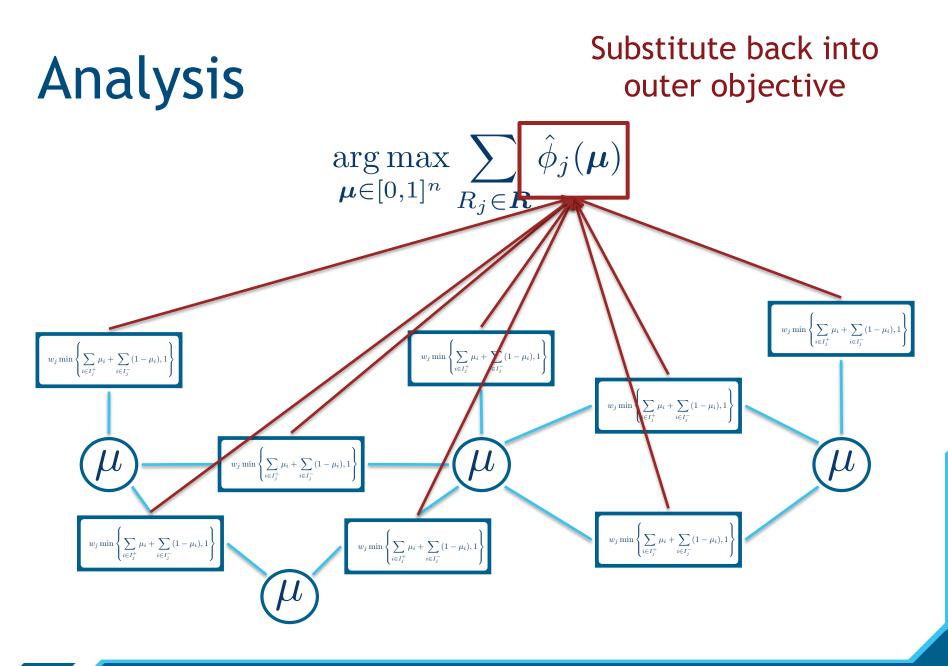
Analysis

 We can now analyze each potential's parameterized subproblem in isolation:

$$\hat{\phi}_j(\boldsymbol{\mu}) = \max_{\boldsymbol{\theta}_j \mid (\boldsymbol{\theta}_j, \boldsymbol{\mu}) \in \mathbb{L}} w_j \sum_{\boldsymbol{x}_j} \theta_j(\boldsymbol{x}_j) \ \phi_j(\boldsymbol{x}_j)$$

• Using the KKT conditions, we can find a simplified expression for each solution based on the parameters μ :

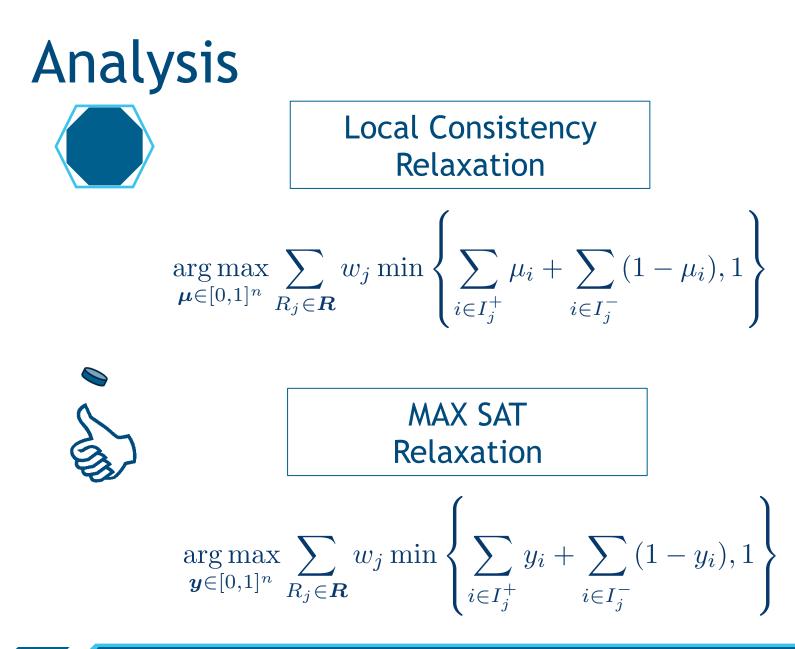
$$\hat{\phi}_j(\boldsymbol{\mu}) = w_j \min\left\{\sum_{i \in I_j^+} \mu_i + \sum_{i \in I_j^-} (1 - \mu_i), 1\right\}$$



Analysis

• Leads to simplified, projected LCR over μ :

$$\arg\max_{\mu\in[0,1]^n}\sum_{j=1}^m w_j \min\left\{\sum_{i\in I_j^+}\mu_i + \sum_{i\in I_j^-}(1-\mu_i), 1\right\}$$



Evaluation

New Algorithm: Rounded LP

- Three steps:
 - Solves relaxed MAP inference problem
 - Modifies pseudomarginals
 - Rounds to discrete solutions
- We use the alternating direction method of multipliers (ADMM) to implement a message-passing approach [Glowinski and Marrocco, 1975; Gabay and Mercier, 1976]
- ADMM-based inference for MAX SAT form of problem was originally developed for hinge-loss MRFs [Bach et al., 2015]

Evaluation Setup

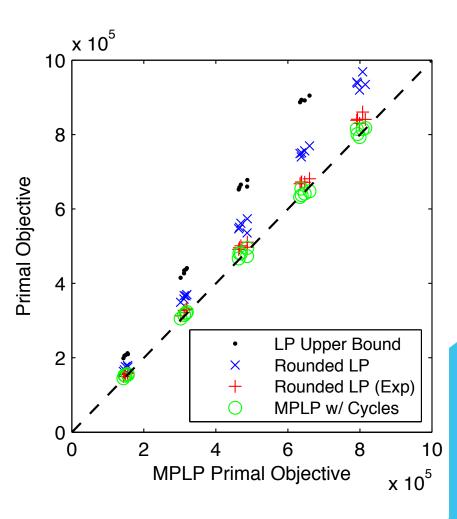
- Compared with
 - MPLP
 - MPLP with cycle tightening

[Globerson and Jaakkola, 2007; Sontag et al. 2008, 2012]

- MPLP uses coordinate descent dual decomposition, so rounding not applicable
- Solved MAP in social-network opinion models with superand submodular features
- Measured primal score, i.e., weighted sum of satisfied clauses

Results

- Expected scores of Rounded LP are significantly better
- Rounded LP's final scores are even better
- Cycle tightening has limited effect
- Rounded LP does 20% better than MPLP, and only takes 1 minute for 1 million clauses



Conclusion

Conclusion

 Uniting local consistency and MAX SAT relaxation combines the benefits of both: scalability and accuracy

Thank You!

- bach@cs.umd.edu @stevebach
- Many applications to structured and relational data:
 - Social network analysis
 - Bioinformatics
 - Recommender systems
 - Text and video understanding

Ro

qu