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This Talk 
§  Markov random fields capture rich dependencies in 

structured data, but inference is NP-hard 

§  Relaxed inference can help, but techniques have tradeoffs 

§  Two approaches: 

Local Consistency Relaxation MAX SAT Relaxation C 
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Takeaways 

 

§  We can combine their advantages: quality guarantees 
and highly scalable message-passing algorithms 

§  New inference algorithm for broad class of structured, 
relational models 

�
Local Consistency Relaxation MAX SAT Relaxation C 



Modeling Relational Data 
with 

Markov Random Fields 
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Markov Random Fields 
§  Probabilistic model for high-dimensional data: 

 
 
§  The random variables    represent the data, such as 

whether a person has an attribute or whether a link exists 

§  The potentials    score different configurations of the data 

§  The weights     scale the influence of different potentials 
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Markov Random Fields 
§  Variables and potentials form graphical structure: 
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Modeling Relational Data 
§  Many important problems 

have relational structure 

§  Common to use logic to 
describe probabilistic 
dependencies 

§  Relations in data map 
to logical predicates 

crossing waiting queueing walking talking dancing jogging
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Logical Potentials 
§  One way to compactly define MRFs is with first-order 

logic, e.g., Markov logic networks 
[Richardson and Domingos, 2006] 

 
§  Each first-order rule is a template for potentials 

-  Ground out rule over relational data 
-  The truth table of each ground rule is a potential 
-  Each potential’s weight comes from the rule that templated it 

5.0 : Friends(X,Y ) ^ Smokes(X) =) Smokes(Y )
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Logical Potentials: Grounding 

5.0 : Friends(X,Y ) ^ Smokes(X) =) Smokes(Y )

!   
!  !   

!   
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5.0 : Friends(Alexis, Bob) ^ Smokes(Alexis) =) Smokes(Bob)
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Logical Potentials 
§  Let     be a set of rules, where each rule      has the 

general form 
 

 
 
 

-  Weights               and sets      and      index variables wj � 0 I+jI�j

R Rj

wj :

0

B@
_

i2I+
j

xi

1

CA
_

0

B@
_

i2I�
j

¬xi

1

CA



11 

§  MAP (maximum a posteriori) inference seeks a most-
probable assignment to the unobserved variables 

§  MAP inference is 

 

§  This MAX SAT problem is combinatorial and NP-hard! 

MAP Inference 
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Relaxed 
MAP Inference 
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Approaches to Relaxed Inference 
§  Local consistency relaxation 

-  Developed in probabilistic graphical models community 
-  ADVANTAGE: Many highly scalable algorithms available 
-  DISADVANTAGE: No known quality guarantees for logical MRFs 

§  MAX SAT relaxation 
-  Developed in randomized algorithms community 
-  ADVANTAGE: Provides strong quality guarantees 
-  DISADVANTAGE: No algorithms designed for large-scale models 

§  How can we combine these advantages? 



Local Consistency 
Relaxation 
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Local Consistency Relaxation 
§  LCR is a popular technique for approximating MAP in MRFs 

-  Often simply called linear programming (LP) relaxation 
-  Dual decomposition solves dual to LCR objective 

§  Lots of work in PGM community, e.g., 
-  Globerson and Jaakkola, 2007 
-  Wainwright and Jordan, 2008 
-  Sontag et al. 2008, 2012 

§  Idea: relax search over consistent 
marginals to simpler set 
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Local Consistency Relaxation 
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Local Consistency Relaxation 
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Local Consistency Relaxation 

✓

µ : pseudomarginals over variable states 

: pseudomarginals over joint potential states 
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MAX SAT 
Relaxation 
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Approximate Inference 
§  View MAP inference as optimizing rounding probabilities 

§  Expected score of a clause is a weighted noisy-or function: 

 
§  Then expected total score is 
 
 
 

§  But,                     is highly non-convex! 
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Approximate Inference 
§  It is the products in the objective that make it non-convex 

§  The expected score can be lower bounded using the 
relationship between arithmetic and harmonic means: 

 

§  This leads to the lower bound 

p1 + p2 + · · ·+ pk
k

� k
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p1p2 · · · pk

Goemans and Williamson, 1994 
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§  So, we solve the linear program 

§  If we set              , a greedy rounding method will find a      
    -optimal discrete solution 

§  If we set                          , it improves to ¾-optimal 
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Unifying the 
Relaxations 
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Analysis 
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Analysis 
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Analysis 

§  We can now analyze each potential’s parameterized 
subproblem in isolation: 

 
§  Using the KKT conditions, we can find a simplified 

expression for each solution based on the parameters    :   
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argmax
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Analysis 
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Analysis 
§  Leads to simplified, projected LCR over    : 
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argmax
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Evaluation 
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New Algorithm: Rounded LP 
§  Three steps: 

-  Solves relaxed MAP inference problem 
-  Modifies pseudomarginals 
-  Rounds to discrete solutions 

§  We use the alternating direction method of multipliers 
(ADMM) to implement a message-passing approach 
[Glowinski and Marrocco, 1975; Gabay and Mercier, 1976] 

§  ADMM-based inference for MAX SAT form of problem was 
originally developed for hinge-loss MRFs 
[Bach et al., 2015] 
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Evaluation Setup 
§  Compared with 

-  MPLP 
-  MPLP with cycle tightening 

§  MPLP uses coordinate descent dual decomposition, 
so rounding not applicable 

§  Solved MAP in social-network opinion models with super- 
and submodular features 

§  Measured primal score, i.e., weighted sum of satisfied 
clauses 

[Globerson and Jaakkola, 2007; Sontag et al. 2008, 2012] 
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Results 
§  Expected scores of Rounded 

LP are significantly better 

§  Rounded LP’s final scores are 
even better 

§  Cycle tightening has limited 
effect 

§  Rounded LP does 20% better 
than MPLP, and only takes 1 
minute for 1 million clauses 
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Conclusion 
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Conclusion 
§  Uniting local consistency and MAX SAT relaxation 

combines the benefits of both: scalability and accuracy 

§  Rounding pseudomarginals can significantly improve 
quality over coordinate descent dual decomposition 

§  Many applications to structured and relational data: 
-  Social network analysis 
-  Bioinformatics 
-  Recommender systems 
-  Text and video understanding 

Thank You! 
 

bach@cs.umd.edu     @stevebach 


