
5
Tree Drawing Algorithms

Adrian Rusu
Rowan University

5.1 Introduction . 155
Drawing Conventions • Aesthetics

5.2 Level-Based Approach . 158
5.3 H-V Approach . 160
5.4 Path-Based Approach . 160
5.5 Ringed Circular Layout Approach . 162
5.6 Separation-Based Approach . 162
5.7 Algorithms for Drawing Binary Trees 163

Theoretical Results • Experimental Analysis • Unordered
Trees • Ordered Trees

5.8 Algorithms for Drawing General Trees 178
Theoretical Results • Unordered Trees • Ordered Trees

5.9 Other Tree Drawing Methods . 183
References . 188

5.1 Introduction

Tree drawing is concerned with the automatic generation of geometric representations of
relational information, often for visualization purposes. The typical data structure for
modeling hierarchical information is a tree whose vertices represent entities and whose
edges correspond to relationships between entities. Visualizations of hierarchical structures
are only useful to the degree that the associated diagrams effectively convey information to
the people that use them. A good diagram helps the reader understand the system, but a
poor diagram can be confusing.

The automatic generation of drawings of trees finds many applications, such as software
engineering (program nesting trees, object-oriented class hierarchies), business administra-
tion (organization charts), decision support systems (activity trees), artificial intelligence
(knowledge-representation isa hierarchies), logic programming (SLD-trees), website design
and browsing (structure of a website), biology (evolutionary trees), and chemistry (molec-
ular drawings).

Algorithms for drawing trees are typically based on some graph-theoretic insight into the
structure of the tree. The input to a tree drawing algorithm is a tree T that needs to be
drawn. The output is a drawing Γ, which maps each node of T to a distinct point in the
plane, and each edge (u, v) of T to a simple Jordan curve with endpoints u and v.

T is an ordered tree if the children of each node are assigned a fixed left-to-right order.
For any node u in T , its leftmost child (rightmost child) is the one that comes first (last) in
the left-to-right ordering of the children of u in T . The leftmost path p of T is the maximal
path consisting of nodes that are leftmost children, except the first one, which is the root

155

156 CHAPTER 5. TREE DRAWING ALGORITHMS

of T . The last node of p is called the leftmost node of T . Two nodes of T are siblings if
they have the same parent. The subtree of T rooted at a node v consists of v and all the
descendants of v. T is the empty tree if it has zero nodes in it.

Let v be a node of an ordered tree. Then n(v), p(v), l(v), r(v), and s1(v), . . . , si(v), are
the number of nodes in the subtree rooted at v, parent, leftmost child, rightmost child, and
siblings of v, respectively.

The rest of the chapter is organized as follows. After motivating the need for tree drawing
algorithms and providing drawing conventions and aesthetics in this section, we describe
the main approaches for tree drawing algorithms in subsequent sections. We then present
some of the most representative algorithms for drawing binary and general trees.

5.1.1 Drawing Conventions

A drawing convention is a basic rule that a drawing must satisfy to be admissible [DETT99].
A list of the most used drawing conventions for drawing trees and their significance is given
below (see Figure 5.1):

Polyline Drawings

A polyline drawing is a drawing in which each edge is drawn as a connected sequence
of one or more line segments, where the meeting point of consecutive line segments is called
a bend (see Figure 5.1(a)).

Orthogonal Drawings

An orthogonal drawing is one in which each edge is drawn as a chain of alternating
horizontal and vertical segments (see Figure 5.1(b)).

Upward and Non-Upward Drawings

An upward drawing is defined as a drawing where no child is placed higher in the
y-direction than its parent (see Figure 5.1(a),(c)). A non-upward drawing is a drawing that
is not upward (see Figure 5.1(b),(d)).

Grid Drawings

A grid drawing is one in which each vertex is placed at integer coordinates. Assuming
that the plane is covered by horizontal and vertical channels, with unit distance between
two consecutive channels, the meeting point of a horizontal and a vertical channel is called
a grid-point. The computer screen can be viewed as a grid of pixels placed at integer
coordinates. Grid drawings guarantee at least unit distance separation between the nodes
of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings
to be rendered in a (large-enough) grid-based display surface, such as a computer screen,
without any distortions due to truncation and round-off errors. The smallest rectangle with
horizontal and vertical sides parallel to the axes that covers the entire grid drawing is called
the enclosing rectangle.

Planar Drawings

A planar drawing is a drawing in which edges do not intersect each other in the
drawing (for example, the drawings (a), (b), and (c) in Figure 5.1 are planar drawings,
and the drawing (d) is a non-planar drawing). Planar drawings are normally easier to
understand than non-planar drawings, i.e., drawings with edge-crossings. Since any tree

5.1. INTRODUCTION 157

(a) (b) (c) (d)

Figure 5.1 Various kinds of drawings of the same tree: (a) polyline, (b) orthogonal, (c)
straight-line, (d) non-planar. Also note that the drawings shown in Figures (a) and (c) are
upward drawings, whereas the drawings shown in Figures (b) and (d) are not. The root of
the tree is shown as a shaded circle, whereas other nodes are shown as black circles.

admits a planar drawing, it is desirable to obtain planar drawings for trees.

Straight-line Drawings

The so-called straight-line tree drawings have each edge drawn as a straight-line seg-
ment (see Figure 5.1(c)). It is natural to draw each edge of a tree as a straight-line between
its end-nodes. Straight-line drawings are easier to understand than polyline drawings.
The experimental study of the human perception of graph drawings has concluded that

minimizing the number of edge crossings and minimizing the number of bends increases
the understandability of drawings of graphs [TDB88, Pur97, PCJ97, Pur00]. Ideally, the
drawings should have no edge crossings, i.e., they should be planar drawings and should
have no edge-bends, i.e., they should be straight-line drawings.

5.1.2 Aesthetics

Aesthetics specify graphic properties of the drawing that we would like to apply as much
as possible. Most of the tree drawing algorithms have concentrated on drawing trees in
as small as possible area with user-controlled aspect ratio. A list of the most important
aesthetics of drawings of trees is given below:

• Area: The area of a grid drawing is defined as the number of grid points con-
tained in its enclosing rectangle. Drawings with small area can be drawn with
greater resolution on a fixed-size page. Note that we cannot discuss the area of
non-grid drawings (i.e., drawings that have the nodes placed at real coordinates),
since, by placing the nodes closer or farther, such a drawing can be scaled down
or up by any value.

• Aspect Ratio: The aspect ratio of a grid drawing is defined as the ratio of
the length of the shortest side to the length of the longest side of its enclosing
rectangle. An aspect ratio is considered optimal if it is equal to 1. Giving the
users control over the aspect ratio of a drawing allows them to display the drawing
in different kinds of displays surfaces with different aspect ratios. The optimal
use of the screen space is achieved by minimizing the area of the drawing and by
providing user-controlled aspect ratio.

• Subtree Separation: Let T [v] be the subtree rooted at node v of tree T . T [v]
consists of v and all the descendants of v. A drawing of T has the subtree-

158 CHAPTER 5. TREE DRAWING ALGORITHMS

separation property [CGKT97] if, for any two node-disjoint subtrees T [u] and
T [v] of T , the enclosing rectangles of the drawings of T [u] and T [v] do not overlap
with each other. Focus+context [SB94] is a style in which part of the information
is presented in detail (the focus) while the rest is still available, but at a smaller
size (the context). The subtree-separation property allows for a focus+context
style rendering of a drawing, so that if the tree has too many nodes to fit in
the given drawing area, then the subtrees closer to focus can be shown in detail,
whereas those farther away from the focus can be contracted and simply shown
as filled-in rectangles.

• Closest Leaf: The closest leaf is defined as the smallest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

• Farthest Leaf: The farthest leaf is defined as the largest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

The aesthetics closest leaf and farthest leaf help determine whether the algorithms place
leaves close or far from the root. It is important to minimize the distance between the root
and the leaves of the tree, especially in the case when the user needs to visually analyze the
information contained in the levels close to the root and levels close to the leaves, without
the information in between. Such a case appears in particular for algorithms where a change
at the top level (root) of the tree generates modifications at the bottom levels (leaves) of
the tree (for example, usual operations—find, insert, remove—on binary search trees, splay
trees, or B+ trees).

Other well-known aesthetics that have been used in various tree drawing studies are as
follows [DETT99]:

• Size: the longest side of the smallest rectangle with horizontal and vertical sides
covering the drawing.

• Total Edge Length: the sum of the lengths of the edges in the drawing.

• Average Edge Length: the average of the lengths of the edges in the drawing.

• Maximum Edge Length: the maximum among the lengths of the edges in the
drawing.

• Uniform Edge Length: the variance of the edge lengths in the drawing.

• Angular Resolution: the smallest angle formed by two edges incident on the
same node.

• Symmetry: visual identification of symmetries in the drawing.

It is widely accepted [DETT94, DETT99, Pur97, PCJ97] that small values of the size,
total edge length, average edge length, maximum edge length, and uniform edge length
are related to the perceived aesthetic appeal and visual effectiveness of the drawing. High
angular resolution is desirable in visualization applications and in the design of optical
communication networks. For binary trees, the degree of a node is at most three, hence
a trivial upper bound on the angular resolution is 120◦. Given a symmetric drawing, a
conceptual understanding of the entire tree can be built up from that of a smaller subtree,
replicated a number of times.

5.2 Level-Based Approach

The level-based approach can be used on both binary and general trees, and it is characterized
by the fact that in the drawings produced, the nodes at the same distance from the root are

5.2. LEVEL-BASED APPROACH 159

horizontally aligned. Algorithms based on this approach are usually simple to understand
and implement and produce intuitive drawings that exhibit clear display of symmetries.
However, these algorithms have two disadvantages: the drawing has an area of Ω(n2) and,
for balanced trees with many nodes, the width is much larger than the height.

Level-based algorithms have been designed previously [Blo93, RT81, BJL02, Wal90]. The
algorithms described in [BJL02, Wal90] achieve better area, but they do not exhibit the
subtree separation property.

A recursive algorithm for binary trees [RT81], which exhibits the subtree separation
property, uses the following steps: draw the subtree rooted at the left child, draw the
subtree rooted at the right child, place the drawings of the subtrees at horizontal distance
2, and place the root one level above and halfway between the children. If there is only one
child, place the root at horizontal distance 1 from the child. A drawing produced by this
algorithm is provided in Figure 5.2.

Figure 5.2 Drawing of the Fibonacci tree with 88 nodes, generated by the level-based
algorithm of [RT81].

By using a geometric transformation (cartesian → polar), level drawings yield radial
drawings , where nodes are placed on concentric circles by level (see Figure 5.3).

Figure 5.3 Example of a transformation from a level drawing to a radial drawing. Figure
taken from [CT].

Radial drawings are often used in drawing graphs, even though they do not always guar-
antee planarity. Several algorithms for radial drawings of trees have been designed, and
some of them have also been used in various applications [Ber81, Ead92, CPM+98, CPP00,
BM03, Bac07].

160 CHAPTER 5. TREE DRAWING ALGORITHMS

5.3 H-V Approach

The horizontal-vertical approach can be used on both binary and general trees. In this
approach, a divide-and-conquer strategy is used to recursively construct an upward, or-
thogonal, and straight-line drawing of a tree, by placing the root of the tree in the top-left
corner, and the drawings of its left and right subtrees one next to the other (horizontal
composition) or one below the other (vertical composition) (see Figure 5.4). The resulting
drawing also exhibits the subtree separation property within an O(n log n) area.

(a) (b)

Figure 5.4 General H-V approach. (a) Horizontal composition: the drawings of the sub-
trees rooted at the children of o are placed one next to the other. (b) Vertical composition:
the drawings of the subtrees rooted at the children of o are placed one below the other.

Various H-V algorithms can be obtained, depending on which layout is used and what
other conditions are imposed on the drawing. An algorithm using this approach has been
developed for binary trees [CDP92]. This algorithm places the drawing of the subtree
with the greater width one unit below the drawing of the subtree with the smaller width
(see Figure 5.4(b)). A modification of this algorithm, in which vertical and horizontal
combinations are used alternatively, produces area-efficient drawings of complete, AVL,
and Fibonacci trees. The algorithm can easily be extended to general trees.

5.4 Path-Based Approach

The path-based approach uses a recursive winding paradigm to draw a binary tree T by laying
down a small chain of nodes monotonically in the x-direction leading to a distinguished node
v, and then “winding” by recursively laying out the subtrees rooted at the children of v in
the opposite direction.

Several path-based algorithms have been designed [CGKT02, GR03a, SKC00].
Recursively, for every subtree rooted at a node v, a parameter A is fixed, so that, if

n(v) ≤ A, then the drawings of the subtrees rooted at the children of v are placed one next
to the other, as in Figure 5.5 (a). Otherwise, the subtree looks like Figure 5.5 (b), where
v1 is the root of the subtree, vi+1 = r(vi) for i ≥ 1, k ≥ 1 is the first index for which
n(vk) > n − A and n(vk+1) ≤ n − A, Ti is the subtree rooted at l(vi), T

′ = l(vk), and
T ′′ = r(vk). In the second case, depending on whether an upward or a non-upward drawing
is to be obtained, the drawings are placed as in Figures 5.6(a) and 5.6(b), respectively.
The user controls the aspect ratio by modifying parameter A.

5.4. PATH-BASED APPROACH 161

(a) (b)

Figure 5.5 (a) When n(v) ≤ A, the subtrees are placed one next to the other. (b) When
n(v) > A, the tree is divided into subtrees T1, T2, . . . , Tk−2, Tk−1, T

′, T ′′.

(a) (b)

Figure 5.6 (a) Upward drawing of binary tree T . (b) Non-upward drawing of binary
tree T .

A drawing of the Fibonacci tree with 88 nodes produced by the algorithm of Chan et
al. [CGKT02], with the value for the parameter A at one of the extremes, is provided in
Figure 5.7. This algorithm produces the best worst-case theoretical bound on area for
path-based algorithms: O(n log log n).

Figure 5.7 Drawing of Fibonacci tree with 88 nodes produced by the path-based algo-
rithm [CGKT02], with parameter A at one of the extremes: A = 88.

162 CHAPTER 5. TREE DRAWING ALGORITHMS

5.5 Ringed Circular Layout Approach

In these algorithms, children are placed on the circumference or the interior of a circle cen-
tered at their parents [GADM04, CC99, Ead92, MH98, MMC99, TM02, RSJ07]. In general,
these algorithms are used to draw high-degree trees. However, the resulting drawings are
often not planar. An example of the general idea of the approach is provided in Figure 5.8.

Figure 5.8 General idea for the ringed circular layout approach.

Cone trees [RMC91] are a 3D extension of the 2D ringed circular layout approach. In
cone trees, the parent is located at the tip of a cone, and its children are spaced equally on
the bottom circle of the cone.

5.6 Separation-Based Approach

The separation-based approach can be used on both binary and general trees. Separation-
based algorithms have been designed [GR02, GR03b, GR03c, RS07]. In this approach, a
divide-and-conquer strategy is used to recursively construct a drawing of a tree, by per-
forming the following actions at each recursive step:

• Find a Separator Edge or a Separator Node: A separator edge (node) of a tree T
with degree(T) = d is an edge (node), which, if removed, divides T into at most
d smaller, partial, trees. It has been shown that every tree contains a separator
edge or a separator node [GR03c, Val81].

• Split Tree: Split T into at most d partial trees by removing a separator edge or
a separator node.

• Assign Aspect Ratios: Preassign a desirable aspect ratio to each partial tree.

• Draw Partial Trees: Recursively construct a drawing of each partial tree using
its preassigned aspect ratio.

• Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from the tree to divide it, such that the
drawing of the tree thus obtained meets certain aesthetics.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 163

5.7 Algorithms for Drawing Binary Trees

A binary tree is one where each node has at most two children. Most of the research on
drawing trees targets binary trees; hence, in this section, several algorithms for drawing
binary trees are presented.

Binary trees have a strong connection to real-life applications. For instance, binary
trees represent programs in combinatory logic, which is under investigation as an approach
to nanostructure synthesis and control [Mac03]. The idea is to use molecular processes
to implement the combinatory logic tree substitution operations, so that the molecular
reorganization of the trees results in the desired structure or process. Visualization of
these binary trees could improve the investigator’s ability in interpreting the substitution
operations involved in combinatory logic.

5.7.1 Theoretical Results

We summarize some known theoretical results on planar grid drawings of binary trees. (See
Table 5.1.)

Drawing Type Area Aspect Ratio Reference

upward orthogonal
polyline O(n log log n) Θ(log2 n/(n log log n)) [GGT96]

(non-upward) orthogonal
polyline O(n) Θ(1) [Lei80, Val81]

upward orthogonal
straight-line O(n log n) [1, n/ log n] [CDP92, CGKT02]

(non-upward) orthogonal
straight-line O(n log log n) Θ(log2 n/(n log log n)) [CGKT02, SKC00]

upward polyline O(n) [n−ǫ, nǫ] [GGT96]
upward straight-line O(n log log n) Θ(log2 n/(n log log n)) [SKC00]

(non-upward) straight-line O(n) [n−ǫ, nǫ] [GR04]

Table 5.1 Bounds on the areas and aspect ratios of various kinds of planar grid drawings
of an n-node unordered binary tree. Here, ǫ is an arbitrary constant, such that 0 < ǫ < 1.

Let T be an n-node binary tree. Garg et al. [GGT96] present an algorithm for constructing
an upward polyline drawing of T with O(n) area, and any user-specified aspect ratio in the
range [n−ǫ, nǫ], where ǫ is any constant, such that 0 < ǫ < 1. It also shows that n log log n
is a tight bound for the area of upward orthogonal polyline drawings, i.e., any binary tree
can be drawn in this fashion in O(n log log n) area, and there exists a family of binary trees
that requires Ω(n log log n) area in any such drawing. Leiserson [Lei80] and Valiant [Val81]
present algorithms for constructing a (non-upward) orthogonal polyline drawing of T with
O(n) area. Chan et al. [CGKT02] give an algorithm for constructing an upward orthogonal
straight-line drawing of T with O(n log n) area, and any user-specified aspect ratio in the
range [1, n/ log n]. It also shows that n log n is a tight bound for such drawings. Shin et
al. [SKC00] give an algorithm for constructing an upward straight-line drawing of T with
O(n log log n) area. Chan et al. [CGKT02] and Shin et al. [SKC00] show that T admits
a non-upward planar straight-line orthogonal grid drawing with height O(n/A) logA and
width O(A+ log n), where 2 ≤ A ≤ n is any user-specified number. This result also implies

164 CHAPTER 5. TREE DRAWING ALGORITHMS

that we can draw any binary tree in this fashion in area O(n log log n) (by setting A = log n).
If T is a Fibonacci tree (AVL tree and complete binary tree), then Crescenzi et al. [CDP92]
and Trevisan [Tre96] (Crescenzi et al. [CPP98, CDP92], respectively) give algorithms for
constructing an upward straight-line drawing of T with O(n) area. Garg and Rusu [GR04]
present an algorithm for constructing a (non-upward) straight-line drawing of T with O(n)
area, and any user-specified aspect ratio in the range [n−ǫ, nǫ], where ǫ is any constant, such
that 0 < ǫ < 1. This is trivially a tight bound, as any straight-line drawing of a binary tree
with n nodes requires Ω(n) area.

Table 5.2 summarizes the results for order-preserving algorithms.

Drawing Type Area Aspect Ratio Ref.

Complete tree

upward straight-line order-
preserving

Θ(n) O(1) [CDP92]

Fibonacci tree

upward straight-line order-
preserving

Θ(n) O(1) [Tre96]

Special balanced binary tree such as red-black

upward straight-line order-
preserving

O(n(log log n)2) n/ log2 n [SKC00]

Logarithmic tree

upward straight-line order-
preserving

Θ(n) O(1) [CP98]

Binary tree

upward orthogonal
polyline order-preserving

O(n log n) Θ(log2 n/(n log log n)) [Kim95, GGT96]

non-upward orthogonal
polyline order-preserving

O(n) (9a+ 8)/(9b+ 8) [DT81]

upward orthogonal
straight-line
order-preserving

Θ(n2) O(1) [CDP92, Fra07]

non-upward orthogonal
straight-line
order-preserving

O(n1.5) O(
√

(n)/n) [Fra07]

upward polyline
order-preserving

O(n log n) log n/n [Kim04]

O(n log n) Θ(log2 n/(n log log n)) [GGT96, CDP92]
non-upward polyline
order-preserving

O(n log log n) (n log log n)/ log2 n [GR03a]

upward straight-line
order-preserving

Θ(n log n) n/ log n [GR03a]

non-upward straight-line
order-preserving

O(n log n) [1, n/ log n] [GR03a]

O(n log log n) (n log log n)/ log2 n [GR03a]

Table 5.2 Bounds on the areas and aspect ratios of various kinds of order-preserving
planar grid drawings of an n-node ordered tree. Here, ab ≤ kn, where k is some constant.

Shin et al. [SKC00] have shown that a special class of balanced binary trees, which in-
cludes k-balanced, red-black, BB[α], and (a, b) trees, admits order-preserving planar upward

5.7. ALGORITHMS FOR DRAWING BINARY TREES 165

straight-line grid drawings with area O(n(log log n)2). Crescenzi et al. [CDP92], Crescenzi
and Penna [CP98], and Trevisan [Tre96] give order-preserving planar upward straight-line
grid drawings of complete, logarithmic, and Fibonacci trees, respectively, with area O(n).
Dolev and Trickey [DT81] prove that binary trees admit Θ(n) area order-preserving or-
thogonal drawings. Kim [Kim95] shows an upper bound of O(n log n) area for upward
order-preserving orthogonal drawings of ternary trees (trees whose nodes have at most
three children), result that immediately extends to binary trees. This area bound is opti-
mal, as Garg et al. [GGT96] demonstrate a lower bound of O(n log n) area for such drawings
of binary trees. Crescenzi et al. [CDP92] give an algorithm that achieves O(n2) area for
upward orthogonal straight-line order-preserving drawings of binary trees. Frati [Fra07]
proves that this bound is optimal. Frati [Fra07] also gives the best known upper bound of
O(n1.5) area for non-upward orthogonal straight-line order-preserving drawings of binary
trees. It is unknown whether this is an optimal bound, as the trivial O(n) is the lower bound
currently known. Garg et al. [GGT96] provides an algorithm that constructs an upward
polyline order-preserving drawing of a binary tree with O(n log n) area, which is the opti-
mal bound for such drawings [CDP92]. Kim [Kim04] improves the number of bends from
O(n) to O(n/ log n), while matching the area bound. Garg and Rusu [GR03a] show that a
binary tree admits an order-preserving planar straight-line grid drawing with O(n log log n)
area. In addition, they show that a binary tree admits an order-preserving upward planar
straight-line drawing with optimal O(n log n) area.

A variety of results exist for other kinds of drawings. Di Battista et al. [DETT99] and
Frati [Fra09] have given a survey of these results.

5.7.2 Experimental Analysis

Experimental studies provide insight into the behavior of tree drawing algorithms beyond
their targetted aesthetic criteria. In a comprehensive experimental study [RS08], separation-
based algorithm by Garg and Rusu [GR04], path-based algorithm by Chan et al. [CGKT02],
level-based algorithm by Reingold and Tilford [RT81], and ringed circular layout algorithm
by Teoh and Ma [TM02] were compared on a large suite of seven types of binary trees
of various sizes, based on ten quality measures: area, aspect ratio, size, total edge length,
average edge length, maximum edge length, uniform edge length, angular resolution, closest
leaf, and farthest leaf. As the specific algorithms compared are intended to be representa-
tive of their respective approaches, it is expected that the results generally apply to other
algorithms using the same approach and even extend to trivial extensions to general trees.

This experimental analysis includes some interesting findings:

• The performance of a drawing algorithm on a tree-type is not a good predic-
tor of the performance of the same algorithm on other tree-types: some of the
algorithms perform best on a tree-type, and worst on other tree-types.

• Reingold-Tilford algorithm [RT81] scores worse in comparison to the other chosen
algorithms for almost all ten aesthetics considered.

• The intuition that low average edge length and area go together is contradicted
in only one case.

• The intuitions that average edge length and maximum edge length, uniform edge
length and total edge length, and short maximum edge length and close farthest
leaf go together are contradicted for unbalanced binary trees.

• With regards to area, of the four algorithms studied, three perform best on
different types of trees.

166 CHAPTER 5. TREE DRAWING ALGORITHMS

• With regards to aspect ratio, of the four algorithms studied, three perform well
on trees of different types and sizes.

• Not all algorithms studied perform best on complete binary trees even though
they have one of the simplest tree structures.

• The level-based algorithm of Reingold-Tilford [RT81] produces much worse as-
pect ratios than algorithms designed using other approaches.

• The path-based algorithm of Chan et al. [CGKT02] tends to construct drawings
with better area at the expense of worse aspect ratio.

5.7.3 Unordered Trees

In this section, we present the algorithm of [GR04] in more detail. This algorithm uses a
separation-based approach (therefore, we call it Separation), and achieves optimal linear
area for planar straight-line grid drawings, while at the same time, giving the user control
over the aspect ratio. In addition, the drawings produced by this algorithm exhibit the
subtree separation property.

Let T be a tree with root o. Let n be the number of nodes in T . A partial tree of T is a
connected subgraph of T .

For some trees, the algorithm designates a special link node u∗ that has at most one child.

Let T be a tree with link node u∗. A planar straight-line grid drawing Γ of T is a feasible
drawing of T , if it has the following three properties:

• Property 1: The root o is placed at the top-left corner of Γ.

• Property 2: If u∗ 6= o, then u∗ is placed at the bottom boundary of Γ. Moreover,
u∗ can move downward in its vertical channel by any distance without causing
any edge-crossings in Γ.

• Property 3: If u∗ = o, then no other node or edge of T is placed on or crosses the
vertical and horizontal channels occupied by o. Moreover, u∗ (i.e., o) can move
upward in its vertical channel by any distance without causing any edge-crossings
in Γ.

Let A and ǫ be two numbers, where ǫ is a constant, such that 0 < ǫ < 1, and n−ǫ ≤ A ≤ nǫ.
A is called the desirable aspect ratio for T .

Theorem 5.1 [Separator Theorem [Val81]] Every binary tree T with n nodes, where n ≥ 2,
contains an edge e, called a separator edge, such that removing e from T splits it into two
non-empty trees with n1 and n2 nodes, respectively, such that for some x, where 1/3 ≤ x ≤
2/3, n1 = xn, and n2 = (1− x)n. Moreover, e can be found in O(n) time.

The algorithm takes ǫ, A, and T as input and uses a divide-and-conquer strategy to
recursively construct a feasible drawing Γ of T , by performing the following actions at each
recursive step:

• Split Tree: Split T into at most five partial trees by removing at most two nodes
and their incident edges from it. Each partial tree has at most (2/3)n nodes.
Based on whether the separator edge is on the leftmost path of T or not, there
are two general cases, which are shown in Figure 5.9.

• Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ak to each
partial tree Tk. The value of Ak is based on the value of A and the number of
nodes in Tk.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 167

• Draw Partial Trees: Recursively construct a feasible drawing of each partial tree
Tk with Ak as its desirable aspect ratio.

• Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from T to split it, such that the drawing Γ
of T is a feasible drawing. Note that the arrangement of these drawings is done
based on the cases shown in Figure 5.9. In each case, if A < 1, then the drawings
of the partial trees are stacked one above the other, and if A ≥ 1, then they are
placed side-by-side.

Remark: The drawing Γ constructed by the algorithm may not have aspect ratio exactly
equal to A, but it fits inside a rectangle with area O(n) and aspect ratio A.

(a)

(b)

Figure 5.9 (a) Drawing T in Case 1 (when the separator (u, v) is not in the leftmost
path of T). (b) Drawing T in Case 2 (when the separator (u, v) is in the leftmost path of
T). For each case, first the structure of T for that case is shown, then its drawing when
A < 1, and then its drawing when A ≥ 1. For simplicity, p(a) and p(u) are shown to be in
the interior of ΓA, but actually, either they are the same as o, or if A < 1 (A ≥ 1), then
they are placed at the bottom (right) boundary of ΓA. For simplicity, ΓA, ΓB , and ΓC are
shown as identically sized boxes, but in actuality, they may have different sizes.

Figure 5.10 (a) shows a drawing of a complete binary tree with 63 nodes constructed by
algorithm Separation, with A = 1 and ǫ = 0.5. Figure 5.10 (b) shows a drawing of a tree
with 63 nodes, consisting of a single path, constructed by algorithm Separation, with A = 1
and ǫ = 0.5.

Split Tree

The splitting of tree T into partial trees is done as follows:

168 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.10 (a) Drawing of the complete binary tree with 63 nodes constructed by Algo-
rithm Separation, with A = 1 and ǫ = 0.5. (b) Drawing of a tree with 63 nodes, consisting
of a single path, constructed by Algorithm Separation, with A = 1 and ǫ = 0.5.

• Order the children of each node such that u∗ becomes the leftmost node of T .

• Using Theorem 5.1, find a separator edge (u, v) of T , where u is the parent of v.

• Based on whether (u, v) is in the leftmost path of T , there are two general cases
(each with several subcases—not covered here):

– Case 1: The separator edge (u, v) is not in the leftmost path of T . Let o
be the root of T . Let a be the last node common to the path o ❀ v, and
the leftmost path of T . Let partial trees TA, TB , TC , Tα, Tβ , T1, and T2 be
defined as follows (see Figure 5.9 (a)):

∗ If o 6= a, then TA is the maximal partial tree with root o, that contains
p(a), but does not contain a. If o = a, then TA = ∅.

∗ TB is the subtree rooted at r(a).

∗ If u∗ 6= a, then TC is the subtree rooted at l(a). If u∗ = a, then TC = ∅.
∗ If s(v) exists, i.e., if v has a sibling, then T1 is the subtree rooted at
s(v). If v does not have a sibling, then T1 = ∅.

∗ T2 is the subtree rooted at v.

∗ If u 6= a, then Tα is the subtree rooted at u. If u = a, then Tα = T2.
Note that Tα is a subtree of TB .

∗ If u 6= a and u 6= r(a), then Tβ is the maximal partial tree with root
r(a), that contains p(u), but does not contain u. If u = a or u = r(a),
then Tβ = ∅. Again, note that Tβ belongs to TB .

Nodes a and u and their incident edges are being removed to split T into
at most five partial trees TA, TC , Tβ , T1, and T2. p(a) is designated as the
link node of TA, p(u) as the link node of Tβ , and u∗ as the link node of TC .
Arbitrarily select a leaf of T1, and a leaf of T2, and designate them as the
link nodes of T1 and T2, respectively.

– Case 2: The separator edge (u, v) is in the leftmost path of T . Let o be
the root of T . Let partial trees TA, TB , and TC be defined as follows (see
Figure 5.9 (b)):

∗ If o 6= u, then TA is the maximal partial tree with root o, that contains
p(u), but does not contain u. If o = u, then TA = ∅.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 169

∗ If r(u) exits, i.e., u has a right child, then TB is the subtree rooted at
r(u). If u does not have a right child, then TB = ∅.

∗ TC is the subtree rooted at v.

Node u and its incident edges are being removed to split T into at most
three partial trees TA, TB , and TC . p(u) is designated as the link node
of TA, and u∗ as the link node of TC . Arbitrarily select a leaf of TB and
designate it as the link node of TB .

Assign Aspect Ratios

Let Tk be a partial tree of T , where for Case 1, Tk is either TA, TC , Tβ , T1, or T2, and
for Case 2, Tk is either TA, TB , or TC . Let nk be the number of nodes in Tk.

Definition: Tk is a large partial tree of T if:

• A ≥ 1 and nk ≥ (n/A)1/(1+ǫ), or

• A < 1 and nk ≥ (An)1/(1+ǫ),

and is a small partial tree of T otherwise.
In Step Assign Aspect Ratios, a desirable aspect ratio Ak is assigned to each non-empty

Tk as follows: Let xk = nk/n.

• If A ≥ 1: If Tk is a large partial tree of T , then Ak = xkA, otherwise (i.e., if Tk

is a small partial tree of T) Ak = n−ǫ
k .

• If A < 1: If Tk is a large partial tree of T , then Ak = A/xk, otherwise (i.e., if Tk

is a small partial tree of T) Ak = nǫ
k.

Intuitively, the above assignment strategy ensures that each partial tree gets a good
desirable aspect ratio.

Draw Partial Trees

If A ≥ 1, then the values of AA and Aβ (AA and Aβ are the desirable aspect ratios
for TA and Tβ , respectively) are being changed to 1/AA and 1/Aβ , respectively. This is
done so because later in Step Compose Drawings, when constructing Γ, if A ≥ 1, then the
drawings of TA and Tβ are rotated by 90◦. Drawing TA and Tβ with desirable aspect ratios
1/AA and 1/Aβ , respectively, compensates for the rotation, and ensures that the drawings
of TA and Tβ that eventually get placed within Γ are those with desirable aspect ratios AA

and Aβ , respectively.
Next, each non-empty partial tree Tk, k ∈ {A,B,C, α, β, 1, 2}, is drawn recursively with

Ak as its desirable aspect ratio. The base case for the recursion happens when Tk contains
exactly one node, in which case, the drawing of Tk is simply the one consisting of exactly
one node.

Compose Drawings

Let Γk denote the drawing of a partial tree Tk constructed in Step Draw Partial
Trees. We now describe the construction of a feasible drawing Γ of T from the drawings of
its partial trees in Case 1.

In Case 1, first a drawing Γα of the partial tree Tα is constructed by composing Γ1 and
Γ2 as shown in Figure 5.11, then a drawing ΓB of TB is constructed by composing Γα and
Γβ as shown in Figure 5.12, and finally Γ is constructed by composing ΓA, ΓB , and ΓC as
shown in Figure 5.9 (a).

In the general case (u 6= a and T1 6= ∅), Γα is constructed as follows (see Figure 5.11):

170 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.11 Drawing Tα in the general case (u 6= a and T1 6= ∅). First, the structure
of Tα is shown, then its drawing when A < 1, and then its drawing when A ≥ 1. For
simplicity, Γ1 and Γ2 are shown as identically sized boxes, but in actuality, their sizes may
be different.

• If A < 1, then Γ1 is placed above Γ2 such that the left boundary of Γ1 is one unit
to the right of the left boundary of Γ2; u is placed in the same vertical channel
as v and in the same horizontal channel as s(v).

• If A ≥ 1, then Γ1 is placed one unit to the left of Γ2, such that the top boundary
of Γ1 is one unit below the top boundary of Γ2; u is placed in the same vertical
channel as s(v) and in the same horizontal channel as v.

Draw edges (u, s(v)) and (u, v).

Figure 5.12 Drawing TB in the general case (Tβ 6= ∅). First, the structure of TB is
shown, then its drawing when A < 1, and then its drawing when A ≥ 1. For simplicity,
p(u) is shown to be in the interior of Γβ , but actually, it is either same as r(a), or if A < 1
(A ≥ 1), then is placed on the bottom (right) boundary of Γβ . For simplicity, Γβ and Γα

are shown as identically sized boxes, but in actuality, their sizes may be different.

In the general case (Tβ 6= ∅), ΓB is constructed as follows (see Figure 5.12):

• if A < 1, then Γβ is placed one unit above Γα such that the left boundaries of
Γβ and Γα are aligned.

• If A ≥ 1, then first Γβ is rotated clockwise by 90◦ and then flipped right-to-left,
then Γβ is placed one unit to the left of Γα such that the top boundaries of Γβ

and Γα are aligned.

Draw edge (p(u), u).
In general Case 1, Γ is constructed from ΓA, ΓB , and ΓC as follows (see Figure 5.9 (a)):

• If A < 1, then ΓA, ΓB , and ΓC are stacked one above the other, such that they
are separated by unit distance from each other, and the left boundaries of ΓA

and ΓC are aligned with each other and are placed one unit to the left of the left
boundary of ΓB ; a is placed in the same vertical channel as o and l(a), and in
the same horizontal channel as r(a).

• If A ≥ 1, then first ΓA is rotated clockwise by 90◦ and flipped right-to-left.
Then, ΓA, ΓC , and ΓB are placed from left-to-right in that order, separated by

5.7. ALGORITHMS FOR DRAWING BINARY TREES 171

unit distances, such that the top boundaries of ΓA and ΓB are aligned with each
other, and are one unit above the top boundary of ΓC . Then, ΓC is moved down
until u∗ becomes the lowest node of Γ; a is placed in the same vertical channel
as l(a) and in the same horizontal channel as o and r(a).

Draw edges (p(a), a), (a, r(a)), and (a, l(a)).

In general Case 2, Γ is constructed by composing ΓA, ΓB , and ΓC , using a procedure similar
to the one of Case 1 (see Figure 5.9(b)).

Theorem 5.2 Let T be a binary tree with n nodes. Given two numbers A and ǫ, where
ǫ is a constant, such that 0 < ǫ < 1, and n−ǫ ≤ A ≤ nǫ, a planar straight-line grid drawing
of T with O(n) area and aspect ratio A, can be constructed in O(n log n) time. Moreover,
Γ has the subtree-separation property.

Proof: Designate any leaf of T as its link node. Construct a drawing Γ of T by invoking
Algorithm Separation with T , A, and ǫ as input. Γ will be a planar straight-line grid drawing
contained entirely within a rectangle with O(n) area and aspect ratio A, and which exhibits
the subtree separation property. ✷

5.7.4 Ordered Trees

In this Section, we present two algorithms of [GR03a] in detail. The first algorithm (we
call it Fixed Spine) shows that a binary tree admits an order-preserving upward planar
straight-line grid drawing with optimal O(n log n) area. The second algorithm (we call it
Arbitrary Spine), shows that a binary tree admits an order-preserving planar straight-line
grid drawing with width O(A+ log n), height O((n/A) logA), and area O(n log n), for any
given 2 ≤ A ≤ n. Setting A = log n, it results in an area of O(n log log n). Both algorithms
take O(n) time to construct the drawings.

Let T be an ordered tree. Each node of T has at most two children, called its left and
right children, respectively.

Let α be a positive integer. An order-preserving planar straight-line grid drawing of T is
an α-drawing of T , if it has the following two properties:

• Property 1: No node is placed to the left of, or above the root of, T .

• Property 2: The vertical and horizontal separations between the root and its
rightmost child are equal to α and one units, respectively.

A left-corner drawing of an ordered tree is an order-preserving planar straight-line grid
drawing, where no node of the tree is placed to the left of, or above its root. Note that an
α-drawing is also a left-corner drawing.

The mirror-image of T is the ordered tree obtained by reversing the counterclockwise
order of edges incident on each node.

A spine of T is a path v0v1v2 . . . vm, where v0, v1, v2, . . . , vm are nodes of T , that is defined
recursively as follows (see Figure 5.13):

• v0 is the same as the root of T ;

• vi+1 is a child of vi, such that the subtree rooted at vi+1 has the maximum
number of nodes among all the subtrees that are rooted at the children of vi.

A non-spine node of T is one that does not belong to its spine.

172 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.13 (a) A binary tree T with spine v0v1 . . . v13. (b) The order-preserving planar
upward straight-line grid drawing of T constructed by fixed spine algorithm.

Algorithm Fixed Spine

For simplicity, throughout this section, it is assumed that each non-leaf node has
exactly two children. The algorithm can be simply extended to cover the case where a
non-leaf node has only one child.

The fixed spine drawing algorithm uses a path-based approach to obtain an order-preserving
upward planar straight-line grid drawing with optimal (O(n log n)) area of an ordered bi-
nary tree T . In each recursive step, it breaks T into several subtrees, draws each subtree
recursively, and then combines their drawings to obtain an upward α-drawing D(T) of T ,
where α is a positive integer given as a parameter to the algorithm.

Let P = v0v1v2 . . . vm be a spine of T .
There are two cases (see Figures 5.14 and 5.15):

• Case 1: v1 is the left child of v0 (see Figure 5.14(a)).
Let L be the subtree rooted at v1, s be the non-spine child of v0, and R be the

5.7. ALGORITHMS FOR DRAWING BINARY TREES 173

subtree rooted at s. v0 is placed at the origin. 1-drawings D(L) and D(R) of
L and R are recursively constructed. D(R) is placed such that s is one unit to
the right of, and α units below v0. D(L) is placed such that v1 is in the same
vertical channel as v0, and is one unit below D(R) (see Figure 5.14(b)).

(a) (b)

Figure 5.14 (a) The structure of a binary tree T in Case 1, where v1 is the left child of
v0. (b) The drawing of T in Case 1. For simplicity, D(L) and D(R) are shown as identically
sized boxes, but in actuality, they may have different sizes.

• Case 2: v1 is the right child of v0 (see Figure 5.15(a)).
Let k ≥ 1 be the smallest integer, such that vk is either a leaf, or has a non-spine
node as its left child.
There are two subcases:

– vk has a non-spine node as its left child: Let s0, s1, . . . , sk be the non-spine
children of v0, v1, . . . , vk, respectively. Let L, A, and B be the subtrees
rooted at s0, sk, and vk+1, respectively. Let R1, R2, . . . , Rk−1 be the sub-
trees rooted at s1, s2, . . . , sk−1, respectively. T is drawn as shown in Fig-
ure 5.15(b). v0 is placed at the origin. v1 is placed one unit to the right of,
and α units below, v0. 1-drawings D(L), D(A), D(R1), D(R2), . . . , D(Rk−1)
of L,A,R1, R2, . . . , Rk−1, respectively, are recursively constructed. D(R1)
is placed one unit to the right of, and one unit below, v1. For each i, where
2 ≤ i ≤ k−1, vi and D(Ri) are placed such that vi is in the same horizontal
channel as the bottom of D(Ri−1) and is in the same vertical channel as
vi−1, and D(Ri) is one unit to the right of, and one unit below, vi. Node
vk is placed in the same vertical channel as vk−1, and in the same hori-
zontal channel as the bottom of D(Rk−1). D(A) is placed one unit below
vk, such that sk is in the same vertical channel as vk. D(L) is placed one
unit below D(A), such that s0 is in the same vertical channel as v0. Let
β = h(D(A))+h(D(L))+2, where h(D(A)) and h(D(L)) denote the heights
of D(A) and D(L), respectively. Let G be the drawing with the maximum
width amongD(L), D(A), D(R1), D(R2), . . . , D(Rk−1). LetW be the width
of G. A β-drawing of the mirror image of B is recursively constructed, and
then flipped right-to-left to obtain a drawing D(B) of B. D(B) is placed
such that vk+1 is one unit below vk, and max{W +3, width of D(B)} units
to the right of v0.

– vk is a leaf: T is drawn in a similar fashion as in the previous subcase,
except that D(A) and D(B) do not exist.

174 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.15 The structure of a binary tree T in Case 2, where v1 is the right child of
v0: (a) vk has a non-spine node as its left child; (b) the drawing of T , when vk has a
non-spine node as its left child. For simplicity, D(A), D(L), D(R1), . . . , D(Rk−1) are shown
as identically sized boxes, but in actuality, they may have different sizes.

Theorem 5.3 An ordered binary tree with n nodes admits an order-preserving up-
ward planar straight-line grid drawing with height at most n, width O(log n), and optimal
O(n log n) area, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered binary tree. Using the above algorithm, construct a
1-drawing D(T) of T in O(n) time. As discussed above, D(T) will be an order-preserving
upward planar straight-line grid drawing of T with height at most n, width O(log n), and
optimal O(n log n) area. ✷

LEMMA 5.1 A left-corner drawing of an n-node ordered binary tree with area O(n log n),
height O(log n), and width at most n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror image of T is constructed using Theorem 5.3,
then it is rotated clockwise by 90◦, and then it is flipped right-to-left. ✷

Algorithm Arbitrary Spine

For any user-defined number A, where 2 ≤ A ≤ n, algorithm Arbitrary Spine uses a
path-based approach to construct an order-preserving planar straight-line grid drawing of
T with O((n/A) logA) height and O(A + log n) width. Thus, by setting the value of A,
users can control the aspect ratio of the drawing. This implies that, by setting A = log n,
such a drawing can be constructed with area O(n log log n).

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible
drawing, if the root of T is placed on the left boundary and no node of T is placed between
the root and the upper-left corner of the enclosing rectangle of the drawing. Note that a
left-corner drawing is also a feasible drawing.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 175

Let n be the number of nodes in T . Let 2 ≤ A ≤ n be any number given as a parameter
to the algorithm.

Figure 5.16 shows the drawing of the tree of Figure 5.13(a) constructed by algorithm
Arbitrary Spine with A =

√
n, using Lemma 5.1.

Figure 5.16 Drawing of the tree with n = 57 nodes of Figure 5.13(a) constructed by the
Algorithm Arbitrary Spine with A =

√
n =

√
57 = 7.55, using Lemma 5.1.

In each recursive step, the algorithm constructs a feasible drawing of a subtree T ′ of T . If
T ′ has at most A nodes in it, then it constructs a left-corner drawing of T ′ using Lemma 5.1
such that the drawing has width at most m and height O(logm), where m is the number of
nodes in T ′. Otherwise, i.e., if T ′ has more than A nodes in it, then it constructs a feasible
drawing of T ′ as follows:

1. Let P = v0v1v2 . . . vq be a spine of T ′.

2. Let mi denote the number of nodes in the subtree of T ′ rooted at vi, where
0 ≤ i ≤ q. Let vk be the node of P with the value for k such that mk > m − A
and mk+1 ≤ m − A (since T ′ has more than A nodes in it, and m0,m1, . . . ,mq

is a strictly decreasing sequence of numbers, such a k exists).

3. See Figures 5.17 and 5.18. Let Ti denote the subtree rooted at the non-spine
child of vi, where 0 ≤ i ≤ k− 1. Assume, for simplicity, that vk and vk+1 are not
leaves (the algorithm can be easily extended to handle the case, where vk or vk+1

is a leaf). Let T ∗ and T+ denote the subtrees rooted at the non-spine children
of vk and vk+1, respectively. Let T

′′ denote the subtree rooted at vk+1. Let T
′′′

denote the subtree rooted at vk+2.

4. Place v0 at the origin.

5. There are two cases:

• k = 0: Recursively construct a feasible drawing D∗ of T ∗. Recursively
construct a feasible drawing D+ of the mirror image of T+. Recursively
construct a feasible drawing D′′′ of the mirror image of T ′′′. Let s0 be the
root of T ∗ and s1 be the root of T+.

T ′ is drawn as shown in Figure 5.17. If s0 is the left child of v0, then D∗

is placed one unit below v0, with its left boundary aligned with v0 (see

176 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

(c) (d)

Figure 5.17 Case k = 0: (a) s0 is the left child of v0, and s1 is the left child of v1; (b) s0
is the right child of v0, and s1 is the left child of v1; (c) s0 is the left child of v0, and s1 is
the right child of v1; (d) s0 is the right child of v0, and s1 is the right child of v1.

Figure 5.17(a,c)). If s0 is the right child of v0, then D∗ is placed one unit
above, and one unit to the right of v0 (see Figure 5.17(b,d)). Let W ∗,
W+, and W ′′′ be the widths of D∗, D+, and D′′′, respectively. Place v1 in
the same horizontal channel as v0 to its right at the distance max{W ∗ +
2,W++2,W ′′′} from it. Let B0 and C0 be the lowest and highest horizontal
channels, respectively, occupied by the subdrawing consisting of v0 and D∗.
If s1 is the left child of v1, then D+ is flipped right-to-left, and placed one
unit below B0, and one unit to the left of v1 (see Figure 5.17(a,b)). If s1 is
the right child of v1, then D+ is flipped right-to-left, and placed one unit
above C0, and one unit to the left of v1 (see Figure 5.17(c,d)). Let B1 be
the lowest horizontal channel occupied by the subdrawing consisting of v0,
D∗, v1 and D+. Flip D′′′ right-to-left, and place it one unit below B1, such
that its right boundary is aligned with v1 (see Figure 5.17).

• k > 0: For each Ti, where 0 ≤ i ≤ k− 1, construct a left-corner drawing Di

of Ti using Lemma 5.1.

Recursively construct feasible drawings D∗ and D′′ of the mirror images of
T ∗ and T ′′, respectively.

T ′ is drawn as shown in Figure 5.18. If T0 is rooted at the left child of v0,
then D0 is placed one unit below v0, with its left boundary aligned with v0.
If T0 is rooted at the right child of v0, then D0 is placed one unit above,
and one unit to the right of v0. Place each Di and vi, where 1 ≤ i ≤ k − 1,
such that:

– vi is in the same horizontal channel as vi−1 and is one unit to the right
of Di−1, and

– if Ti is rooted at the left child of vi, then Di is placed one unit below
vi, with its left boundary aligned with vi, otherwise (i.e., if Ti is rooted
at the right child of vi) Di is placed one unit above, and one unit to the
right of vi.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 177

(a) (b)

(c) (d)

Figure 5.18 Case k > 0: Here k = 4, s0, s1, and s3 are the left children of v0, v1, and
v3, respectively, s2 is the right child of v2, T0, T1, T2, T3, and T ′′ are the subtrees rooted
at v0, v1, v2, v3, and v5, respectively, s4 is the non-spine child of v4, and T ∗ is the subtree
rooted at s4; (a) s4 is the left child of v4; (c) s4 is the right child of v4. For simplicity, boxes
D0, D1, D2, D3 are drawn with same size, but in actuality, they may have different sizes.

Let Bk−1 and Ck−1 be the lowest and highest horizontal channels, respec-
tively, occupied by the subdrawing consisting of v0, v1, v2, . . . , vk−1 and
D0, D1, D2, . . . , Dk−1. Let d be the width of the subdrawing consisting
of v0, v1, v2, . . . , vk−1 and D0, D1, D2, . . . , Dk−1. Let W ∗ and W ′′ be the
widths of D∗ and D′′, respectively.

Place vk to the right of and in the same horizontal channel as vk−1, such that
the horizontal distance between vk and v0 is equal to max{d+1,W ∗+2,W ′′}.
If T ∗ is rooted at the left-child of vk, then D∗ is flipped right-to-left, and
placed one unit below Bk−1, and one unit left of vk (see Figure 5.18(b)).
If T ∗ is rooted at the right-child of vk, then D∗ is flipped right-to-left,
and placed one unit above Ck−1, and one unit to the left of vk (see Fig-
ure 5.18(d)). Let Bk be the lowest horizontal channel occupied by the sub-
drawing consisting of v1, v2, . . . , vk, and D0, D1, D2, . . . , Dk−1, D

∗. Flip D′′

right-to-left, and place it one unit below Bk, such that its right boundary
is aligned with vk (see Figure 5.18(b,d)).

Theorem 5.4 Let T be an ordered binary tree with n nodes. Let 2 ≤ A ≤ n be any
number. T admits an order-preserving planar straight-line grid drawing with width O(A +
log n), height O((n/A) logA), and area O((A + log n)(n/A) logA) = O(n log n), which can
be constructed in O(n) time.

178 CHAPTER 5. TREE DRAWING ALGORITHMS

Setting A = log n, it is obtained that:

COROLLARY 5.1 An n-node ordered binary tree admits an order-preserving planar
straight-line grid drawing with area O(n log log n), which can be constructed in O(n) time.

5.8 Algorithms for Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult
to draw a general tree than a binary tree. The degree of a tree is equal to the maximum
number of edges incident on a node.

5.8.1 Theoretical Results

We summarize known theoretical results on planar grid drawings of general trees. Chan
[Cha02] has shown an upper bound of O(n1+ǫ), where ǫ > 0 is any user-defined constant,
on the area of an order-preserving planar upward straight-line grid drawing of a general
tree. Garg et al. [GGT96] have given an upper bound of O(n log n) on order-preserving
planar upward polyline grid drawings. As for the lower bound on the area-requirement of
order-preserving drawings, Garg et al. [GGT96] have shown a lower bound of Ω(n log n) for
order-preserving planar upward grid drawings. There is no known lower bound for non-
upward order-preserving planar grid drawings other than the trivial Ω(n) bound. Garg et
al. [GGT96] show that any tree with degree d admits a non-order-preserving planar upward
polyline grid drawing with height h = O(n1−α) and area O(n+ dh log n), where 0 < α < 1
is any user-specified constant. This result implies that any tree with degree O(nβ), where
0 ≤ β < 1 is any constant, can be drawn in this fashion in O(n) area with aspect ratio
O(nγ), where γ is any user-defined constant, such that max{0, 2β − 1} < γ < 1. Garg and
Rusu [GR03c] show that any tree with degree O(nδ), where 0 ≤ δ < 1/2 is any constant,
admits a non-order-preserving planar non-upward straight-line drawing with area O(n), and
any user-specified aspect ratio in the range [1, nα], where 0 ≤ α < 1 is any constant.

Table 5.3 summarizes these results.

A variety of results are available for other kinds of drawings. Di Battista et al. [DETT99]
and Frati [Fra09] have given a survey of these results.

5.8.2 Unordered Trees

In this section, we briefly sketch a bottom-up algorithm developed using the ringed circular
layout approach [TM02]. This algorithm (called Rings) is space-efficient for high-degree
trees, however, the resulting drawing is straight-line but not planar.

The subtrees rooted at the children of the root of the tree are drawn recursively as circles
placed in concentric rings around the center of the circle to ensure efficient use of space.
The children of the root are divided into multiple categories according to their size. One
ring is assigned to each category, so the outer rings consist of the largest trees, while the
inner rings consist of the smallest ones (see Figure 5.19). In this way, a tree containing more
information is allocated more space, thus showing more distinguishable edges and allowing
more structural information to be shown in context.

The relationship below can be established between the number of children circles in the
outermost ring and the percentage of area taken up by the ring.

5.8. ALGORITHMS FOR DRAWING GENERAL TREES 179

Tree Type Drawing Type Area Aspect Ratio Ref.

Tree with non-upward
degree O(nδ), straight-line Θ(n) [1, nα] [GR03c]

for any non-order-preserving
constant

0 ≤ δ < 1/2
Tree with upward polyline

degree O(nβ), non-order-preserving Θ(n) [1, nγ] [GGT96]
for any
constant
0 ≤ β < 1
General upward polyline

order-preserving Θ(n log n) n/ log n [GGT96]
upward straight-line
order-preserving O(n1+ǫ) n [Cha02]
non-upward O(n1+ǫ) n [Cha02]
straight-line

order-preserving O(n log n) n/ log n [GR03a]

Table 5.3 Bounds on the areas and aspect ratios of various kinds of planar straight-line
grid drawings of an n-node tree. Here, α, γ, and ǫ are arbitrary user-defined constants, such
that 0 ≤ α < 1, 0 ≤ γ < 1, and 0 < ǫ < 1.

f(n) =
(R2)

2

(R1)2
=

(1− sin (θ))2

(1 + sin (θ))2
=

(1− sin (πn))
2

(1 + sin (πn))
2

(5.1)

here, f(n) is the fraction of the area left after n circles have been placed in the ring.

The basic steps of the algorithm are presented below:

Algorithm Rings

Sort the children by their number of children;

Find the smallest k for which the sum of the number of children of the first k children

expressed as a fraction of the total number of grandchildren is greater or equal to

f(k);

Place first k children in the outermost ring;

Place the rest of the children in the same way in the inner rings;

end Algorithm.

Visual cues like color and transparency are also used to enhance structural information,
as well as to highlight specific information (such as information importance or relevance).
Adjacent concentric rings are rotated in opposite directions to decrease the occlusion of a
particular branch (see Figure 5.20).

A binary tree adaptation of the Rings algorithm [RS08] places the children of a node in
either the same vertical or horizontal channel, starting with the same horizontal channel at
the root (depth 0), and alternates between vertical and horizontal channel placement for
every following depth in the tree. In addition, the length of the edge connecting a subtree
to its parent is set to depth(subtree(v)) + 1, where depth(subtree(v)) is the depth of the
subtree rooted at node v. This ensures that enough space is made available to draw the rest
of the subtree, which is consistent with other rings-based algorithms. A drawing produced
by the binary tree adaptation of the Rings algorithm is provided in Figure 5.21.

180 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.19 Layout of the ringed circular layout algorithm of [TM02]. The four larger
rings represent the largest children of the parent node, and the inner ring represents the
area left for the rest of the children.

Figure 5.20 Rotation strategy to decrease occlusion. Figure taken from [TM02].

In order to allow for real-time interaction, a top-down variation of the Rings algorithm,
called FastRings [RSJ07], trades space for time. In FastRings, all nodes of the tree are
considered to be equivalent and assigned same size circles. This allows the algorithm to
start drawing the tree much sooner, when only the first level of children is available. The
drawing can be refined later by filling up the circles from the first level once new information
becomes available. Experiments show that FastRings increases the speed of constructing
entire drawings by 51%, and is twelve times faster in producing first drawings.

5.8.3 Ordered Trees

In this section, we briefly sketch an algorithm for constructing a (non-upward) order-
preserving planar straight-line grid drawing of a general ordered tree with n nodes with
O(n log n) area in O(n) time [GR03a]. This algorithm uses a path-based approach.

Let T be an ordered tree with n nodes. In each recursive step, the algorithm breaks T
into several subtrees, draws each subtree recursively, and then combines their drawings to

5.8. ALGORITHMS FOR DRAWING GENERAL TREES 181

Figure 5.21 Drawing of the Fibonacci tree with 88 nodes, generated by the binary tree
adaptation of the Rings algorithm.

obtain an α-drawing D(T) of T , where α is a positive integer given as a parameter to the
algorithm.

Let P = v0v1v2 . . . vm be a spine of T (see Section 5.7.4 for the definition of spine). The
general structure of T is shown in Figure 5.22(a). Let s0, s1, . . . , si, v1, si+1, si+2, . . . , sp
be the left-to-right order of the children of v0, where the list s0, s1, . . . , si is empty if v1
is the leftmost child of v0, and the list si+1, si+2, . . . , sp is empty if v1 is the rightmost
child of v0. Let Ak denote the subtree rooted at the node sk, where 0 ≤ k ≤ p. Let
t0, t1, . . . , tj , v2, tj+1, tj+2, . . . , tr be the left-to-right order of the children of v1, where the
list t0, t1, . . . , tj is empty if v2 is the leftmost child of v1, and the list tj+1, tj+2, . . . , tr is
empty if v2 is the rightmost child of v1. Let Bk denote the subtree rooted at the node tk,
where 0 ≤ k ≤ r. Let C denote the subtree rooted at v2.

T is drawn as follows (see Figure 5.22(b)):

1. Recursively construct 1-drawings D(A0), . . . , D(Ap) of A0, . . . , Ap, respectively,
and D(B0), . . . , D(Br) of B0, . . . , Br, respectively.

2. Place v0 at the origin.

3. Place D(Ai+1), . . . , D(Ap) one above the other at unit vertical separations from
each other, such that D(Ap) is at the top, D(Ai+1) is at the bottom, si+1, . . . , sp
are in the same vertical channel, and sp is α units below, and one unit to the
right of v0.

4. Place D(Bj+1), . . . , D(Br) one above the other at unit vertical separations from
each other, such that D(Br) is at the top, D(Bj+1) is at the bottom, tj+1, . . . , tr
are in the same vertical channel, and tr is one unit below D(Ai+1), and one unit
to the right of si+1.

5. Place v1 in the same horizontal channel as the bottom of D(Bj+1), and one unit
to the right of v0.

6. Place D(B0), . . . , D(Bj) one above the other at unit vertical separations from
each other, such that D(Bj) is at the top, D(B0) is at the bottom, t0, . . . , tj are
in the same vertical channel, and tj is one unit below, and one unit to the right
of v1.

182 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.22 (a) The structure of a general tree T . (b) The drawing of T constructed
by the algorithm of Section 5.8.3. For simplicity, D(A0), . . . , D(Ap), D(B0), . . . , D(Br) are
shown as identically sized boxes, but in actuality they may have different sizes.

7. Place D(A0), . . . , D(Ai) one above the other at unit vertical separations from
each other, such that D(Ai) is at the top, D(A0) is at the bottom, s0, . . . , si are
in the same vertical channel, and si is one unit below D(B0), and in the same
vertical channel as v1.

8. Let β = h(D(B0)) + . . . + h(D(Bj)) + h(D(A0)) + . . . + h(D(Ai)) + i + j +
2, where h(D(B0)), . . . , h(D(Bj)), h(D(A0)), . . . , h(D(Ai)) denote the heights of
D(B0), . . . , D(Bj), D(A0), . . . , D(Ai), respectively. Recursively construct a β-
drawing of the mirror image of C, and flip it right-to-left to obtain a drawing
D(C) of C. Let W be the width of G, which is the drawing with the maximum
width among D(A0), . . . , D(Ap), D(B0), . . . , D(Br). Place D(C) such that v2 is
one unit below v1, and max{W + 3, width of D(C)} units to the right of v0.

Theorem 5.5 An ordered tree with n nodes admits a (non-upward) order-preserving
planar straight-line grid drawing with O(n log n) area, O(log n) width, and height at most
n, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered tree. Using the above algorithm, construct a 1-
drawing D(T) of T in O(n) time. As discussed above, D(T) is an order-preserving planar
straight-line grid drawing of T with height at most n, width O(log n), and area O(n log n).

✷

5.9. OTHER TREE DRAWING METHODS 183

LEMMA 5.2 A left-corner drawing (see Section 5.7.4 for the definition of a left-corner
drawing) of an n-node ordered tree with area O(n log n), height O(log n), and width at most
n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror-image of T is constructed using Theorem 5.5,
then it is rotated clockwise by 90◦, and then it is flipped right-to-left. ✷

5.9 Other Tree Drawing Methods

Drawing trees is one of the best studied areas in graph drawing, initiated more than forty
years ago [Knu68]. Any tree accepts a planar drawing, hence most tree drawing algorithms
achieve this aesthetic. Several tree drawing strategies exist that allow one to create drawings
with small area, user-controlled aspect ratio, relatively high angular resolution, a small
number of bends, and in efficient time.

We conclude the chapter by introducing several algorithms and techniques that do not
fit the general approaches described in the previous sections.

Hyperbolic tree [LRP95] (see Figure 5.23) simulates the distortion effect of fisheye lens
(enlarge the focus and shrink the rest).

Figure 5.23 Screenshot of Hyperbolic tree, taken from [LRP95].

184 CHAPTER 5. TREE DRAWING ALGORITHMS

Pad++ [BHS+97] (See Figure 5.24) displays the nodes as thumbnails of pages of infor-
mation. It institutes a focus+context style by enlarging the focus node and allowing other
nodes to be in view.

Figure 5.24 Screenshot of Pad++, taken from [BHS+97].

Botanical tree [KvdWW01] (see Figure 5.25) is based on the observation that people
can easily see the branches, leaves, and their arrangement in a botanical tree, despite the
large number of elements. Non-leaf nodes are mapped to branches and child nodes to sub-
branches. Continuing branches are emphasized, long branches are contracted, and sets of
leaves are shown as fruit.

A layered drawing of a tree T is a planar straight-line drawing of T such that the ver-
tices are drawn on a set of layers. Some applications such as phylogenetic evolutions and
programming language parsing benefit from layered upward drawings of trees. Alam et
al. [ASRR08] (see Figure 5.26) provide algorithms for minimum-layer upward drawings of
both ordered and unordered trees.

Space tree [PGB02] (see Figure 5.27) allows dynamic rescaling of branches of the tree to
best fit the available screen space. Branches that do not fit on the screen are summarized
by a triangular preview.

Quad [RYC08] (see Figure 5.28) allows the user to specify a preferred angular resolution,
and then employs a best-effort delivery to generate a planar straight-line drawing in which
all angles between edges are above the specified angular coefficient. When a node has too
many children, resulting in an impossibility of achieving angles above the specified angular
coefficient, the algorithm distributes all remaining children evenly among the three quads
of the Cartesian plane.

Adaptive tree drawing [RCJ06] is a system that first analyzes the input tree to classify
it as a specific type and then selects an algorithm to draw it with respect to user-specified
quality measures. The algorithm that is selected to draw a given tree is based on an
experimental comparison [RJSC06], which orders the performance of the algorithms for
each quality measure.

5.9. OTHER TREE DRAWING METHODS 185

(a) (b)

Figure 5.25 (a) Node and link diagram (top) and corresponding strands model (bottom).
(b) Screenshot of Botanical tree, taken from [KvdWW01].

(a) (b)

Figure 5.26 (a) A tree with root r and layer-labelings. (b) A minimum-layer upward
drawing of the tree in (a). Figure taken from [ASRR08].

Hexagonal tree drawing [BBB+09] (see Figure 5.29) allows drawings of degree-6 trees on
the hexagonal grid, which consists of equilateral triangles.
Most of the tree drawing algorithms draw trees on unbounded planes, and few of them

draw trees on regions that are bounded by rectangles. However, certain applications, such
as a graphics software by which one would like to draw a tree inside a star-shaped polygon,
require trees to be drawn on regions which are bounded by general polygons [BR04] (see
Figure 5.30).

A comparative experiment with five tree visualization systems, some which do not draw
trees as node-link diagrams, was performed in [Kob04]. Subjects performed tasks relating
to the structure of a directory hierarchy and to attributes of files and directories. Task
completion times, correctness, and user satisfaction were measured, and video recordings of
subjects interaction with the systems were made. The study showed the merits of distin-
guishing structure and attribute-related tasks, for which some systems behave differently.

186 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.27 Screenshot of Space tree, taken from [PGB02].

(a) (b)

Figure 5.28 (a) Subtrees are distributed into three quads of the Cartesian plane when
the angular coefficient cannot be met by using only one or two quads. (b) Screenshot of
a drawing generated using Quad algorithm, with user-specified angular resolution of 45◦.
Figure taken from [RYC08].

5.9. OTHER TREE DRAWING METHODS 187

Figure 5.29 A planar straight-line drawing of a tree with outdegree five on the hexagonal
grid. Figure taken from [BBB+09].

(a) (b)

Figure 5.30 (a) Drawing of a 31-node complete binary tree inside a U-shaped rectiliniar
polygon. (b) Drawing of a 31-node complete binary tree inside a W-shaped polygon. Figure
taken from [BR04].

188 CHAPTER 5. TREE DRAWING ALGORITHMS

References

[ASRR08] M.J. Alam, M.A.H. Samee, M.M. Rabbi, and M.S. Rahman. Upward
drawing of trees on the minimum number of layers. In Proceedings of the
2nd Workshop on Algortihms and Computation, volume 4921 of Lecture
Notes in Computer Science, pages 88–99, 2008.

[Bac07] C. Bachmaier. A radial adaptation of the Sugiyama framework for vi-
sualizing hierarchical information. IEEE Transactions on Visualization
and Computer Graphics, 13(3):583–594, 2007.

[BBB+09] C. Bachmaier, F.J. Brandenburg, W. Brunner, A. Hofmeier,
M. Matzeder, and T. Unfried. Tree drawings on the hexagonal grid.
In Proceedings 16th International Symposium on Graph Drawing, pages
372–383. Springer-Verlag, 2009.

[Ber81] M. A. Bernard. On the automated drawing of graphs. In Proc. 3rd
Caribbean Conf. on Combinatorics and Computing, pages 43–55, 1981.

[BHS+97] B.B. Bederson, J.D. Hollan, J. Stewart, D. Rogers, A. Druin, D. Vick,
L. Ring, E. Grose, and C. Forsythe. A zooming web browser. In Human
Factors and Web Development, chapter 19, pages 255–266. New Jersey:
Lawrence Erlbaum, 1997.

[BJL02] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algorithm
to run in linear time. In Michael T. Goodrich and Stephen G. Kobourov,
editors, Graph Drawing (Proceedings of 10th International Symposium
on Graph Drawing, 2002), volume 2528 of Lecture Notes in Computer
Science, pages 344–353. Springer, 2002.

[Blo93] A. Bloesch. Aesthetic layout of generalized trees. Software Practice and
Experience, 23(8):817–827, 1993.

[BM03] M. Bernard and S. Mohammed. Labeled radial drawing of data struc-
tures. In Proceedings 7th International Conference on Information Visu-
alisation, pages 479–555. IEEE Computers Society, 2003.

[BR04] A. Bagheri and M. Razzazi. How to draw free trees inside bounded
rectilinear polygons. International Journal of Computer Mathematics,
81(11):1329–1339, 2004.

[CC99] E. A. Chi and S. K. Card. Sensemaking of evolving web sites using visu-
alization spreadsheets. In Proceedings of the Symposium on Information
Visualization (InfoViz ’99), volume 142, pages 18–25. IEEE Press, 1999.

[CDP92] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area
algorithms for upward drawings of binary trees. Comput. Geom. Theory
Appl., 2:187–200, 1992.

[CGKT97] T. M. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Opti-
mizing area and aspect ratio in straight-line orthogonal tree drawings. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture
Notes Comput. Sci., pages 63–75. Springer-Verlag, 1997.

[CGKT02] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing
area and aspect ratio in straight-line orthogonal tree drawings. Compu-
tational Geometry: Theory and Applications, 23:153–162, 2002.

[Cha02] T. M. Chan. A near-linear area bound for drawing binary trees. Algo-
rithmica, 34(1):1–13, 2002.

REFERENCES 189

[CP98] P. Crescenzi and P. Penna. Strictly-upward drawings of ordered search
trees. Theoretical Computer Science, 203(1):51–67, 1998.

[CPM+98] E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, and R. Gossweiler. Vi-
sualizing the evolution of Web ecologies. In Proceedings of the Human
Factors in Computing Systems, pages 400–407, 1998.

[CPP98] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of
AVL trees. Comput. Geom. Theory Appl., 9:25–42, 1998. (special issue
on Graph Drawing, edited by G. Di Battista and R. Tamassia).

[CPP00] E.H. Chi, P. Pirolli, and J. Pitkow. The Scent of a Site: A system for
analyzing and predicting information scent, usage, and usability of a Web
site. In Proceedings of the Human Factors in Computing Systems, pages
161–168, 2000.

[CT] Isabel F. Cruz and Roberto Tamassia. Graph drawing tutorial.

[DETT94] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms
for drawing graphs: an annotated bibliography. Comput. Geom. Theory
Appl., 4:235–282, 1994.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DT81] D. Dolev and H.W. Trickey. On linear area embedding of planar graphs.
Technical report, Stanford University, Stanford, USA, 1981.

[Ead92] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combina-
torics and its Applications, 5:10–36, 1992.

[Fra07] F. Frati. Straight-line orthogonal drawings of binary and ternary trees.
In Seok-Hee Hong and Takao Nishizeki, editors, 15th International Sym-
posium on Graph Drawing, volume 4875 of Lecture Notes in Computer
Science, pages 76–87, 2007.

[Fra09] F. Frati. Small Screens and Large Graphs: Area-Efficient Drawings of
Planar Combinatorial Structures. PhD thesis, Computer Science and
Engineering, Roma Tre University, 2009.

[GADM04] S. Grivet, D. Auber, J.-P. Domenger, and G. Melancon. Bubble tree
drawing algorithm. In International Conference on Computer Vision
and Graphics, pages 633–641. Springer Verlag, 2004.

[GGT96] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings
with optimal area. Internat. J. Comput. Geom. Appl., 6:333–356, 1996.

[GR02] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear
area and arbitrary aspect ratio. In Michael T. Goodrich and Stephen G.
Kobourov, editors, Graph Drawing (Proceedings of 10th International
Symposium on Graph Drawing, 2002), volume 2528 of Lecture Notes in
Computer Science, pages 320–331. Springer, 2002.

[GR03a] A. Garg and A. Rusu. Area-efficient order-preserving planar straight-
line drawings of ordered trees. International Journal of Computational
Geometry and Applications, 13(6):487–505, 2003.

[GR03b] A. Garg and A. Rusu. A more practical algorithm for drawing binary
trees in linear area with arbitrary aspect ratio. In Giuseppe Liotta, ed-
itor, Graph Drawing (Proceedings of 11th International Symposium on
Graph Drawing, 2003), volume 2912 of Lecture Notes in Computer Sci-
ence, pages 159–165. Springer, 2003.

190 CHAPTER 5. TREE DRAWING ALGORITHMS

[GR03c] A. Garg and A. Rusu. Straight-line drawings of general trees with linear
area and arbitrary aspect ratio. In Proceedings 2003 International Con-
ference on Computational Science and Its Applications, volume 2669 of
Lecture Notes in Computer Science, pages 876–885. Springer, 2003.

[GR04] A. Garg and A. Rusu. Straight-line drawings of binary trees with lin-
ear area and arbitrary aspect ratio. Journal of Graph Algorithms and
Applications, 8(2):135–160, 2004.

[Kim95] Sung Kwon Kim. Simple algorithms for orthogonal upward drawings of
binary and ternary trees. In Proc. 7th Canad. Conf. Comput. Geom.,
pages 115–120, 1995.

[Kim04] S.K. Kim. Order-preserving, upward drawing of binary trees using fewer
bends. Discrete Applied Mathematics Journal, 143(1–3):318–323, 2004.

[Knu68] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, 1st edition, 1968.

[Kob04] Alfred Kobsa. User experiments with tree visualization systems. In Pro-
ceedings of the IEEE Symposium on Information Visualization, INFOVIS
’04, pages 9–16. IEEE Computer Society, 2004.

[KvdWW01] E. Kleiberg, H. van de Wetering, and J.J. Van Wijk. Botanical visual-
ization of huge hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization, 2001.

[Lei80] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st
Annu. IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.

[LRP95] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proc. ACM
Conf. on Human Factors in Computing Systems (CHI), 1995.

[Mac03] B. MacLennan. Molecular combinatory computing for nanostructure syn-
thesis and control. In Proceedings 3rd IEEE Conference on Nanotechnol-
ogy, volume 2 of IEEE Press, pages 179–182, 2003.

[MH98] G. Melacon and I. Herman. Circular drawing of rooted trees. Technical
Report INS-9817, Netherland National Research Institute for Mathemat-
ics and Computer Sciences, 1998.

[MMC99] G. Melacon, J.D. Mackinlay, and S. K. Card. Cone trees: animated 3D
visualization of hierarchical information. In Human Factors in Comput-
ing Systems, CHI’99 Conference Proceedings, pages 189–194. ACM Press,
1999.

[PCJ97] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of
the basis for graph drawing algorithms. ACM J. Experim. Algorithmics,
2(4), 1997.

[PGB02] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: supporting
exploration in large node link tree, design evolution and empirical eval-
uation. In Proceedings of the IEEE Symposium on Information Visual-
ization, pages 57–64, 2002.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 248–261. Springer-
Verlag, 1997.

REFERENCES 191

[Pur00] Helen C. Purchase. Effective information visualisation: A study of graph
drawing aesthetics and algorithms. Interact. Comput., 13(2):147–162,
2000.

[RCJ06] A. Rusu, C. Clement, and R. Jianu. Adaptive binary trees visualiza-
tion with respect to user-specified quality measures. In Proceedings 10th
International Conference on Information Visualisation, pages 469–474.
IEEE Computers Society, 2006.

[RJSC06] A. Rusu, R. Jianu, C. Santiago, and C. Clement. An experimental study
on algorithms for drawing binary trees. In Proceedings 5th Asia Pacific
Symposium on Information Visualization, volume 60 of Conference in Re-
search and Practice in Information Technology, pages 85–88. Australian
Computer Society Inc., 2006.

[RMC91] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated
3D visualizations of hierarchical information. In Proc. ACM Conf. on
Human Factors in Computing Systems, pages 189–193, 1991.

[RS07] A. Rusu and C. Santiago. A practical algorithm for planar straight-line
grid drawings of general trees with linear area and arbitrary aspect ratio.
In Proceedings 11th International Conference on Information Visualisa-
tion, pages 743–750. IEEE Computers Society, 2007.

[RS08] A. Rusu and C. Santiago. Grid drawings of binary trees: An experimental
study. Journal of Graph Algorithms and Applications, 12(2):131–195,
2008.

[RSJ07] A. Rusu, C. Santiago, and R. Jianu. Real-time interactive visualization
of information hierarchies. In Proceedings 11th International Conference
on Information Visualisation, pages 117–123. IEEE Computers Society,
2007.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223–228, 1981.

[RYC08] A. Rusu, C. Yao, and A. Crowell. A planar straight-line grid drawing
algorithm for high degree general trees with user-specified angular co-
efficient. In Proceedings 12th International Conference on Information
Visualisation, pages 600–609. IEEE Computers Society, 2008.

[SB94] M. Sarkar and M. H. Brown. Graphical fisheye views. Commun. ACM,
37(12):73–84, 1994.

[SKC00] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for
straight-line tree drawings. Comput. Geom. Theory Appl., 15:175–202,
2000.

[TDB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing
and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-
18(1):61–79, 1988.

[TM02] S. T. Teoh and K. L. Ma. Rings: A technique for visualizing large hierar-
chies. In Michael T. Goodrich and Stephen G. Kobourov, editors, Graph
Drawing (Proceedings of 10th International Symposium on Graph Draw-
ing, 2002), volume 2528 of Lecture Notes in Computer Science, pages
268–275. Springer, 2002.

[Tre96] L. Trevisan. A note on minimum-area upward drawing of complete and
Fibonacci trees. Inform. Process. Lett., 57(5):231–236, 1996.

192 CHAPTER 5. TREE DRAWING ALGORITHMS

[Val81] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans.
Comput., C-30(2):135–140, 1981.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw.
– Pract. Exp., 20(7):685–705, 1990.

