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7.1 Introduction

One can assess the quality of a drawing of a graph in many different ways. Many important
criteria deal with the aesthetics, readability, of the drawing. For example, the size of the
drawing, roughly measured as the ratio between the farthest two objects of the drawings and
the closest two, is a measure of how much information can be displayed at one time. The
aesthetic that is of biggest concern in this chapter is that of angular resolution. Essentially,
we are concerned with how close together edges that stem from the same vertex are to each
other. The smaller the angle the more likely are the chances that the distinct edges become
one. Clearly, a high-degree vertex, one with many edges extending out of it, will inevitably
have a small angle between at least one pair of edges. So, the goal is to make the resolution
determined to some extent by the degree of the vertex.

Optimizing angular resolution in drawings has been addressed by countless researchers.
The two approaches we focus on in this chapter are to draw the graph orthogonally, that
is using only vertical and horizontal line segments for the edges. Orthogonal drawings have
the benefit that the smallest angle is at most π/2 and that the resulting graphs are often
quite pleasing to the eye because of the few edge directions employed, but they also have
the disadvantage that no vertex can have degree more than four. The study of orthogonal
graphs also has the advantage of being of interest to VLSI design, because many wires
are routed similarly. There are many different approaches to drawing orthogonal graphs.
Early results draw the graph using few bends but sacrificed size or running-time efficiency.
Improved techniques, involving computing a visibility representation, yielded orthogonal
drawings in linear time with few bends and small size. By using network flows, we can draw
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224 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

(embedded) graphs with the guaranteed minimum number of bends possible in the smallest
area allowable, but the run-time performance goes up to near quadratic time.

When using graphs containing vertices with degree more than four, one can no longer
apply standard orthogonal drawing techniques. More general polyline drawing techniques,
however, do exist. The goal is usually to focus directly on the sizes of angles created
rather than the types of edges allowed. Thus, during the drawing, we can route edges in
any orientation so long as the angle does not go below some fixed threshold. The most
successful approaches all seem to work by taking a vertex and assigning exit ports, which
are adequately spaced, such that edges are routed from the start vertex through distinct
ports to the destination vertex. These techniques typically produce the layout by creating
a canonical ordering on the vertices and adding the vertices into the drawing based on this
ordering, while constantly maintaining the routing requirements of the edges. Using this
approach, one can guarantee, for example, that a drawing can be made in linear time with
good angular resolution, good size bounds, and using at most one bend per edge.

Before going into the details of the different approaches, we first present some basic
terminology and general techniques in Section 7.2. Section 7.3 describes some standard
approaches to drawing orthogonal graphs. Section 7.4 describes work done on more general
polyline drawings. We conclude our chapter in Section 7.5 with a brief summary of the
main results presented.

7.2 Preliminaries

We begin with a few basic definitions of some general graph terminology along with some
more detailed descriptions of techniques useful for constructing drawings of graphs.

7.2.1 Definitions

Although common in nearly any book on graph algorithms, we borrow notation predomi-
nantly from [DETT99]. A (simple) graph G = (V,E) is a finite set V of vertices and a finite
set E of edges, where each edge is an unordered pair e = (u, v) of vertices. A multigraph is
a graph where the edges are multisets, that is two edges may have the same pair of vertices.
For each edge e = (u, v), we say that e is incident to u and v. We also say that u and v
are neighbors . The degree of a vertex is the number of edges incident to it. The maximum
degree of a graph is the maximum degree among all vertices in V . A (simple) path p of G is
a sequence of distinct vertices of G, (v1, v2, . . . , vk) such that for 1 ≤ i < k, (vi, vi+1) ∈ E.
A (simple) cycle c of G is a path such that v1 = vk with k > 1. A graph is acyclic if it has
no cycles. A graph is connected if for every pair of vertices u, v ∈ V , there is a path from
u to v. For any k > 0, a graph is k-connected if the removal of any k − 1 vertices from the
graph still leaves the graph connected. We often refer to 2-connected graphs as biconnected
and 3-connected graphs as triconnected .

We may also define many of our terms based on giving each edge a specific direction. A
directed graph (digraph) is a graph where each directed edge e = (u, v) is an ordered pair,
where we consider u to be the origin and v to be the destination of the edge. In addition,
e = (u, v) is an incoming edge of v and an outgoing edge of u. The indegree of a vertex v
is the number of its incoming edges, and the outdegree of a vertex v is the number of its
outgoing edges. A source is a vertex with no incoming edges, i.e., with indegree 0. A sink
is a vertex with no outgoing edges, i.e., with outdegree 0. A directed path of G is a path
of G, (v1, v2, . . . , vk), such that for 1 ≤ i < k, (vi, vi+1) is a directed edge in E. A directed
acyclic graph (DAG) is a directed graph that has no cycles.
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A drawing Γ of a graph G = (V,E) is essentially a mapping of each vertex v ∈ V to a
distinct point Γ(v) and of each edge e = (u, v) ∈ E to a simple open Jordan curve Γ(e),
which has Γ(u) and Γ(v) as its endpoints. If G is directed, it is common to draw the edge
with an arrow toward the destination vertex. When the drawing is understood from the
context, we often leave out the Γ notation. For example, we may say that an edge e is made
of horizontal and vertical segments rather than the drawing Γ(e).

A planar graph is a graph G that admits a planar drawing Γ, a drawing with no edges
intersecting, except for edges that share a common vertex v and only at that vertex. A
planar embedding , or, simply, embedding , of a graph is the collection of (counter-clockwise)
circular orderings of incident edges around every vertex induced by a planar drawing. A
plane graph is a graph that has been associated with a specific planar embedding. A
maximal planar graph is a graph where the addition of any edge e /∈ E causes the graph to
be non-planar. Maximally planar graphs have the property that every face is a triangle, a
cycle of three edges. For notation, we often refer to planar graphs with maximum degree k
as k-planar graphs , in particular, we deal with many cases of 4-planar graphs.

A straight-line drawing of a graph is a drawing where every edge is a straight-line segment.
A polyline drawing of a graph is a drawing Γ such that every edge e = (u, v) ∈ E is
represented as a connected sequence of line segments p1p2, p2p3, . . . , pk−1pk, where p1 =
Γ(u) and pk = Γ(v) are the endpoints of the edge. We refer to p2, . . . , pk−1 as bend points of
the drawing of the edge. An orthogonal drawing of a graph is a polyline drawing where every
edge is an alternating sequence of horizontal and vertical line segments. A grid drawing
is a drawing of the graph where each vertex and each bend point has integer coordinate
values, effectively being placed on an integer grid. The area of a grid drawing is the area of
the smallest enclosing axis-aligned rectangle containing the drawing. For a given drawing
of G, the angular resolution of a vertex v is the smallest angle between two distinct edges
incident to v and the angular resolution of G is the minimum angular resolution among all
vertices.

An st-graph is a DAG with one source and one sink. A planar st-graph is an st-graph
that has a planar embedding with the source s and sink t located on the external face.

DEFINITION 7.1 Given a planar st-graph G, the dual planar st-graph G∗ = (V ∗, E∗)
is a digraph with the following properties:

• V ∗ is the set of faces in G with the addition that the external face (s, . . . , t, . . . , s)
is broken into two parts s∗ representing the portion of the face from s to t and
t∗ representing the portion from t to s.

• For every edge e ∈ E, we have an edge e∗ = (f, g) ∈ E∗ where f is the face to
the left of e and g is the face to the right of e.

In the construction of an orthogonal drawing of a graph G discussed in Sections 7.2.3
and 7.3.1, the dual graph coupled with the following special ordering of vertices play a
critical role in the creation of an intermediate visibility representation of G.

DEFINITION 7.2 Let G = (V,E) be a directed acyclic graph. A topological ordering
T (G) is an assignment of integer values T (v) to each vertex v ∈ V such that for every
directed edge (u, v) ∈ E, we have that T (u) < T (v). The size of the topological ordering
s(T ) is maxv∈V T (v)−minu∈V T (u). An optimal topological ordering T ∗(G) is a topological
ordering with the smallest size, s(T ∗) = minT (G) s(T ).
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Require: G = (V,E) be a Directed Acyclic Graph
Ensure: T (G) is an optimal topological ordering
{Compute the indegree for every vertex}
for all v ∈ V do

in(v)← 0
end for

5: for all (u, v) ∈ E do

increment in(v)
end for

{Identify all sinks}
S0 ← ∅

10: for all v ∈ V do

if in(v) = 0 then

S0.add(v)
end if

end for

15: n← 0
repeat

{Mark all current sinks and remove them from G}
Sn+1 ← ∅
for all v ∈ Sn do

20: T (v)← n
for all (v, u) ∈ E do {remove v from the graph}

decrement in(u)
if in(u) = 0 then {u is a new sink}
Sn+1.add(u)

25: end if

end for

increment n
end for

until Sn is empty {No more sinks}
Figure 7.1 Algorithm for computing an optimal topological ordering of a DAG.

In our definition, it is possible for two vertices u and v to have the same value if there is no
directed path between u and v. Note, this is basically a partial ordering where the optimal
size is the length of the longest chain in the partial order. Topological orderings are discussed
in most standard graph and algorithms textbooks. See, for example, [CLR90, GT02].
Computing an optimal topological ordering in linear time is fairly straightforward. We

assign every sink vertex a number 0, remove these vertices and their edges from the graph,
and repeat the process with a number one larger until there are no vertices left. Figure 7.1
describes the process in more detail.

This common algorithm proves useful for the construction of orthogonal graphs via a vis-
ibility representation. However, there are other more difficult, but equally useful, orderings.
We next discuss one such ordering, the canonical ordering.

7.2.2 Canonical Ordering and Shifting Sets

In [dFPP90], de Fraysseix, Pach, and Pollack describe a technique for embedding a plane
graph on a grid. Their technique uses an incremental approach that is built around a
particular ordering of the vertices known as a canonical ordering. Initially defined for
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maximal plane graphs, Kant [Kan96] later extended it to triconnected plane graphs and
Gutwenger and Mutzel [GM98] to biconnected plane graphs. In this section, we define
and describe the canonical ordering of [dFPP90, CDGK01] as well as the shifting sets
derived from this ordering, which are needed in the polyline drawing method described in
Section 7.4.

DEFINITION 7.3 LetG be a maximal plane graph onm vertices. Let π = (v1, v2, . . . , vn)
be an ordering of the vertices of G. For 1 ≤ k ≤ n, let Gk be the plane subgraph of G
induced by the vertices of v1, . . . , vk and let Ck = (v1 = w1, w2, . . . , wm = v2) be the cycle
forming the external face of Gk. We call π a canonical ordering of G if

1. v1, v2, and vn are the external vertices of G in counter-clockwise order,

2. for 2 < k < n, Gk is 2-connected and internally maximal, i.e., every internal face
is a triangle, and

3. for 2 < k < n, vk is a vertex of Ck and has at least one neighbor in G−Gk.

de Fraysseix, Pach, and Pollack [dFPP90] prove the following theorem, which was later
extended to triconnected plane graphs by Kant [Kan96]:

Theorem 7.1 Every maximal plane graph has a canonical ordering that can be found in
linear time and space.

The canonical ordering has the property that all of the neighbors of vk+1 in Gk+1 lie
on Ck. Intuitively, the ordering is constructed in reverse order by starting with the initial
external triangular face and repeatedly removing a vertex vk+1 /∈ {v1, v2} that has at most
two neighbors on Ck+1 creating the new graph Gk and external face Ck. See Figure 7.2.

Once constructed, the canonical ordering π leads to an incremental approach for con-
structing a drawing of G. Here, we start with the triangle v1, v2, v3 and repeatedly add
the next vertex vk+1 to the graph of Gk by adding edges for vk+1 to its neighbors in
Ck forming Gk+1 and Ck+1. The vertices of Ck that are no longer on Ck+1 are said
to be covered by vk+1. Since the neighbors of vk+1 are all continuous on the cycle Ck,
we can label them as wl, wl+1, . . . , wr. We refer to the two vertices wl and wr as the
leftmost and rightmost neighbors of vk+1 in Ck. Since all the neighbors of vk+1 ex-
cept the leftmost and rightmost neighbors are covered by vk+1, we know that the cycle
Ck+1 = (v1 = w1, w2, . . . , wl, vk+1, wr, . . . wm = v2). See Figure 7.3.

Starting with de Fraysseix, Pach, and Pollack, several authors have used this canonical
ordering (or a variant) to build a graph incrementally. However, to place the vertices
effectively, onto a grid location for example, one must also repeatedly shift the vertices in
Gk to create a proper location for vk+1. Typically, the approach is to increase the space
between the leftmost and rightmost neighbors of vk+1. However, shifting these two vertices
also forces other vertices to shift to avoid creating edge crossings.

To solve the problem of determining which vertices must shift together, we also de-
fine a shifting set associated with each vertex on the current external face. See Cheng et
al. [CDGK01].

DEFINITION 7.4 For a given canonical ordering π = (v1, v2, . . . , vn), we define for
3 ≤ k ≤ n, the shifting set Mk(wi) ⊆ V for each vertex wi ∈ Ck on the external face
of Gk as follows. M3(v3) = {v3},M3(v2) = M3(v3) ∪ {v2},M3(v1) = M3(v2) ∪ {v1}. For
3 ≤ k < n, let wl and wr be the leftmost and rightmost neighbors of vk+1 in Ck. Then,
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(a) (b)

(c) (d)

v1 v2

v8

v1 v2

v7

v1 v2

v6

v1 v2

v3 v4

v7v6

v5

v8

Figure 7.2 An illustration showing the creation of the canonical ordering in reverse order.
(a) The first vertex v8 is about to be removed with the external cycle highlighted. (b)
Removal of the next vertex, v7. (c) Removal of vertex v6. (d) The final canonical ordering
of the vertices.

(a) (b)

wl

wr

v1 v2

v3 v4

v6

v5

v1 v2

v3 v4

v7v6

v5

Figure 7.3 Inserting a vertex using the canonical ordering. This example does not follow
the vertex placement techniques employed by the standard algorithms used to produce
good area drawings. (a) The graph G6, with its external cycle C6 drawn in bold. (b) The
graph G7 after inserting vertex v7. The covered vertex v5 is lightened. The leftmost and
rightmost neighbors are wl = v6 and wr = v4. The new external cycle C7 is therefore
(v1, v3, v6, v7, v4, v2).
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(a) (b)
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wr

(d)

wl

wr

(c)

v3
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v5

v4

v2v1

v7

v4

v2

v3
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v5

v1

v7

v4

v2

v5

v1

v3

v6

v5

v4

v2v1

v3

v6

Figure 7.4 The incremental construction of a shifting set. The vertices for each set shown
are highlighted. (a) The shifting set for M6(v3). (b) After inserting v7, the shifting set for
M7(v3). This simply merges in the new vertex. (c) The shifting set for M6(v5). (d) After
inserting v7, the shifting set for M7(v7). Since wl+1 = v5, this set is the union of M6(v5)
and v7.

• for i ≤ l, Mk+1(wi) = Mk(wi) ∪ {vk+1},
• for j ≥ r, Mk+1(wj) = Mk(wj), and

• Mk+1(vk+1) = Mk(wl+1) ∪ {vk+1}.

From this definition, one can show that the following properties of the shifting set hold
for all 3 ≤ k ≤ n for the incremental drawing algorithms described in Section 7.4:

1. wj ∈Mk(wi) iff j ≥ i,

2. Mk(w1) ⊃Mk(w2) ⊃ · · · ⊃Mk(wm),

3. For 1 ≤ i ≤ m and a planar drawing of Gk, if we shift all vertices in Mk(wi) by
distance δi ≥ 0 to the right, then the resulting drawing of Gk remains planar.

In other words, the shifting set for a vertex wi on the external face is just the set of all
vertices that need to be shifted to the right to maintain planarity if wi is shifted to the
right.

Note that Mk+1(wi) is undefined for l < i < r, since these covered vertices are no longer
on the external face. See Figure 7.4.

A careful examination of the set reveals that a vertex wi that is covered by vk+1 shifts by δ
units if and only if vk+1 shifts by δ units. That is, for k′ > k, wi ∈Mk′(v) iff vk+1 ∈Mk′(v).
This property of the shifting set is exploited during the incremental embedding algorithms
that use a canonical ordering to ensure that shifts do not produce crossings.
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7.2.3 Visibility Representations

Orthogonal drawings, and even general drawings, of planar graphs often start by computing
a visibility representation of the graph. Before going into the details of using a visibility
representation to compute an orthogonal drawing, presented in Section 7.3.1, we first explain
the general approach of computing such a representation.

DEFINITION 7.5 Given a graph G = (V,E), a visibility representation Γ, for G maps
every vertex v ∈ V to a horizontal vertex segment Γ(v) and every edge (u, v) ∈ E to a
vertical edge segment Γ(u, v) such that each vertical edge segment Γ(u, v) has its endpoints
lying on the horizontal vertex segments Γ(u) and Γ(v) and no other segment intersections
or overlaps occur.

v2

v3

v4

v6

v5

v1
(a)

t

s
(b)

Γ(v6)

Γ(v3) Γ(v5)

Γ(v2)

Γ(v4)

(c)
Γ(v1)

Figure 7.5 (a) A simple graph G (b) An st-ordering of G (c) A visibility representation
of G.

See Figure 7.5 for one example of a visibility representation. Otten and van Wijk [OvW78]
introduced the visibility representation. With varying improvements, several researchers
have proved that every planar graph has such a representation, which can be found in
linear time [OvW78, DHVM83, RT86, TT86]. In general, we have the following theorem
about computing a visibility representation:

Theorem 7.2 [TT86] A graph admits a visibility representation if and only if it is planar.
Furthermore, a visibility representation for a planar graph can be constructed in linear time.

Figure 7.6 describes an algorithm to compute the visibility representation of a given
graph. After making the graph biconnected by adding dummy edges [FM98], we compute
an st-ordering on the graph creating a planar st-graph and its dual graph G∗. The location
of the vertex-segments and edge-segments are then determined by a topological ordering of
the st-graph and its dual with the former serving to determine y-values and the latter to
determining x-values. Figure 7.7 shows an example construction.
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Require: G = (V,E) be a plane graph
Ensure: Γ is a visibility representation of G on the integer grid of size O(n2)

Make G biconnected by adding “dummy” edges {See [FM98]}
Select an edge (s, t) on the external face
Compute a planar st-graph on G {For simplicity, we refer to it as G}
Create the dual planar st-graph G∗

5: Compute the optimal topological ordering Tx = T (G∗) {See Figure 7.1}
Compute the optimal topological ordering Ty = T (G)
for all v ∈ V do {Assigning positions to the horizontal vertex segments}
Let fl be the face to the left of the leftmost outgoing edge of v
Let fr be the face to the right of the rightmost outgoing edge of v

10: {fl and fr are vertices in the dual graph G∗}
Γ(v).y ← Ty(v)
Γ(v).xmin← Tx(fl)
Γ(v).xmax← Tx(fr)− 1

end for

15: for all e = (u, v) ∈ E do {Assigning positions to the vertical edge segments}
Let fl be the face to the left of e {fl is a vertex in G∗}
Γ(e).x← Tx(fl)
Γ(e).ymin← Ty(u)
Γ(e).ymax← Ty(v)

20: end for

Remove any added “dummy” edges

Figure 7.6 Algorithm for constructing a visibility representation of a plane graph.

7.2.4 Network Flows

Network flows, useful in many areas of graph theory and graph drawing, are particularly
useful in finding drawings of orthogonal graphs with a minimum number of bends. We
describe this use in Section 7.3.2. Beforehand, we discuss the general structure of a network
flow, borrowing notation from Goodrich and Tamassia [GT02].

A (single-source single-sink) flow network N is a connected directed graph of arcs and
nodes1 with the following properties:

• Each arc e has a positive integer capacity c(e) and a nonnegative integer cost
w(e);

• There exists a source node, s, such that s has no incoming arcs;

• There exists a sink node, t, such that t has no outgoing arcs;

• All other non-terminal nodes have at least one incoming and one outgoing arc.

Figure 7.8(a) shows one particular flow network. The network is viewed as transporting
some commodity from the source to the sink by flowing along the arcs. A flow f for some
network N is an assignment to each arc e of some (integer) flow value f(e) such that the
following two rules apply:

• Capacity rule: The (positive) flow for each arc does not exceed the capacity.
For each arc e ∈ N , 0 ≤ f(e) ≤ c(e).

1We use the terms arc and node for a flow network instead of the analogous terms edge and vertex to

help differentiate between a flow network and a graph, which is to be drawn using the flow network.
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1

3

2
2

s = 0

(c)

t = 4

s∗

t∗

(d)

Γ(v1)

Γ(v2)

Γ(v3)

Γ(v6)

Γ(v4)

Γ(v5)

v2

v3

v4

v6

v5

v1

(b)

v2

v3

v4

v6

v5

v1

(a)

0 1

2

4

3

Figure 7.7 (a) A simple graph G. (b) G after augmenting to make it biconnected. (c) The
st-planar graph of G (solid) and the dual graph G∗ (dashed). The two topological orderings
from these graphs are shown labeled by their nodes. (d) The visibility representation of G
computed from these orderings.
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(3,1)

(4,1) (1,1)

(2,2) (3,3)

(2,2)

(3,0)

(a)

s t

3 (3)

3 (3) 1 (1)

0 (0) 3 (9)

2 (4)

1 (0)

(b)

3 (3)

3 (3) 1 (1)

2 (4) 1 (3)

2 (4)

3 (0)

(c)

Figure 7.8 (a) A (single-source single-sink) flow network N with arcs labeled with the
pair (c(e), w(e)) (capacity, cost). (b) A maximum flow of value 6 for flow network N . Each
arc of N is labelled with its flow and, in parentheses, the cost of the flow on that arc. The
total cost of this flow is 20. (c) A minimum-cost maximum flow for N . Note, the value of
this flow is still 6 but the cost is now 18.

• Conservation rule: The flow coming in to a non-terminal node is the same as the
flow going out of the node.
For each non-terminal node v ∈ N , with v 6= s, t,

Σe∈inarc(v)f(e) = Σe∈outarc(v)f(e).

The value of the flow v(f) is the total flow leaving the source node, which because of
the conservation rule is the same as the flow entering the sink node. That is, v(f) =
Σe∈outarc(s)f(e). For a given flow f , the cost of the flow on a given arc e is the cost of the
arc w(e) times the amount of flow on that arc f(e). The cost of the flow w(f) is the sum of
the costs of each arc. That is, w(f) = Σe∈Nw(e)f(e).

The maximum flow problem for N is to find a flow f∗ with maximum value among all
possible flows of N . The minimum-cost flow problem for N is to find the minimum cost
flow among all possible maximum flows in N . Figure 7.8 shows a maximum flow that does
not have minimum cost as well as a minimum-cost maximum-flow solution.

There are several methods for solving flow networks, which are beyond the scope of this
chapter. Their running times often depend on combinations of the number of nodes in the
network, the capacity of the edges in the network, and the cost of the edges in the network.
For details, see [CLR90, GT02].

Of particular relevance are minimum cost flow algorithms with running time that depends
on the value of computed flow [CK12, GT97]. We use such an algorithm in Section 7.3.2 to
compute a planar orthogonal drawing with the minimum number of bends.
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7.3 Orthogonal Drawings

One highly effective way to draw graphs with good angular resolution is to use only edges
that are rectilinear, or orthogonal. Such edges consist of alternating sequences of vertical
and horizontal segments. In graph representations where each vertex is a point and where
two edges are not allowed to overlap, a necessary condition for a graph to have an orthogonal
drawing is that the maximum vertex degree be at most four. However, the introduction of
rectangular regions for vertices allows for larger graph degrees.

7.3.1 Orthogonal Drawings from Visibility Representations

Given a 4-planar graph G = (V,E), one can construct a good orthogonal drawing using
the visibility representation discussed in Section 7.2.3. The following theorem is due to
Tamassia and Tollis [TT89]:

Theorem 7.3 Let G be a 4-plane graph. If G is biconnected, there exists an orthogonal
grid drawing of G using O(n2) area with at most 2n + 4 bends and where only two edges
have more than two bends. If G is connected, the number of bends is 2.4n+ 2 and no edge
has more than four bends.

The version of the algorithm used to prove this theorem uses a constrained visibility
representation. The additional constraint is that each (horizontal) vertex segment other
than the source and sink have two (vertical) edge segments incident to its leftmost endpoint,
with one being above and the other below the vertex segment. We describe the simpler,
but slightly less effective, algorithm that uses a regular visibility representation. First,
we compute a visibility representation Γ(G). For each vertex v ∈ V , place the vertex at
a single point on the horizontal vertex segment Γ(v), determined below. The routing of
the edges incident to v and the location of v on the vertex segment are based on various
cases. Since each vertex has at most 4 incident edges and accounting for symmetry and
subcases with smaller vertex degrees, Figure 7.9 shows the six possible cases along with
the resulting edge routings and vertex placements. A careful study of the cases shows
that no edge has more than two bends per endpoint, resulting in no more than four bends
total. This creates an orthogonal shape, discussed in the next section, for G. To help
improve the size and number of bends one can do a few heuristics to straighten out various
edges. Finally, using the compaction technique described in the next section or similar more
efficient techniques, one can convert the orthogonal shape into an orthogonal drawing using
the smallest area. Figure 7.10 shows an example of an orthogonal drawing constructed from
a visibility representation.

7.3.2 Network Flow Algorithms

Tamassia [Tam87] showed that by using a network flow algorithm one could construct
orthogonal drawings of embedded 4-planar graphs with a minimum number of bends.

The fact that the graph is given with its embedding is significant. Formann et al. [FHH+93]
and Garg and Tamassia [GT01] showed that the problem of determining whether a drawing
with no bends exists is NP-hard for 4-planar graphs. The strategy in their proof deals with
the difficulty of assigning an order of the edges around vertices of degree 4. It is interesting
to note that the problem is polynomial when the maximum degree is 3 [DLV98].

Tamassia’s algorithm originally ran in O(n2 log n) time. However, an improvement for
certain types of planar flow networks (see Section 7.2.4) presented by Garg and Tamas-
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(a)

(b)

Figure 7.9 (a) The six possible cases for horizontal vertex segments intersecting with its
4 incident vertical edge segments in a visibility representation, accounting for symmetry.
(b) The vertex placement and edge routings for each of the cases.
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Figure 7.10 An orthogonal drawing from the visibility representation of Figure 7.7.
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sia [GT97] reduced the running time to O(n7/4
√
log n). Recently, Cornelsen and Karren-

bauer obtained a running time of O(n3/2 log n) [CK12].
LetG = (V,E) be an embedded planar graph having maximum degree 4. We can compute

a drawing of G with the minimum number of bends in two phases. First, we compute an
orthogonal shape for G. Here we only define the bends of the edges and angles between
adjacent edges at a vertex of G. In the second phase, we assign integer lengths to the edge
segments of the orthogonal shape.

By transforming the first phase into a network flow problem, we are able to compute
the required drawing’s orthogonal shape. In this network, the commodities are the angles
between adjacent edges. Each unit of flow in the network is associated with a right angle
in the orthogonal shape, originating from the vertices, flowing across the faces by the edge
bends, and ultimately sinking at the faces. Since this interpretation leads to a multi-source,
multi-sink flow, we actually create a dummy source and sink that connect to the respective
nodes. For simplicity, we allow certain arcs to have a lower bound in addition to a capacity.
This is easily incorporated into the algorithms for the original flow network.

We want each vertex v to supply 4 units of flow and to have the faces consume these units.
Here, 4 “units” correspond to a 2π angle. Let d(f), the degree of a face f in the graph G,
be the length of the cycle bounding face f . If the graph is not biconnected, an edge may be
counted twice on the same face. The consumption rate of each face is designated by σ(f)
with

σ(f) =

{

2d(f)− 4 if f is an internal face
2d(f) + 4 if f is the external face

From Euler’s formula, we know that Σfσ(f) = 4n, which is the total number of units
supplied by the vertices. Our network N has three types of nodes and four types of arcs
with the following described attributes:

• Non-terminal nodes correspond to the vertices and faces of G;

• A source node s and sink node t serve to supply and consume the commodity;

• For every vertex v, arcs of type (s, v) with a capacity of 4, cost 1, and lower
bound 4 act to supply the vertex v with its commodity;

• For every face f , arcs of type (f, t) with a capacity of σ(f) and cost 1 act to
consume the commodity from the face vertices;

• From every face f and every vertex v on the cycle of f , we use an arc of type
(v, f) with a capacity of 4, cost 1, and lower bound 1. This arc flow represents
the angle at vertex v in face f ;

• For every pair of faces f and g sharing an edge, we designate an arc of type (f, g)
having a capacity of +∞, cost 1, and lower bound 0. This arc flow represents
the number of bends along edge e with the right angle inside of the face f .

Figure 7.11 shows a detailed example of a 4-planar graph, its network model, and the
minimum cost solution. We now take a closer look at an interpretation of the network from
the source side. At every vertex v the network supplies the vertex with 4 units, all of which
must, by the conservation rule, flow across the (v, f) arcs. Since each unit corresponds to
π/2 radians, this guarantees that the sum of the angles around a vertex, which is equivalent
to the sum of the flow leaving v along these arcs, is 2π.

From the sink side, by the conservation rule, we know that the sum of the units at the
vertices and the bends of a face is equal to 2d(f)−4 units for an internal face and 2d(f)+4
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Figure 7.11 (a) A simple planar graph G with maximum degree 4. (b) The network
N associated with G. The arcs from the source s to the vertex nodes have label (4, 1, 4),
i.e., capacity 4, cost 1, and a lower bound of 4. The vertex to face arcs are drawn as solid
lines with label (4, 1, 1). The face to face arcs are drawn bi-directional with both directions
having label (+∞, 1, 0). (c) A minimum cost max flow with the arc labels reflecting the
flow. Some vertices are omitted and some edges are partially drawn for better readability.
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for the external face. Again, since each unit corresponds to π/2 radians, we know the sum
of these angles is equal to π(d(f)− 2) for an internal face and π(d(f) + 2) for the external
face. Thus, each face is properly closed, and we can see that any valid flow φ on the network
corresponds to a proper orthogonal shape for G.

We now interpret the cost associated with a specific flow. For arcs of type (s, v) the cost
is 1 and the flow is fixed. So, for this case, the total cost is exactly 4n. Similarly, all the
arcs of type (f, t) have cost that sum to exactly 4n. Since all the arcs of type (v, f) have to
release the commodity sent from the source s, we know that the sum of these arcs is also
4n. Finally, the arcs of type (f, g) represent the number of bends for the given edge with
each bend costing one unit. Therefore, the total cost of the flow is 12n + B, where B is
the total number of bends in the orthogonal shape represented by the flow. Since 12n is
fixed for all flows along the same network, minimizing the cost of the flow corresponds to
minimizing the number of bends in the orthogonal shape.

In the second phase, we take this orthogonal shape and determine a compact drawing
for the actual graph. Since each bend for an edge switches between horizontal and vertical
lines, our strategy is to determine the (integer) lengths of these line segments. We do this
by computing the lengths of the horizontal segments independently of the vertical segments.
We shall explore the vertical computation as the horizontal one is analogous.

We can compute the length of each vertical segment by, once again, using a network flow
model. However, this flow model assumes that the faces are all rectangular. Therefore, we
first split the faces into rectangular faces by converting bend points into dummy vertices
and inserting dummy edges where necessary. This process is described in detail in Chapter
5 of [DETT99]. We therefore explain the solution for when we have an orthogonal repre-
sentation where each face is a rectangle, referring to this modified graph as G′. In this case,
our model has three types of nodes and three types of arcs.

• A source node s and sink node t serve to supply and consume the commodity
and also represent the “left” and “right” regions of the external face;

• Non-terminal nodes correspond to the faces of G′;

• For every pair of faces f and g sharing a vertical edge segment, with f to the
left of g, we designate an arc of type (f, g), with capacity +∞, cost 1, and lower
bound 1. The arc flow represents the length of this vertical segment.

Figure 7.12 illustrates an example of computing a compact orthogonal drawing using this
network flow approach. Since the source node s (and similarly sink node t) represents the
entire left vertical border of the final drawing and the flow leaving s corresponds to the
height of this border, the flow value is exactly the height of the drawing. In addition, the
cost of the flow is equal to the total length of all vertical segments in the drawing. Similarly,
the horizontal flow model computes the width of the drawing and the total length of all
horizontal segments. By solving the minimum-cost minimum-flow problem for both vertical
and horizontal networks, we can create an orthogonal drawing of G with the minimum
height, width, area, and total edge length. Observe that the flow here is the smallest flow
that meets the lower bound requirements for each arc.

Using their improved network flow algorithm, Cornelsen and Karrenbauer proved the
following result, which improves the running time of the original algorithm by Tamas-
sia [Tam87]:

Theorem 7.4 [CK12] Let G be an embedded 4-planar graph with n vertices. A planar or-
thogonal drawing of G with the minimum number of bends can be computed in O(n3/2 log n)
time.
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Figure 7.12 (a) An orthogonal drawing with the orthogonal representation described by
Figure 7.11c. (b) The same drawing with the two bend points temporarily converted to
vertices so that each face is rectangular. (c) The network flow for computing the vertical
segments along with the solution. (d) The network flow for computing the horizontal
segments along with the solution. (e) The final compact solution with the horizontal and
vertical segments determined from the two flows and the inserted dummy vertices removed.

7.4 Polyline Drawings

When one wishes to draw planar graphs having maximum degree more than 4 with good
angular resolution and with vertices as single points, clearly orthogonal drawings do not
suffice. There have been various other approaches to creating planar polyline drawings
with good angular resolution, many of these results extend the work of Kant [Kan96],
including work by Goodrich and Wagner [GW00], Gutwenger and Mutzel [GM98], Cheng
et al. [CDGK01], and Duncan and Kobourov [DK03]. The general approach is to use an
incremental insertion method to add vertices one at a time using a canonical ordering and
continually maintain the proper angular resolution qualities and other specific restrictions.

7.4.1 Mixed-Model Algorithm

The approach of Gutwenger and Mutzel [GM98] is similar to the approaches taken by [GW00,
CDGK01, DK03], which are discussed in the next subsection. However, unlike those ap-
proaches which rely on the graph being either maximal, tri-connected, or having artificial
edges added to make them maximal, the approach by Gutwenger and Mutzel uses an order-
ing that is defined for biconnected graphs. The benefits are significant in the sense that such
artificial edges, once removed, often create unexpected artifacts. In their mixed-model algo-
rithm, they take a given biconnected plane graph G = (V,E), and using this new ordering,
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assign for each edge e ∈ E, an inpoint ein = (xin, yin) and an outpoint eout = (xout, yout).
Then each edge e = (v, w) is drawn as a polyline edge. Route the edge from v to w in the
following manner:

• from v to eout,

• from eout vertically to point b = (xout, yin),

• from b horizontally to ein,

• and finally to w.

This approach results in quite aesthetically pleasing graphs that combine a mixture of
good angular resolution via general direction edges and orthogonal edges. However, the
results require, in general, three bends per edge. The next section describes a technique
that achieves similar results but with only one bend per edge.

7.4.2 One Bend Algorithm

Building off previous work by Kant [Kan96], Goodrich and Wagner [GW00], and Cheng
et al. [CDGK01], Duncan and Kobourov [DK03] use an incremental insertion approach to
create a planar polyline drawing with the following key properties:

• each edge is drawn with at most one bend;

• each vertex v has angular resolution Θ(1/d(v));

• all vertices and bend points lie on an O(n)×O(n) grid.

The incremental approach uses the canonical ordering and the shifting set described in
Section 7.2.2.

7.4.3 Vertex Regions

In [dFPP90], de Fraysseix, Pach, and Pollack present an algorithm to draw an n-vertex plane
graph with straight-line edges on an O(n)×O(n) integer grid. Chrobak and Payne [CP95]
show how to implement the algorithm in linear time. In this algorithm, each new vertex
vk+1 is inserted above its neighbors wl, . . . , wr, and after proper shifting, edges are drawn as
straight-line segments from the location of vk+1 to each neighbor of vk+1. In the approach
used in [GW00, CDGK01], each vertex is associated with a diamond-shaped region where
edges are routed through ports along the boundary of the region before connecting to
the vertices. This creates bends in the edges but allows better control over the angles
that are formed by the edges around vertices. To reduce the overall grid size, Duncan
and Kobourov [DK03] use slightly altered vertex regions. Each vertex is surrounded by
six vertex regions of two types, free regions and port regions, which alternate around the
vertex. The regions are bounded by rays extending from v in various directions, with 0◦

indicating a positive vertical direction. See Figure 7.13.

DEFINITION 7.6 Let v ∈ V have degree d = d(v). The vertex regions associated with v
are of two types, free regions and port regions. Free regions have the property that only one
edge extends from v to another vertex through that region. Port regions are bounded on
one side by a horizontal or vertical line segment with a number of (integer coordinate) ports,
and each edge going through a port region of v from v to any other vertex passes through
a unique port. Moreover, every edge is drawn as two line segments. The first, starting at
one endpoint v, connects to a port in the port region of v, and the second connects from
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v

Figure 7.13 (a) The vertex regions around a particular vertex v. Notice that each port
region can have a different number of ports. (b) Edges extending from a (darkened) vertex.
The port edge segment is drawn dashed and the free edge segment is drawn solid.

that port to the other vertex w passing through one of w’s free regions. The six regions
associated with v are defined as follows:

• Free region Mf lies between −45◦ and 45◦;

• Free region Rf lies between 90◦ and 135◦;

• Free region Lf lies between −135◦ and −90◦;
• Port region Mp lies between Lf and Rf ;

• Port region Lp lies between Lf and Mf ; and

• Port region Rp lies between Rf and Mf .

The algorithm proceeds similar to the standard embeddings that use the canonical or-
dering. In particular, one starts with an initial face v1, v2, v3 and then repeatedly inserts
the next vertex vk+1 by finding its leftmost and rightmost neighbors, wl and wr, on the
current external face shifting the space between these vertices so that the lines connecting
vk+1 to wl and wr intersect at a grid location. To ensure good angular resolution, one must
introduce some bends, which requires a slight alteration in the approach.
Except for the initial horizontal edge (v1, v2), we route each edge (vi, vj) through a port

of one of the two vertices. In the process, each edge consists of two edge segments. One
segment, the port segment, extends from vi to one of vi’s ports, lying entirely in one of vi’s
port regions. The other, free segment, extends from this port to vj passing through one of
vj ’s free regions. See Figure 7.13(b).

The ports are arranged in such a way that the angle between successive ports and v is
O(1/d(v)). By Definition 7.6, since for every vertex v each free segment associated with
v lies inside a free region boundary, each free region has exactly one free segment passing
through it, each port segment associated with v lies inside a port region and passes through
a unique port, the resulting angular resolution at v is O(1/d(v)). For compactness, port
segments, which are essentially bend points, can also coincide with the destination vertex,
effectively creating a free edge segment of zero length. That is, if we have an edge (u, v)
that goes through u’s port p, we may have a situation where p coincides with v. This is not
necessary but allows for smaller grid size in the end.



242 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

The embedding is constructed in incremental stages, with each stage corresponding to
the insertion of a new vertex vk+1. At each stage, we maintain that each vertex except
those on the current external face has exactly three free edge segments. The remaining
edge segments connect to a vertex v through port segments. We can divide the current
degree of v into three parts: dl(v), dr(v), and dm(v). The degree dl(v) corresponds to the
current number of port edge segments using the Lp region. The degrees dr(v) and dm(v)
are defined similarly for the Rp and Mp regions. At each insertion, we route port edge
segments involving the new vertex vk+1 through maximal left and right ports.

DEFINITION 7.7 Let a vertex v have coordinates (vx, vy). Then, the maximal left port
of v, Lp

max(v), has coordinates (vx−dl(v)+1, vy+dl(v)) if dl(v) > 0 and (vx, vy) otherwise.
Define the maximal right port of v, Rp

max(v), similarly.

7.4.4 The Embedding

Initially, the first three vertices have integer coordinates v1 = (0, 0), v2 = (4, 0), and v3 =
(2, 1). In subsequent stages, we insert the next vertex vk+1 maintaining the following
invariants:

• All vertices and ports lie on the integer grid.

• Let Ck = (w1 = v1, w2, . . . , wm = v2) be the exterior face of Gk with wi(x)
corresponding to the x-coordinate of wi. Then w1(x) < w2(x) < . . . < wm(x).
In other words, the vertices of the exterior face are strictly x-monotonic.

• Let e = (wi, wi+1) be an edge on the external face. The free edge segment of e
has a slope of ±1. The port edge segment of e passes through a maximal port.

• Every vertex v has at most one free edge segment crossing each free region, and
each port segment goes to a unique port.

When we insert a new vertex vk+1, we must create enough space so that the two neighbors
wl and wr can “see” the new vertex through their maximal right and left ports, which are
typically already used. Thus, we must shift these vertices over to create space and also to
ensure that the intersection of these ports lies on a grid location, for the new vertex. Of
course, we cannot simply shift these vertices, we must shift other vertices to be sure that
we do not produce any crossings. Therefore, to shift a vertex w, we shift all vertices in its
shifting set, defined in Section 7.2.2, and also most of the ports. See Figure 7.14.

DEFINITION 7.8 For δ ≥ 0 and a vertex wi ∈ Ck, define a regular-shift by δ units of
wi as shifting all vertices in Mk(wi) by δ units to the right, including all associated ports.
Define the right-shift by δ units on wi as a regular-shift of wi except that the ports in the
Lp region of wi are not shifted. Similarly, define the left-shift by δ units on wi as a regular
shift of wi+1 and additionally shifting the ports in the Rp region of wi.

Notice that left-shifting a vertex wi is nearly identical to right-shifting its neighbor wi+1

except for the ports that are moved.

Assume that Gk has been embedded and that the invariants hold. We now look at the
specific insertion of a new vertex vk+1 to create Gk+1 while maintaining the invariants. For
a vertex w ∈ Ck, recall that the current number of port edge segments using Rp is dr(w)
and for Lp is dl(w). If dr(wl) = 0, we perform a left-shift of 2 units on wl; otherwise,
we perform a left-shift of 1 unit on wl. This frees a space for a new maximal port in the
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(a) (b)

Figure 7.14 (a) A (darkened) vertex and its neighbors before a right shift of one unit.
(b) And after a right shift of one unit. The other vertices that are part of the shifting set
are highlighted, while those that are not are drawn dashed. Notice that the left port region
remains in place creating a location for one more port.

Rp region of wl. Similarly, if dl(wr) = 0, we perform a right-shift of 2 units on wr, and
otherwise, we perform a right-shift of 1 unit.

Let l be the line of slope +1 passing through wl’s newly created maximal right port. Let
r be the line of slope −1 passing through wr’s newly created maximal left port. We place
vk+1 at the intersection of lines l and r. If l and r intersect at a non-grid location, we simply
perform a regular-shift of 1 unit on wr. Observe that we therefore perform at most 5 shifts
per insertion.

We now route the edges as follows. The edge from wl to vk+1 goes from wl to Rp
max(wl)

and then to vk+1 through its free region Lf . The edge from wr to vk+1 goes from wr to
Lp
max(wr) and then to vk+1 through its free region Rf . The remaining edges are from vk+1

to wi for l < i < r. These edges are routed from vk+1 to nearly consecutive ports on the
Mp region of vk+1 and then to wi through its free region Mf . We locate the horizontal
line segment containing the ports of Mp exactly ⌈(r− l)/2⌉ units below vk+1. Duncan and
Kobourov [DK03] prove that this guarantees that each port is above each neighbor vertex
wi. In the case that r − l is even, there is exactly one port per edge routed, and the ports
are mapped consecutively. In the case of an odd value, we must skip one port in the region,
which is easy to identify [DK03]. Figure 7.15 shows the insertion of five vertices of a planar
graph using this algorithm.

Duncan and Kobourov prove that this algorithm properly maintains the previous invari-
ants leading to the following theorem:

Theorem 7.5 [DK03] For a given plane graph G = (V,E), there is a linear-time algorithm
that constructs a planar polyline drawing of G with grid size 5n × 5n/2 using at most one
bend per edge and with an angular resolution no less than 1/2d(v) for every vertex v ∈ V .
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Figure 7.15 The insertion of the first five vertices of a particular planar graph. (a) The
initial configuration with 3 vertices. Note that the port edge segment connecting v1 to v3
connects to v1’s port which is at the same location as v3. For clarity, we illustrate the port
slightly outside this location. (b) Insertion of v4. This requires a left-shift of 1 unit for
v3 and a right-shift of 1 unit for v2 before placing v4. (c) Insertion of v5. This requires
a left-shift of 1 unit for v3 and a right-shift of 1 unit for v5 before placing v5, which also
connects to the covered vertex v4.

7.5 Conclusion

When angular resolution is a desired criterion in drawing a graph, many techniques exist to
accommodate it. If the graph is known to be 4-planar or if one is willing to use rectangular
regions instead of points for vertices, one can efficiently construct aesthetically pleasing
orthogonal drawings [Tam87, TT89, GT97, CK12]. This body of work uses network flows
to compute an orthogonal shape with the minimum number of bends and to compact the
representation into an orthgonal drawing with minimal height and width.

In addition, several polyline drawing strategies exist that allow one to create good draw-
ings with relatively high angular resolution, a small number of bends, and good area bounds
even when the maximum degree of the graph is greater than four [Kan96, GM98, GW00,
CDGK01, DK03]. These all extend the incremental insertion algorithm using a canonical
ordering initially employed by de Fraysseix, Pach, and Pollack [dFPP90]. The mixed-model
approach, employed by Kant [Kan96] and Gutwenger and Mutzel [GM98], uses primarily
orthogonal edges but must still connect vertices using some segments whose slopes de-
pend on the degree of the vertex. The works of Cheng et al. [CDGK01] and Duncan and
Kobourov [DK03] use an optimal one bend per edge but with one of the two segments of
each edge having arbitrary slope. Unlike the purely orthogonal representations, the set of
slopes determined by the edges in these polyline drawings is possibly large.
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