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15.1 Introduction

An important aspect of information visualization is the automatic placement of text or
symbol labels corresponding to graphical features of drawings and maps. Labels are textual
descriptions that convey information or clarify the meaning of complex structures presented
in a graphical form. The automatic label placement problem is identified as an important
research area by the ACM Computational Geometry Task Force [C+99]. It has applications
in many areas including cartography [RMM+95], geographic information systems [Fre91],
and graph drawing [DETT99].

Because the labeling process is a monotonous and very demanding task, its automation
is very desirable. It is very difficult to quantify all the characteristics of a good label place-
ment since they reflect human visual perception, intuition, and experience, which have been
perfected through the centuries by cartographers who have elevated the placement of labels
into an art. Hence, it is unlikely that computer-based systems will be able to deliver fully
automated placement of labels in maps of a sufficient quality to be comparable to those pro-
duced manually by experienced cartographers. Nevertheless, there are many areas where the
requirements for high aesthetic quality are not as strict and automatic labeling techniques
may be applied. For example, these techniques may be used for real time name placement
in the context of on-line geographic information systems or internet-based map search, and
special-purpose maps such as those used to display census [EG90], oil exploration [Zor90]
or soil survey data [FMC96]. Additionally, semi-automated interactive name placement
systems may be the most practical approach at the present time. Labeling systems may
produce an initial label placement that could be improved manually by cartographers to
produce desirable results. Furthermore, the whole concept of map labeling may change de-
pending on computer capabilities [RMM+95]. Maps may be viewed in an electronic format
allowing the user to interact and display information on demand as opposed to viewing all
the map information at once.

489



490 CHAPTER 15. LABELING ALGORITHMS

In the following sections, we study the labeling problem not only in its traditional form
(i.e., cartography), but also in the context of information visualization, specifically as it
relates to graph drawing. In Section 15.2 we present a model for the labeling problem: we
discuss the qualities of good label assignment and give a formal definition of the problem. In
Section 15.3, we present a variety of algorithms for the labeling problem. Finally, we discuss
how one can modify a drawing to accommodate the placement of labels in Section 15.3.5.

15.2 The Labeling Problem

15.2.1 Searching for a Good Label Assignment

Let Γ be a drawing and F be the set of graphical features of Γ to be labeled. A solution to
the labeling problem for drawing Γ assigns text or symbol labels to each graphical feature f
of F such that the relevant information is communicated in the best possible way. This can
be achieved by positioning the labels in the most appropriate places. For each graphical
feature there is a large number of potential label positions, and the most preferable among
them must be assigned.

Good label placement aids in conveying information and enhances the aesthetics of the
input drawing. It is difficult to quantify all the characteristics of a good label placement,
because they reflect human visual perception and intuition. It is trivial to place a label
when its associated object is isolated. The real difficulty arises when the freedom to place
a label is restricted by the presence (in close proximity) of other objects of the drawing.
In this common scenario, we must consider not only the position of a label with respect to
its associated object, but also how it relates to other labels and objects in the surrounding
area.

In a successful label assignment, labels must be positioned such that they are legible and
follow basic aesthetic quality criteria. According to cartographers like Imhof [Imh75] and
Yoeli [Yoe72], who have extensively studied this subject, labels must be placed in the best
position available following some basic rules: Labels must be easily read, quickly located, a
label and the object to which it belongs should be easily recognized, labels must be placed
very close to the objects they belong to, labels must not obscure other labels or objects,
a label must be placed in the most preferred position, among all legible positions. We
summarize the labeling quality evaluation in the following three basic rules:

• No overlaps of a label with other labels or other graphical features of the drawing
are allowed.

• Each label can be easily identified with exactly one graphical feature of the
drawing.

• Each label must be placed in the best possible position (among all acceptable
positions).

The order of preference among possible label positions varies depending on the specific
application.

In the production of geographical maps, we rank label positions according to rules de-
veloped through years of experience with manual placement, which typically capture the
aesthetic quality of label positions. A typical rule when labeling points (nodes) is that
labels must be placed to the right and above the point. For example, in Figure 15.1(a) the
number of each label position reveals the rank (priority) of the label. In addition, a point
label is allowed to touch but not overlap its associated point or any other graphical feature
in the drawing. In the case of labeling lines (edges), a label is allowed to touch the edge that
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Figure 15.1 (a) Labeling space of a node. (b) Labeling space of an edge. (c) Labeling
space of an area. Figure taken from [KT03].
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Figure 15.2 (a) A good label assignment. (b) A misleading label assignment. Figure
taken from [KT03].

it belongs to, but it should not overlap any other graphical feature in a drawing. In Figure
15.1(b), where the graphical feature to be labeled is an edge, labels like A, B and D are
preferable but certainly a label like C, which overlaps its associated edge, can be acceptable
with some appropriate cost assigned to it. The accepted practice for placing a label asso-
ciated with an area is to have the label span the entire area and conform to its shape, as
shown in Figure 15.1(c). For more details on name placement rules for geographical maps,
see [FA87, Imh75, vR89, Yoe72].

When the graphical objects to be labeled belong to a technical map or drawing, then,
usually a different set of rules govern the preferred label positions. These rules depend on
the particular application, and must follow user specifications. For example, if the graphical
feature is an edge of a graph drawing, the user must be able to specify that the preferred
position for an edge label is closer to the source or destination node. For example, a label of
a single edge that is relevant to its source node must be placed close to the source node (see
Figure 15.2(a)) to avoid ambiguity (see Figure 15.2(b)). It is important to emphasize that
a user must be able to customize the rules of label quality to meet specific needs and/or
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expectations. Therefore, any successful labeling algorithm must take into account the user’s
preferences.

15.2.2 A Definition of the Labeling Problem

Given a set F of graphical features of a map or drawing to be labeled we define the following
notation:

• Λf is the set of all label positions for graphical feature f of F .

• Λ is the set of all label positions for all graphical features to be labeled.

• λ : F → Λ is a function that assigns a label position from Λ to graphical feature
f in F , that is λ(f) = λf ∈ Λf .

The labeling problem can be viewed as an optimization problem where the objective is
to find a label assignment of minimum total cost where each graphical feature has a label
position assigned to it. Each label position λf that is part of a final label assignment is
associated with a cost. COST : Λ → N is a function that gives the cost of label λf with
respect to quality.

Labeling Problem

Instance: Let F be a set of graphical features to be labeled.
Question: Find a label assignment that minimizes the following function:

∑

i∈F

∑

j∈Λi

COST (λ(i))P (i, j)

Where:

P (i, j) =

{

1, if λ(i) = j,

0, otherwise

and

∑

i∈F

∑

j∈Λi

P (i, j) = |F |

Where:
∑

j∈Λi

P (i, j) = 1, i ∈ F.

✷

15.3 Solving the Labeling Problem

Most of the research addressing the labeling problem has been focused on labeling graphical
features of geographical and technical maps. The label placement problem is typically
partitioned into three tasks: (a) labeling points (e.g., cities), (b) labeling lines (e.g., roads
or rivers), and (c) labeling areas (e.g., lakes or oceans).

Progress has been made in solving the problem of assigning labels to a set of points or
nodes, the Node Label Placement (NLP) problem [CMS95, DMM+97, FW91, Hir82, WW95,
Zor90]. The problem of assigning labels to a set of lines or edges, also known as the Edge
Label Placement (ELP) problem, has been addressed in [DKMT07, KT98, vR89, Zor90].
The general labeling problem, the Graphical Feature Label Placement (GFLP) problem
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(where a graphical feature can be a node, edge, or area), has been addressed primarily in
the context of cartography; however, it has direct application in the area of graph drawing
[AF84, DF92, ECMS97, EG90, FA87, KT03].

In many practical applications, each graphical feature may have more than one label. The
need for assigning multiple labels is necessary not only when objects are large or long, but
also when it is necessary to display different attributes of an object. This problem is known
as the Multiple Label Placement (MLP) problem and has been addressed in [FA87, KT06].

The labeling process is not allowed to modify the underlying geometry of geographical
and technical maps which is fixed. However, one can modify a graph drawing in order to
accommodate the placement of labels. In [Hu09, KT11], algorithms that modify an existing
layout of a graph drawing to make room for the placement of labels are presented.

In [BDLN05, DDPP99, KM99], algorithms that combine the layout and labeling process
of orthogonal drawings of graphs are presented.

An alternative approach for displaying edge labels is presented in [WMP+05]. Each edge
is replaced by its corresponding edge label in the drawing. The label font starts out larger
from the source node and shrinks gradually until it reaches the destination node. The
tapered label also indicates the direction of the edge.

It is worth noting that both the NLP [FW91, KI88, MS91] and ELP [KT01] problems
are NP-hard. Because automatic labeling is a very difficult problem we rely on heuristics
to provide practical solutions for real world problems.

A variety of types of algorithms have been used in order to solve the labeling problem:
greedy algorithms [CMS95, Hir82], exhaustive search algorithms [DF92, EG90, FA87], algo-
rithms that simulate physical models (i.e., Simulated Annealing [CMS95]), algorithms that
reduce the labeling problem to a variant of 0-1 integer programming [Zor90], algorithms that
restrict the labeling problem to a variant of the 2-SAT problem [FW91, WW95], and algo-
rithms that transform the labeling problem into a matching problem [KT98, KT03, KT06].

15.3.1 The GFLP Problem

Most labeling algorithms that address the general labeling problem are based on local
and exhaustive search algorithms [DF92, EG90, FA87]. These algorithms perform well
for small problems. These methods use inferior optimization techniques, as pointed out
in [Zor90] and verified in [CMS95]. Actually, these methods use a rule based approach to
evaluate good label placement and variants of depth-first search to explore different labeling
configurations. The approach in [ECMS97] uses simulated annealing to find solutions for the
general labeling problem, and it separates the cartographic knowledge needed to recognize
the best label positions from the optimization procedure needed to find them.

All of the above techniques for the general labeling problem first create an initial label
assignment in which conflicts between labels are allowed. Then conflicts are resolved by
repositioning assigned labels until all conflicts are resolved, or no further improvement can
be achieved. Furthermore, they start with a rather small initial set of potential label posi-
tions from which they derive a final label assignment. The performance of these techniques
decreases when the number of potential label positions increases.

In [KT03] the labeling problem is transformed into a matching problem. The general
framework of this technique is flexible and can be adjusted for particular labeling require-
ments. In the next section this technique is presented in more detail.
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A practical matching algorithm for the GFLP problem

The placement of labels is a post-layout operation (i.e., performed on a fixed geometry
of nodes and edges). The basic idea behind this labeling technique is the following: a
set of discrete potential label solutions for each object is carefully selected. This set of
labels is reduced by removing heavily overlapping labels. Finally, an assignment of labels
is performed by solving a variant of the matching problem. This method is shown in
Figure 15.3. An example of the resulting label placement is given in Figure 15.4.

Basic Labeling Algorithm

INPUT: A drawing Γ and a set F of objects to be labeled.
OUTPUT: A label assignment free of overlaps.
1. A set of discrete potential label solutions for each object in F is carefully selected.
2. This set of labels is reduced by removing heavily overlapping labels. The remaining

labels are assigned to groups, such that, if two labels overlap then they belong to
the same group.

3. Labels are assigned by solving a variant of the matching problem, where at most
one label position from each group is part of the solution.

Figure 15.3 Basic labeling algorithm.

Next, the three basic steps of the basic labeling algorithm are presented in detail.

Selecting labels

To find a set of discrete label positions for each graphical feature, a number of heuristics
can be used. For points, a number of label positions that touch their corresponding point
is defined. In most algorithms a finite set of potential label positions are associated with
each point, typically the size of this set is four or eight as shown in Figure 15.5 (see also
[CMS95]).

It is generally accepted, especially in the framework of cartography, that area labels must
follow the general shape of their corresponding area, and that they must be inside the
boundaries of the area. For each area, a number of potential label positions is defined
according to the techniques described in [FA87, Fre88, PF96, vR89].
Next, a simple heuristic for finding a set of label positions corresponding to edges of

graph drawings is presented. As Figure 15.6 illustrates, a number of equally spaced points
on each edge is defined. Each assigned label position λi is associated with exactly one of
these points i, such that one of the corners of label λi coincides with point i. In addition,
label λi does not overlap its corresponding graphical feature or any other graphical feature
(except other label positions). A global approach for finding an initial set of label positions
for non-horizontal edges can be found in Section 15.3.2 and in [KT98].

Reducing labels

The size of the initial set of label positions must be kept reasonably small since it
affects the performance of any labeling algorithm.

In order to reduce the set of label positions an intersection graph is first created, where
each label position is a node and if two label positions intersect then there is an edge
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Figure 15.4 A force-directed drawing where labels are positioned by the matching tech-
nique for the GFLP problem. The labels are parallel to the horizontal axis. The grey boxes
are node labels and the white boxes are edge labels. Figure taken from [KT03].
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Figure 15.5 Potential label positions for a point. Figure taken from [KT03].

connecting their corresponding nodes. If label positions are parallel to the axis then overlaps
can be detected using the techniques for detecting overlaps among isothetic rectangles in
O(n log n + K) time (n is the number of rectangles and K the number of intersections)
[Ede83a, Ede83b]. Otherwise, in order to detect overlaps of labels with arbitrary orientation,
the techniques of [GJS96] can be used to detect intersections between convex polygons in
O(n4/3+ǫ +K) time (n is the total number of vertices of the polygons, K is the number of
pairs of polygons that intersect, and ǫ is any constant greater than zero).

Then, heavily overlapping labels are removed. The remaining labels are assigned to
groups, such that, if two labels overlap then they belong to the same group. The goal of
the third step of the algorithm is to select at most one label from each group as part of the
solution. This way, the algorithm will produce a label assignment free of overlaps.

The optimal solution would be one with the maximum number of minimum size complete
subgraphs (groups) of the intersection graph, with the additional constraint that each object
has a large number of label positions as part of some groups. It is most likely to have a
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Figure 15.6 A graph drawing with label positions assigned to each edge of the drawing.
Figure taken from [KT03].

successful label assignment when each object has a large number of potential label positions
associated with it. In reality the goal is to find an independent set of complete subgraphs
of label positions. This can be done by using heuristics based on techniques that solve the
independent set problem.

Heavily overlapping labels are removed, while maintaining a large number of potential
labels for each object f by keeping track of the number of labels associated with f . Our
aim is to reduce the intersection graph into a set of disconnected subgraphs.
First, in order to make this process more efficient a preprocessing step is applied that

eliminates unnecessary labels or assigns labels in obvious cases. For example, if a label
position l of an object f is free of overlaps, then all label positions for f with lower ranking
than l can be safely removed.

Next, an appropriate number of overlapping labels is removed. A simple and very success-
ful (according to experiments) technique for removing overlapping labels is the following: If
a subgraph c must be split, then the node with the highest degree is removed from c, unless
that node corresponds to a label position of some object with very few label positions. In
that case the next highest degree node from c is removed. This process is repeated until
either c is split into at least two disjoint subgraphs, or c is complete.

Matching labels to objects

To further clarify the main idea of this technique the matching graph is introduced:

DEFINITION 15.1 Given a drawing Γ, a set F of graphical features to be labeled, and
a set Λ of label positions for F , the matching graph Gm(Vf , Vc, Em) is defined as follows:

• Each node in Vf corresponds to a graphical feature in F .

• Each node in Vc corresponds to a group of overlapping labels.

• Each edge (i, j) in Em connects a node i in Vf , to a node j in Vc, if and only if
the graphical feature that corresponds to i has a label position that is a member
of the group that corresponds to j.
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Notice that Gm is a bipartite graph and the cost of assigning label l to graphical feature
f is the weight of edge (f, l) in Gm. Therefore, a maximum cardinality minimum weight
matching for graph Gm will give us an optimal (maximum number of labels with minimum
cost) label assignment with no overlaps with respect to the reduced set of label positions.

By representing the labeling problem as a bipartite graph, the inherent hardness of the
problem is revealed. According to [KR92], the labeling problem is closely related to the
independent set problem. Indeed, consider the very simple case where there is only one
potential label position for each graphical feature in the drawing, the problem of assigning
labels to the maximum number of graphical features is equivalent to finding a maximum
size independent set.

Once the set of groups is found, the construction of the matching graph is trivial. A
final label assignment can be found by solving the maximum cardinality minimum weight
matching problem (see [GK95, Tar83] for efficient algorithms) for graph Gm. The size of
the matching graph depends not only on the size of the input drawing, but also on the size
of set Λ of labels and the density of overlaps. Notice that at most one label position from
each group may be part of a label assignment. Thus, a matching of graph Gm produces
an assignment free of overlaps. Because the label assignment is free of overlaps, the cost of
each label position will depend only on the ranking of that label. This implies that the cost
of each label position can be computed by a preprocessing step.

15.3.2 The ELP Problem

The problem of assigning labels to a set of lines or edges, also known as the Edge Label
Placement (ELP) problem, has been addressed in the context of geographical and technical
maps [AH95, ECMS97, vR89, WKvK+00, Zor90] and graph drawing [KT98, DKMT07].
Furthermore, any of the techniques for solving the general labeling problem (see section
15.3.1) can be applied in solving the ELP problem.

In the context of geographical and technical maps edges are linear features. Labels should
be placed alongside and parallel to rivers, boundaries, roads or linear features. If the linear
feature is curved, the shape of the label must follow the curvature of the linear feature. The
positioning of linear labels has the greatest degree of freedom since labels can be placed
almost anywhere along the linear feature, thus cartographers have been focusing their efforts
on finding the right shape of the linear label.

However, in the context of graph drawing, placing labels to edges is a more complicated
process. Edges are not necessarily long, they are usually straight lines or polygonal chains
and they have to follow user preferences and specifications. For example an edge label might
be related to the source node of the edge, thus it must be placed closer to the source node
rather than the target node to avoid a misleading label assignment (see Figure 15.2).

In [DKMT07] a labeling system is presented that includes a very functional interface and
labeling engine that addresses the ELP problem in the context of a graph drawing editor. It
is noteworthy that the interface of that system allows the user to set the labeling preferences
interactively.

In the following section a fast and simple technique, first proposed in [KT98], is presented
for solving the problem of positioning text or symbol labels corresponding to edges of a graph
drawing.

A fast and simple algorithm for labeling edges of graph drawings

This technique is based on the matching technique for solving the general labeling
problem presented in section 15.3.1.
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The technique works for labels that are parallel to the horizontal axis, and have approx-
imately equal height and arbitrary width. In order to simplify the discussion the following
assumptions are made:

• All labels have the same size.

• Each edge has only one label associated with it.

The goal of this technique is to assign to each edge a label position that is free of overlaps
and touches only its associated edge. The main idea of this technique is the following:

First, a set Λ of label positions is produced. Next, label positions are grouped such that
each label position that is part of a group overlaps every other label position that belongs
to the same group. Then, edges to label positions are matched by allowing at most one
label position from each group to be part of a label assignment by using a fast matching
heuristic. The key to restricting the ELP problem to a matching problem is to create a
suitable initial set of label positions.

The initial set of label positions is created in the following way. The input drawing is
divided into consecutive horizontal strips of equal height. The height of each strip is equal
to the height of the labels. Next, a set of label positions Λe for each edge e is found. Each
label position must be inside a horizontal strip. Labels are slided inside each horizontal
strip until a label touches its edge, say e. That label position is included into set Λe if it
does not overlap any other graphical feature or only overlaps label positions of some edge
other than e, as shown in Figure 15.7. Label positions that overlap nodes or edges of the
layout are not considered. Also label positions are not allowed to intersect their associated
edges. Label positions lie entirely inside horizontal strips. Thus, label positions can only
overlap other labels that belong to the same horizontal strip. Hence, the following are true:

• A label position of an edge e does not overlap any other label position of e.

• If two label positions overlap then they are inside the same horizontal strip.

• Each label position overlaps at most one other label position.

label for edge (1,2) label for edge (2,3)

1

2

1 3

2

(a) (b)

Figure 15.7 Assigning potential labels to edges of a drawing. Figure taken from [KT98].
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If two label positions overlap then they belong to the same group. If a label position is
free of overlaps then it belongs to a single member group.

The size of the initial set of label positions must be kept reasonably small since it affects
the performance of any labeling algorithm. The above method of defining a set of potential
label positions is very practical and effective because it partitions the solution space and
identifies the areas of the drawing where conflicts of label assignment may occur. In addition,
it significantly reduces the search space for potential conflicts (overlaps).

1 2

A C,B D
D

2

2

CA

(b)(a)

B

1

1

Figure 15.8 (a) A simple drawing with label positions for each edge. (b) The corre-
sponding matching graph. Figure taken from [KT03].

In Figure 15.8 a simple example of how to construct the matching graph (see Def. 15.1)
is presented. Figure 15.8(a) represents a simple drawing with two edges and two label
positions for each edge. Figure 15.8(b) shows its corresponding matching graph. Label
positions that overlap belong to the same node in the matching graph, in this example label
position A of edge 1 overlaps label position C of edge 2, thus they are represented by a
single node in the matching graph.

Since at most one label position from each group may be part of a label assignment, a
matching of graph Gm produces an assignment free of overlaps. A maximum cardinality
matching of graph Gm assigns labels to the maximum number of edges.

A description of the labeling technique is given in the algorithm of Figure 15.9.

Algorithm ELP

INPUT: A drawing Γ of graph G(V,E).
OUTPUT: A label assignment free of overlaps.
1. Split Γ into horizontal strips.
2. Find all label positions for each edge and construct the groups of overlapping labels.
3. Create the matching graph Gm for Γ.
4. Match label positions to edges, by finding a maximum cardinality minimum weight

matching of Gm.

Figure 15.9 Algorithm ELP.
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The size of the matching graph depends on the size of set Λ of label positions. Unfor-
tunately the size of Λ can be large with respect to the size of the original graph G. This
implies that a typical matching algorithm might take a long time. The best algorithms for
finding a maximum cardinality minimum weight matching of Gm take more than quadratic
time with respect to the size of Gm [GK95, Tar83]. In order to reduce the time complexity
of the matching, in the next section a heuristic is presented that finds a maximum cardinal-
ity matching with low total weight in linear time with respect to the size of Gm, by taking
advantage of the structure and properties of graph Gm.

A Fast Matching Heuristic

Here, a fast heuristic is presented that solves the maximum cardinality matching
problem for a matching graph where each node corresponding to a group of overlapping
labels has degree at most two. The fast heuristic that solves the matching problem takes
advantage of the simple structure of the matching graph. By construction, each node in Vc

has degree at most 2 (see Figures 15.7 and 15.8). The algorithm of Figure 15.10 finds a
maximum cardinality matching for Gm.

Algorithm Fast Matching

INPUT: Matching graph Gm.
OUTPUT: A maximum cardinality matching for Gm with low total weight.
1. If the minimum weight incident edge of a node in Vf connects this node to a node

in Vc of degree 1 then:
1.1. Assign this edge as a matched edge.
1.2. Update Gm.

2. If a node in Vf has degree 1 then:
2.1. Assign its incident edge as a matched edge.
2.2. Update graph Gm.

3. Repeat Steps 1 and 2 until no new edge can be matched.
4. Delete all nodes of degree 0 from Gm.
5. For each node f in Vf do

5.1. Remove all but the two incident edges of f with the least weight.
6. The remaining graph consists of simple cycles and/or paths.

6.1. Find the only two maximum cardinality matchings for each component.
6.2. Choose the matching of minimum weight.

Figure 15.10 Algorithm Fast Matching.

Note: The Update Gm operation removes the two nodes incident to a new matched edge
and stores that edge and its incident nodes as part of the matching. Also removes all
incident edges from the two nodes.

In Step 1 matched edges are found that are part of any optimal solution. In Step 2 edges
are matched to those nodes in Vf that are of degree 1. If two nodes of degree 1 in Vf

are connected to the same node in Vc, as matched edge is chosen the edge with minimum
weight. This implies that one of the edges will have no label. In Step 4 nodes are removed
from Gm that correspond to either edges that have no potential labels assigned to them or
have potential labels that will not be part of a final labeling assignment. In Step 5, for each
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node in Vf of degree more than 2, only its two incident edges of least weight are kept and
the rest of the edges are removed. The remaining bipartite graph has a simple structure:
It consists of simple cycles or simple paths, because each node in Vf has degree 2 and each
node in Vc has degree at most 2. Each path or cycle has exactly two maximum cardinality
matchings. It is trivial to find both of them by simply traversing the cycle or path and
picking as part of the matching only the even or odd numbered edges.

2 4 8

5 9 12

1 13 15 14

3 7 11

6 10

2_to_4 4_to_8

1_to_2 2_to_5 4_to_9 8_to_12

5_to_9 9_to_12

9_to_13 12_to_15

13_to_15 14_to_15

1_to_3 10_to_13 11_to_14

3_to_7 7_to_11 10_to_14

3_to_6 7_to_10

6_to_10

Figure 15.11 An orthogonal drawing with edge labels produced by the fast ELP tech-
nique. Figure taken from [KT03].

It is trivial to see that Algorithm Fast Matching runs in linear time. Notice that it also
finds a maximum cardinality matching with low total weight because in the last step it
considers only the two incident edges of nodes in Ve with the lowest weight. Figure 15.11
shows a label assignment produced by the fast ELP technique.

Further Improvements

For the above fast and simple technique for labeling edges of graph drawings it is
clear that the longer and the more vertical the edges are, the more potential label positions
are associated with each edge. Thus, the greater the possibility for the labeling algorithm
to assign a label to each of these edges. Therefore, hierarchical drawings are particularly
suitable for this algorithm since edges are usually long and almost vertical. This technique
performs very well also for straight-line drawings, such as ones produced by force-directed
and circular techniques. One weakness of this labeling technique is that it ignores horizontal
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edges or edge segments. Thus, as presented, this technique is not suitable for orthogonal
drawings. However, one can use the general technique by dividing an orthogonal drawing
into horizontal and vertical strips in order to find a set of label positions, followed by the
assignment of labels to edges. Figure 15.12 shows the results with an example.

                        

            

            

            

                        

            

            

            

            

            

                        

            

            

            

            

            

            

            

                        
            

                        

            

                        

                        

            

            

            

            

            

            

                        

Figure 15.12 An orthogonal drawing with edge labels, which contains many horizontal
edge segments, produced by the fast ELP technique. Figure taken from [DKMT07].

In addition, when drawings are very dense or there is a large number of oversized labels,
the default label assignment produced by the labeling system might not be satisfactory. In
such cases, the user can fine tune the algorithm by relaxing the labeling quality constraints
by allowing overlaps (see Figure 15.13).

15.3.3 The NLP Problem

The problem of assigning labels to a set of points or nodes, also known as the Node La-
bel Placement (NLP) problem, has been extensively studied in the context of automated
cartography and many successful algorithmic approaches have been introduced [CMS95,
DMM+97, FW91, Hir82, WW95, Zor90]. Also, any of the techniques for solving the general
labeling problem (see section 15.3.1) can be applied to the NLP problem.

Algorithms based on local and exhaustive search [DF92, EG90, FA87] and simulated
annealing [ECMS97] are well suited for solving the NLP problem. Experimental results
[CMS95] have shown that simulated annealing outperforms all algorithms based on local
and exhaustive search. In addition simulated annealing is one of the easiest algorithms to
implement.
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Figure 15.13 A circular drawing with edge labels, where labels are allowed to overlap
other graph objects, produced by the fast ELP technique. Figure taken from [DKMT07].

These algorithms start with a rather small initial set of potential label positions from
which they derive a final label assignment. This is because the size of the initial set of label
positions plays a critical role in the performance of these algorithms. This precondition
works well when solving the NLP problem. For example, each point is given at most four
or eight potential label positions (see Figure 15.5).

Approximation algorithms for restricted versions of the NLP problem are presented in
[DMM+97, FW91]. Specifically, the approach of [FW91] assigns labels of equal size to all
points while attempting to maximize the size of the assigned labels. The work in [WW95]
improves the results in [FW91] by using heuristics. A similar approach has been taken in
[DMM+97]. In effect, finding the maximum label size is equivalent to finding the smallest
factor by which the map has to be zoomed out such that each point has a label assigned
to it. However, it is not clear how these techniques can be modified to solve real-world
problems, including the labeling of graphical features of graph drawing, where the label size
is usually predefined and labels are not necessarily of equal size.

Another approach to solve the NLP problem is based on the sliding model, where sliding
labels can be attached to the point they label anywhere on their boundary. This model was
first introduced in [Hir82] who gave an iterative algorithm that uses repelling forces between
labels in order to eventually find a placement of labels. A polynomial-time approximation
scheme and a fast factor-2 approximation algorithm for maximizing the number of points
that are labeled by axis-parallel sliding rectangular labels of common height, based on the
sliding model, is presented in [vKSW99].
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15.3.4 The MLP Problem

Many algorithms exist for the labeling problem; however, very little work has been directed
toward positioning many labels per graphical feature in a map or drawing [FA87, Fre88,
KT06]. This problem is known as the Multiple Label Placement (MLP) problem.

In existing automated name placement systems for geographic maps simple techniques
have been utilized to address the MLP problem [FA87, Fre88]. Specifically, each feature to
be labeled is partitioned into as many pieces as the number of labels for that feature. Then,
labeling algorithms for single label per graphical feature may be applied to the new set of
partitioned graphical features. In many applications, this straightforward approach presents
some difficulties. For example, it might be necessary or preferable to position labels that
are associated with the same graphical feature next to each other (e.g., two labels assigned
to an edge must be close to the source node of the edge). This is often the case when
labels describe more than one attribute of the same feature. Furthermore, the feature to be
labeled might be a point or an area. Then, we must partition the solution space and assign
one label to each of the partitions. However, efficiently partitioning the solution space is
as hard as solving the original labeling problem. Even when we need to place more than
one label associated with a linear graphical feature in regular intervals from each other,
this approach seems weak. Since, by splitting the features beforehand we eliminate solution
space that otherwise could be used to position a label.

One can avoid the situations described in the previous paragraph by allowing each of
the labels to be placed in any legible label position of the associated graphical feature. An
iterative approach based on existing labeling algorithms that assigns one label per graphical
feature can be used to produce a solution. This can be done by applying these algorithms
as many times as the number of labels per graphical feature. This scheme presents a new
challenge: most labeling algorithms are based on local and exhaustive search. Thus, their
performance (running time and quality of solutions) is sensitive to the size of the graphical
features to be labeled and to the density of the drawing. Clearly, if each graphical feature
in a drawing is associated with i labels, then the size of the problem is i times larger.
Therefore, the above techniques might be slow even for small instances.
In [KT06] the MLP problem is treated in the context of graph drawing. A framework for

evaluating the quality of label positions is presented. In addition, two algorithmic schemes
are presented: (i)A simple and practical iterative technique and (ii) A flow-based technique
which is an extension of the matching technique presented in section 15.3.1. In the following
sections these techniques will be presented in detail.

Labeling quality rules for the MLP problem

Multiple labels per graphical feature are needed not only when objects are very long
(i.e., long edges) and repetition is necessary, but also when more than one attribute per
graph object must be displayed. Therefore, some additional considerations have to be taken
into account with respect to the quality of a label assignment, when graphical features have
many labels. Specifically, we must take into account how labels for the same graphical
feature influence each other. For example, many times each of the labels corresponds to
some attribute of a graphical feature and the relative position of a label with respect to
other labels of the same graphical feature reveals that attribute.

Next, we present some constraints that may be used to ensure that each label is unam-
biguous, easily read and recognized, when more than one label is associated with a graphical
feature. These constraints can be divided into three general categories: (i) proximity, (ii)
partial order, and (iii) priority. In order to illustrate the three different sets of constraints
we will use as an example the labeling of a single edge (s, t) with two labels ls and lt. Label
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Figure 15.14 (a) A preferable label assignment. (b) A misleading label assignment. (c)
Defining strict proximity constraints. (d) Defining relaxed proximity constraints. Figure
taken from [KT06].

ls is associated with the source node and label lt is associated with the target node, as
shown in Figure15.14(a).

Proximity:

Label ls (resp. lt) must be in close proximity with the source (resp. target) node to avoid
ambiguity. Therefore, it is necessary to define a maximum distance from the source (resp.
target) node that label ls (resp. lt) may be positioned. When edge (s, t) is associated with
exactly one label, then that label may be located anywhere inside the solution space. If
there are more than one label associated with (s, t), then each label must be positioned
inside an area that is a subset of the solution space.

In Figure 15.14 we illustrate the importance of the proximity constraints. For example the
label assignment in Figure 15.14(a) is a preferable assignment. The assignment in Figure
15.14(b) does not convey clearly the meaning of the labels, because they are very close to
the target node; hence by observing the picture we cannot establish with certainty that the
source label is associated with the source node. In Figure 15.14(c) the proximity constraint
is that the distance between the source (resp. target) node and its label must be at most
half the length of the edge. This implies that the source (resp. target) label must be inside
the source (resp. target) region. The defined proximity constraints in Figure 15.14(c) are
too restrictive, since the defined regions do not intersect. One could define more relaxed
proximity constraints, as shown in Figure 15.14(d), where intersecting of different regions
is allowed. In practice the latter is preferable since it increases the labeling solution space
and improves the possibility for finding a labeling assignment, especially in cases where the
drawing is crowded.

Partial Order:

A label associated with the source (resp. target) node must be closer to the source (resp.
target) node than any other label to avoid ambiguity. Thus, in many cases, it is appropriate
to define a partial order between labels of the same graphical feature according to some
invariant (e.g., x or y axis, distance from a fixed point).

In Figure 15.15(c) we present an example where the absence of a partial order rule pro-
duces a misleading label assignment, since by simply looking at the picture we associate
the target (resp. source) label to the source (resp. target) node. In Figures 15.15(a) and
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Figure 15.15 (a) A preferable label assignment. (b) An acceptable label assignment. (c)
A misleading label assignment. Figure taken from [KT06].

15.15(b) the additional condition that a label associated with the source node must be closer
to the source node than the label associated with the target node ensures the correct inter-
pretation of the label assignment. If we define restrictive proximity constraints, as shown
in Figure 15.14(c), then a partial order constraint is not necessary. However, if we relax the
proximity constraints, as shown in Figure 15.14(d), then we need to define a partial order
constraint in order to avoid misleading labeling assignments.

Priority:

In many cases, it is impossible to assign all labels associated with a graphical feature, due
to the density of the drawing. Then, the user might prefer to have the important labels
assigned first, and then assign the rest of the labels if there is available space.

These three sets of constraints present a succinct framework for a good label assignment
with respect to the MLP problem.

In the following sections we focus on two sets of heuristics, iterative and flow-based, to
solve the MLP problem.

An iterative algorithm for the MLP problem

First a simple iterative approach to solve the problem of assigning multiple labels to
each graphical feature of a drawing is presented. For simplicity, let us assume that each
graphical feature is associated with the same number of label positions. The main idea is
the following: existing algorithms solve the labeling problem for single label per graphical
feature. Therefore, one could solve the MLP problem by applying these algorithms as many
times as the number of labels per graphical feature. This method consists of a main loop,
and we execute the loop as many times as the number of labels per graphical feature. In
particular, at the i-th execution of the loop, we assign the i-th label to each graphical feature.

This technique can take into account all three sets of constraints: (a) proximity (by
considering only the label positions that respect the proximity rules), (b) partial order
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(by eliminating from the set of potential label positions, after each execution of the loop,
the label positions that do not respect the partial order) and (c) priority (by selecting, if
possible, the label position of highest priority among the available label positions). One can
refine this technique by first finding a set of label positions before entering the loop, and
then executing inside the loop only the step of positioning labels. The refinement works
because the cited labeling algorithms produce a label assignment from an initial finite set
of discrete potential label positions. The refined algorithm is shown in Figure 15.16.

Iterative Algorithm

INPUT: A drawing Γ, a set of graphical features F in Γ to be labeled,
a number N of labels for each graphical feature f in F .

OUTPUT: A label assignment.
1. Find an initial set of label positions L.
2. For i = 1 to N do:

2.1. Assign the i-th label to each graphical feature in F from the set L of
potential labels using existing labeling algorithms.

2.2. Remove potential label positions from L that overlap already assigned labels.

Figure 15.16 Iterative algorithm.

Figure 15.17 An orthogonal drawing with two labels per edge, positioned by the Iterative
algorithm. Figure taken from [KT06].

Even though this technique is very attractive, especially because it can be realized by
using existing labeling algorithms, it presents some challenges that have to be addressed.
Labeling techniques based on local or exhaustive search first create an initial label assign-
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ment where conflicts between labels are allowed. Then conflicts are resolved by repositioning
assigned labels until all conflicts are resolved, or no further improvement can be achieved.
When applying these techniques in the context of the iterative algorithm one can either ap-
ply repositioning only for labels assigned in the current run of the loop or for any assigned
label (even in previous runs of the loop). In either case such techniques are slow.

This iterative approach is especially suited for the labeling algorithms presented in [KT98,
KT03], because they first find a set of label positions, and then they produce a label
assignment in a single step without any repositioning of labels (see Figures 15.17 and 15.18).

Figure 15.18 A hierarchical drawing with two labels per edge, positioned by the Iterative
algorithm. Figure taken from [KT06].

A Flow-Based algorithm for the MLP problem

The matching technique presented in Section 15.3.1 can be further extended to support
placement of more than one label per graphical feature of a graph drawing. The algorithm
presented here assigns label positions in a non-iterative fashion. It solves the MLP problem
by reducing it to an assignment problem.

First the matching graph Gm is created (see Section 15.3.1 for more details).
Next, the matching graph Gm is transformed into a flow graph Gflow(s, t, Vf , Vc, Ef ).

Gm is converted to an st-graph by introducing two nodes s and t. Node s is connected to
each node in Vf , and node t is connected to each node in Vc, as shown in Figure 15.19.
Finally capacities to each edge of the flow graph Gflow are assigned in the following way:

• Each edge of the original matching graph has capacity one.

• Each edge (c, t) of Gflow incident to the target node has capacity one.

• Each edge (s, v) incident to the source node has capacity equal to the number of
labels associated with the graphical feature of the input graph that is represented
by node v in Gm.
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Figure 15.19 The flow graph. Figure taken from [KT06].

Clearly a maximum flow of graph Gflow will produce a maximum cardinality label as-
signment with respect to the set of labels encoded in the matching graph. Sophisticated
techniques can solve the maximum flow problem in O(nm log n) time [AMO93], where n is
the number of vertices and m is the number of edges of the flow graph.

This technique is summarized in the algorithm of Figure 15.20.

Flow-based Algorithm

INPUT: A drawing Γ, a set of graphical features F in Γ to be labeled,
a number M(f) of labels for each graphical feature f in F .

OUTPUT: A label assignment free of overlaps.
1. Find a set of label positions for each graphical feature in the drawing.
2. Arrange overlapping label positions into groups.
3. Create the matching graph Gm.
4. Augment graph Gm to a flow graph Gflow.
5. Assign capacities to each edge of Gflow.
6. Assign cost to edges of Gflow.
7. Find the maximum flow minimum cost of graph Gflow.
8. Assign labels according to the results of Step 7.

Figure 15.20 Flow-based algorithm.
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The two most time consuming steps of the above algorithm are the detection of overlaps
between label positions and the matching produced by running a maximum flow minimum
cost algorithm on the flow graph. Clearly the time required for those two steps depends
highly on the size of the initial set of label positions. Therefore, the performance of the
above algorithm is closely related to the size of the initial set of label positions.

One point that needs to be emphasized is that the framework just described can take
into account the cost of a label assignment with respect to priority, proximity and aesthetic
criteria. Since the final label assignment is free of overlaps, one may assume that there is
no cost associated with the relative position of any pair of assigned labels. Each edge in
the bipartite graph Gm connects a graphical feature to a label position of that feature that
belongs to some group. The cost of label position l of graphical feature f is included as the
weight of edge (f, l) in the matching graph. Then, by assigning to edges incident to source
and target nodes weight equal to zero, one can find a maximum cardinality minimum cost
label assignment for the reduced MLP problem by solving the maximum flow minimum
cost problem for the flow graph Gflow (see [AMO93] for efficient techniques for solving the
flow problem). Figures 15.21 and 15.22 show label assignments produced by the Flow-based
algorithm.

Figure 15.21 A force-directed drawing with two labels per edge, positioned by the Flow-
based algorithm. Figure taken from [KT06].
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Figure 15.22 A circular drawing with three labels for each edge and node positioned by
the Flow-based algorithm. The white boxes are edge labels and the dark boxes are node
labels. Figure taken from [KT06].

15.3.5 Placing Labels by Modifying the Drawing

Automatic labeling is a very difficult problem, and because we rely on heuristics to solve it,
there are cases where the best methods available do not always produce an acceptable or
legible solution even if one exists. Furthermore, there are cases where no feasible solution
exists. Given a specific drawing and labels of fixed size, then it might be impossible to
assign labels without violating any of the basic rules of a good label assignment (e.g., label
to label overlap, legibility, unambiguous assignment). These cases appear often in practical
applications when drawings are dense, labels are oversized, or the label assignment must
meet minimum requirements set by the user (e.g., font size or preference of placing labels).

To solve the labeling problem where the best solution we can have is either incomplete or
not acceptable one must modify the drawing. This approach cannot be applied in drawings
that represent geographical or technical maps where the underlying geometry is fixed by
definition. However, the layout of a given graph drawing can be changed since it is the
result of the algorithm used to draw the graph.
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Generally speaking, there can be two algorithmic approaches in modifying the layout of
a graph drawing:

• Modify the existing layout of a graph drawing to make room for the placement
of labels.

• Produce a new layout of a graph drawing that integrates the layout and labeling
process.

In [Hu09, KT11] algorithms that modify an existing layout of a graph drawing to make
room for the placement of labels are presented. The algorithm of [KT11] modifies an existing
orthogonal drawing by inserting extra space in order to accommodate the placement of edge
labels that are free of overlaps. First, an edge label assignment is computed, where overlaps
are allowed, by using existing techniques. Then, the drawing is modified by applying a
polynomial time algorithm based on minimum flow techniques to find the extra space needed
to eliminate label overlaps, while preserving the orthogonal representation of the drawing.
In [Hu09] label overlaps are resolved by applying an algorithm based on the techniques
used to produce force-directed layout drawings. It iteratively moves the labels to remove
overlaps, while keeping the relative positions between them as close to those in the original
layout as possible, and edges as straight as possible.

In [BDLN05, DDPP99, KM99] algorithms that combine the layout and labeling process
of orthogonal drawings of graphs are presented. In [KM99] the authors study the problem of
computing a grid drawing of an orthogonal representation of a graph with labeled nodes and
minimum total edge length. They show an integer linear programming (ILP) formulation
of the problem and present a branch-and-cut based algorithm that combines compaction
and labeling techniques. The work in [BDLN05] makes a further step in the direction
defined in [KM99] by integrating the topology-shape-metrics approach with algorithms for
edge labeling. In [DDPP99] an approach to combining the layout and labeling process of
orthogonal drawings is presented. Labels are modeled as dummy nodes and the topology-
shape-metrics approach is applied to compute an orthogonal drawing where the dummy
nodes are constrained to have fixed size.
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