12

Force-Directed Drawing Algorithms

12.1 Introduction:::::::icoiciin 383
12.2 Spring Systems and Electrical Forces:::::::::iiiiiir - 385
12.3 The Barycentric Method ::::::ooerens: ;o 386
12.4 Graph Theoretic Distances Approach:: i 388
12.5 Further Spring Re nements 389
12.6 Large Graphs:::::iiiniii: i i 391
12.7 Stress Majorization::::::::::: i o 396
12.8 Non-Euclidean Approaches::: 397
12.9 Lombardi Spring Embedders:: ;400
Stephen G. Kobourov 403
404

University of Arizona

12.1 Introduction

Some of the most exible algorithms for calculating layouts of simple undirected graphs
belong to a class known as force-directed algorithms. Alsorlown as spring embedders,
such algorithms calculate the layout of a graph using only ifiormation contained within
the structure of the graph itself, rather than relying on domain-speci ¢ knowledge. Graphs
drawn with these algorithms tend to be aesthetically pleasng, exhibit symmetries, and tend
to produce crossing-free layouts for planar graphs. In thischapter we will assume that the
input graphs are simple, connected, undirected graphs andheir layouts are straight-line
drawings. Excellent surveys of this topic can be found in Di Bttista et al. [DETT99]
Chapter 10 and Brandes [Bra01].

Going back to 1963, the graph drawing algorithm of Tutte [Tut 63] is one of the rst force-
directed graph drawing methods based orbarycentric representations. More traditionally,
the spring layout method of Eades [Ead84] and the algorithm & Fruchterman and Rein-
gold [FR91] both rely on spring forces, similar to those in Hoke's law. In these methods,
there are repulsive forces between all nodes, but also attctive forces between nodes that
are adjacent.

Alternatively, forces between the nodes can be computed basl on their graph theoretic
distances, determined by the lengths of shortest paths beteen them. The algorithm of
Kamada and Kawai [KK89] uses spring forces proportional to he graph theoretic distances.
In general, force-directed methods de ne an objective funion which maps each graph
layout into a number in R* representing the energy of the layout. This function is de ned
in such a way that low energies correspond to layouts in whicladjacent nodes are near some
pre-speci ed distance from each other, and in which non-adjcent nodes are well-spaced. A

383

384 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

B AN T T
PR
O T A

iy |
i

Figure 12.1 Examples of drawings obtained with force-directed algorihms. First row:
small graphs: dodecahedron (20 vertices), C60 bucky ball (Bvertices), 3D cube mesh (216
vertices). Second row: Cubes in 4D, 5D and 6D [GKO02].

layout for a graph is then calculated by nding a (often local) minimum of this objective
function; see Figure 12.1.

The utility of the basic force-directed approach is limited to small graphs and results are
poor for graphs with more than a few hundred vertices. There g multiple reasons why
traditional force-directed algorithms do not perform well for large graphs. One of the main
obstacles to the scalability of these approaches is the faghat the physical model typically
has many local minima. Even with the help of sophisticated mehanisms for avoiding local
minima the basic force-directed algorithms are not able to onsistently produce good layouts
for large graphs. Barycentric methods also do not perform wifor large graphs mainly due
to resolution problems: for large graphs the minimum vertexseparation tends to be very
small, leading to unreadable drawings.

The late 1990s saw the emergence of several techniques exderg the functionality of
force-directed methods to graphs with tens of thousands anéven hundreds of thousands of
vertices. One common thread in these approaches is the multevel layout technique, where
the graph is represented by a series of progressively simplstructures and laid out in reverse
order: from the simplest to the most complex. These structues can be coarser graphs (as in
the approach of Hadany and Harel [HHO1], Harel and Koren [HK@], and Walshaw [Wal03],
or vertex ltrations as in the approach of Gajer, Goodrich, and Kobourov [GGKO04].

The classical force-directed algorithms are restricted tocalculating a graph layout in
Euclidean geometry, typically R2, R3, and, more recently,R" for larger values ofn. There
are, however, cases where Euclidean geometry may not be thex&t option: Certain graphs
may be known to have a structure which would be best realizedn a di erent geometry,

12.2. SPRING SYSTEMS AND ELECTRICAL FORCES 385

such as on the surface of a sphere or on a torus. In particular3dD mesh data can be
parameterized on the sphere for texture mapping or graphs ajenus one can be embedded on
a torus without crossings. Furthermore, it has also been nad that certain non- Euclidean
geometries, speci cally hyperbolic geometry, have properes that are particularly well suited

to the layout and visualization of large classes of graphs [RP95, Mun97]. With this in mind,
Kobourov and Wampler describe extensions of the force-dited algorithms to Riemannian
spaces [KWO05].

12.2 Spring Systems and Electrical Forces

The 1984 algorithm of Eades [Ead84] targets graphs with up to30 vertices and uses a
mechanical model to produce \aesthetically pleasing” 2D lgouts for plotters and CRT
screens. The algorithm is succinctly summarized as follows

To embed a graph we replace the vertices by steel rings and lape each edge with
a spring to form a mechanical system. The vertices are placeth some initial
layout and let go so that the spring forces on the rings move ¢hsystem to a
minimal energy state. Two practical adjustments are made tahis idea: rstly,
logarithmic strength springs are used; that is, the force estted by a spring is:

¢ log(d=c);

where d is the length of the spring, andc; and c, are constants. Experience
shows that Hookes Law (linear) springs are too strong when ¢hvertices are far
apart; the logarithmic force solves this problem. Note thathe springs exert no
force whend = c,. Secondly, we make nonadjacent vertices repel each other.nA
inverse square law force,

C?Fdz;

where ¢z is constant and d is the distance between the vertices, is suitable. The
mechanical system is simulated by the following algorithm.

algorithm SPRING(G:graph);
place vertices ofG in random locations;
repeat M times
calculate the force on each vertex;
move the vertexc, (force on vertexy
draw graph on CRT or plotter.

The valuesc; =2, ¢; =1, ¢ =1, ¢4 = 0:1, are appropriate for most graphs.
Almost all graphs achieve a minimal energy state after the siulation step is
run 100 times, that is, M =100.

This excellent description encapsulates the essence of &pg algorithms and their natural
simplicity, elegance, and conceptual intuitiveness. The gals behind \aesthetically pleasing”
layouts were initially captured by the two criteria: \all th e edge lengths ought to be the
same, and the layout should display as much symmetry as podsse."

The 1991 algorithm of Fruchterman and Reingold added \even ertex distribution" to the
earlier two criteria and treats vertices in the graph as \atomic particles or celestial bodies,

386 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

exerting attractive and repulsive forces from one anothef. The attractive and repulsive
forces are rede ned to
fa(d) = d?=k; f (d)= k?=d;

in terms of the distance d between two vertices and the optimal distance between vertes
k de ned as r

area _
number of vertices’

This algorithm is similar to that of Eades in that both algori thms compute attractive
forces between adjacent vertices and repulsive forces beten all pairs of vertices. The
algorithm of Fruchterman and Reingold adds the notion of \temperature" which could
be used as follows: \the temperature could start at an initid value (say one tenth the
width of the frame) and decay to 0 in an inverse linear fashiod’ The temperature controls
the displacement of vertices so that as the layout becomes fter, the adjustments become
smaller. The use of temperature here is a special case of a geal technique calledsimulated
annealing, whose use in force-directed algorithms is discussed latén this chapter. The
pseudo-code for the algorithm by Fruchterman and Reingoldshown in Figure 12.2 provides
further insight into the workings of a spring-embedder.

Each iteration the basic algorithm computes O(JEj) attractive forces and O(jVj?) repul-
sive forces. To reduce the quadratic complexity of the repudive forces, Fruchterman and
Reingold suggest using a grid variant of their basic algorihm, where the repulsive forces be-
tween distant vertices are ignored. For sparse graphs, and ith uniform distribution of the
vertices, this method allows aO(jVj) time approximation to the repulsive forces calculation.
This approach can be thought of as a special case of the mulpole technique introduced in
n-body simulations [Gre88] whose use in force-directed algithms will be further discussed
later in this chapter.

As in the paper by Eades [Ead84] the graphs considered by Friterman and Reingold
are small graphs with less than 40 vertices. The number of it@tions of the main loop is
also similar at 50.

12.3 The Barycentric Method

Historically, Tutte's 1963 barycentric method [Tut63] is t he rst \force-directed" algorithm
for obtaining a straight-line, crossings free drawing for agiven 3-connected planar graph.
Unlike almost all other force-directed methods, Tutte's guarantees that the resulting draw-
ing is crossings-free; moreover, all faces of the drawing erconvex.

The idea behind Tutte's algorithm, shown in Figure 12.3, is that if a face of the planar
graph is xed in the plane, then suitable positions for the remaining vertices can be found by
solving a system of linear equations, where each vertex pdgin is represented as a convex
combination of the positions of its neighbors. This algorithm be considered a force-directed
method as summarized in Di Battista et al. [DETT99].

In this model the force due to an edge (;v) is proportional to the distance between
vertices u and v and the springs have ideal length of zero; there are no explicrepulsive
forces. Thus the force at a vertexv is described by

X
F(v) = Py Pv);
(uv)2E

wherep, and p, are the positions of verticesu and v. As this function has a trivial minimum
with all vertices placed in the same location, the vertex setis partitioned into xed and free

12.3. THE BARYCENTRIC METHOD 387

area:=W L;fW andL are the width and length of the frameg
G:= 5v; E); fthe vertices are assigned random initial positiong
k:= areajVj;
function f,(x) := begin return x2=k end;
function f,(x):= begin return k?=x end;
for i ;=1 to iterations do begin
f calculate repulsive forceg
for vin V do begin
f each vertex has two vectors::pos and :disp
v:disp :=0;
for uin V do
if (u6 v) then begin
f is the di erence vector between the positions of the two vertcegy
= VIPOS U:pos
vidisp = vidisp+(=j j) ()
end
end
f calculate attractive forcesy
for ein E do begin
feach edges is an ordered pair of verticevand:ug
= eV:pos €e:u:pos
exvidisp:= ewvidisp (=)) fa(j);
e:udisp:= exuwdisp+(=]) fa(i)
end
flimit max displacement to temperature t and prevent from displacement
outside frameg
for vin V do begin
V:pos:= v:pos+ (v:dispgv:disp]) min(v:disp;t);
v:pos:x:= min(W=2; max(W=2;V:pos:X));
v:pos:y:= min(L=2; max(L=2;v:pos:y))
end
freduce the temperature as the layout approaches a better coguration g
t := cool(t)
end

Figure 12.2 Pseudo-code for the algorithm by Fruchterman and Reingold FR91].

vertices. Setting the partial derivatives of the force fundion to zero results in independent
systems of linear equations for thex-coordinate and for the y-coordinate.

The equations in the for-loop are linear and the number of eqations is equal to the
number of the unknowns, which in turn is equal to the number offree vertices. Solving these
equations results in placing each free vertex at the barycesr of its neighbors. The system
of equations can be solved using the Newton-Raphson methodMoreover, the resulting
solution is unique.

One signi cant drawback of this approach is the resulting drawing often has poor vertex
resolution. In fact, for every n > 1, there exists a graph, such that the barycenter method
computes a drawing with exponential area [EG95].

388 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Barycenter-Draw

Input: G = (V;E); a partition V = V[V; of V into a set Vy of at least three
xed vertices and a setV; of free vertices; a strictly convex polygonP with jVj
vertices

Output: a position p, for each vertex ofV, such that the xed vertices form a
convex polygonP.

1. Place each xed vertexu 2 V; at a vertex of P, and each free vertex at the

origin.
2. repeat
foreach free vertexv 2 V; do
1 X
Xy = ———— Xu
deqv) (uv)2E
1 X
W= T Yu
deqv) (uv)2E

until x, and y, converge for all free verticesv.

Figure 12.3 Tutte's barycentric method [Tut63]. Pseudo-code from [DETT99].

12.4 Graph Theoretic Distances Approach

The 1989 algorithm of Kamada and Kawai [KK89] introduced a dierent way of thinking
about \good" graph layouts. Whereas the algorithms of Eadesand Fruchterman-Reingold
aim to keep adjacent vertices close to each other while ensimg that vertices are not too
close to each other, Kamada and Kawai take graph theoretic aproach:

We regard the desirable geometric (Euclidean) distance beten two vertices in
the drawing as the graph theoretic distance between them iiné corresponding
graph.

In this model, the \perfect" drawing of a graph would be one in which the pair-wise geo-
metric distances between the drawn vertices match the graptiheoretic pairwise distances,
as computed by an All-Pairs-Shortest-Path computation. As this goal cannot always be
achieved for arbitrary graphs in 2D or 3D Euclidean spaces,he approach relies on setting
up a spring system in such a way that minimizing the energy of he system corresponds to
minimizing the di erence between the geometric and graph dstances. In this model there
are no separate attractive and repulsive forces between pai of vertices, but instead if a
pair of vertices is (geometrically) closer/farther than their corresponding graph distance the
vertices repel/attract each other. Let d;; denote the shortest path distance between vertex
i and vertex j in the graph. Then l;; = L d;j is the ideal length of a spring between
verticesi and j, where L is the desirable length of a single edge in the display. Kamaal

12.5. FURTHER SPRING REFINEMENTS 389

and Kawai suggest thatL = Lo=maxis; d;j , whereLg is the length of a side of the display
area and max; di; is the diameter of the graph, i.e., the distance between thedrthest
pair of vertices. The strength of the spring between verticgi and j is de ned as

ki;j = K:d%j)
where K is a constant. Treating the drawing problem as localizingjVj = n particles
p1;P2; i1 pPn in 2D Euclidean space, leads to the following overall energjunction:
XX 1)) 5
E= Eki;j (e pio 1)
i=1 j=i+1

The coordinates of a particlep; in the 2D Euclidean plane are given byx; andy; which
allows us to rewrite the energy function as follows:

X1 X 1 5 s o q
E = Skip (i X)) (Y YTl 2 (i x)2H (Y Y)?
i=1 j=i+1

The goal of the algorithm is to nd values for the variables that minimize the energy

derivatives are equal to zero, and which corresponds to salvg 2n simultaneous non-linear
equations. Therefore, Kamada and Kawai compute a stable padison one particle p, at

a time. Viewing E as a function of only x,, and y,, a minimum of E can be computed
using the Newton-Raphson method. At each step of the algoritm the particle p,, with the

largest value of |, is chosen, where

S

2 2

m @% @

Pseudo-code for the algorithm by Kamada and Kawai is shown irFigure 12.4.

The algorithm of Kamada and Kawai is computationally expendve, requiring an All-Pair-
Shortest-Path computation which can be done inO(jVj3)time using the Floyd-Warshall al-
gorithm or in O(jVj?logjVj+ jEjjVj) using Johnson's algorithm; see the All-Pairs-Shortest-
Path chapter in an algorithms textbook such as [CLRS90]. Futhermore, the algorithm
requires O(jVj?) storage for the pairwise vertex distances. Despite the higer time and
space complexity, the algorithm contributes a simple and inuitive de nition of a \good"
graph layout: A graph layout is good if the geometric distanes between vertices closely
correspond to the underlying graph distances.

12.5 Further Spring Re nements

Even before the 1984 algorithm of Eades, force-directed thniques were used in the context
of VLSI layouts in the 1960s and 1970s [FCW67, QB79]. Yet, reewed interest in force-
directed graph layout algorithms brought forth many new ideas in the 1990s. Frick, Ludwig,
and Mehldau [FLM95] add new heuristics to the Fruchterman-Reingold approach. In par-
ticular, oscillation and rotations are detected and dealt with using local instead of global
temperature. The following year Bru and Frick [BF96] exten ded the approach to layouts
directly in 3D Euclidean space. The algorithm of Cohen [Coh9] introduced the notion of
an incremental layout, a precursor of the multi-scale methals described in Section 12.6.

390 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

computed; forl i6] n;
computel;; forl i6j n;
compute kIJ forl i 6 |

while (max; ;>)
let pm be the particle satisfying . = max; i;
while (m >)
compute x and y by solving the following system of equations:

ggaw;ymx @f@ﬁ(Wiy = o O
@E @E @E
——— (x (t), (t)) X + (X(t), (t)) y = 7()(%)’ (t))
@y @x @y @w

Xm = Xm + X
Ym = Ym + Y,

Figure 12.4 Pseudo-code for the algorithm by Kamada and Kawai [KK89].

The 1997 algorithm of Davidson and Harel [DH96] adds additimal constraints to the
traditional force-directed approach in explicitly aiming to minimize the number of edge-
crossings and keeping vertices from getting too close to neadjacent edges. The algo-
rithm uses the simulated annealing technique developed folarge combinatorial optimiza-
tion [KGV83]. Simulated annealing is motivated by the physical process of cooling molten
materials. When molten steel is cooled too quickly it cracksand forms bubbles making it
brittle. For better results, the steel must be cooled slowlyand evenly and this process is
known as annealing in metallurgy. With regard to force-directed algorithms, this process is
simulated to nd local minima of the energy function. Cruz and Twarog [CT96] extended
the method by Davidson and Harel to three-dimensional drawngs.

Genetic algorithms for force-directed placement have alsdeen considered. Genetic al-
gorithms are a commonly used search technique for nding apmximate solutions to opti-
mization and search problems. The technique is inspired bywlutionary biology in general
and by inheritance, mutation, natural selection, and reconbination (or crossover), in par-
ticular; see the survey by Vose [Vos99]. In the context of fare-directed techniques for
graph drawing, the genetic algorithms approach was introdeed in 1991 by Kosak, Marks
and Shieber [KMS91]. Other notable approaches in the direébn include that of Branke,
Bucher, and Schmeck [BBS97].

In the context of graph clustering, the LinLog model introduces an alternative energy
model [NoaO7]. Traditional energy models enforce small andniform edge lengths, which
often prevent the separation of nodes in dierent clusters. As a side e ect, they tend
to group nodes with large degree in the center of the layout, Wwere their distance to the
remaining nodes is relatively small. The node-repulsion liLog and edge- repulsion LinLog
models group nodes according to two well-known clustering riteria: the density of the
cut [LR88] and the normalized cut [SMO0O].

12.6. LARGE GRAPHS 391

12.6 Large Graphs

The rst force-directed algorithms to produce good layouts for graphs with more than 1000
vertices is the 1999 algorithm of Hadany and Harel [HHO1]. Tky introduced the multi-

scale technique as a way to deal with large graphs and in the flowing year four related

but independent force-directed algorithms for large grapls were presented at the Annual
Symposium on Graph Drawing. We begin with Hadany and Harel'sdescription on the
multi-scale method

A natural strategy for drawing a graph nicely is to rst consider an abstraction,

disregarding some of the graph's ne details. This abstragbn is then drawn,

yielding a \rough" layout in which only the general structure is revealed. Then
the details are added and the layout is corrected. To employush a strategy
it is crucial that the abstraction retains essential featues of the graph. Thus,
one has to de ne the notion of coarse-scale representationsf a graph, in which
the combinatorial structure is signi cantly simpli ed but features important for

visualization are well preserved. The drawing process withen \travel" between

these representations, and introduce multi-scale corretbns. Assuming we have
already de ned the multiple levels of coarsening, the genak structure of our

strategy is as follows:

1. Perform ne-scale relocations of vertices that yield a locally organized con-
guration.

2. Perform coarse-scaleelocations (through local relocations in the coarse rep-
resentations), correcting global disorders not found in sage 1.

3. Perform ne-scale relocations that correct local disorders introduced by stge 2.

Hadany and Harel suggest computing the sequence of graphs lsing edge contractions
SO as to preserve certain properties of the graph. In particlar, the goal is to preserve three
topological properties: cluster size, vertex degrees, aniomotopy. For the coarse-scale
relocations, the energy function for each graph in the sequee is that of Kamada and Kawai
(the pairwise graph distances are compared to the geometridistances in the current layout).
For the ne-scale relocations, the authors suggest using fee-directed calculations as those
of Eades [Ead84], Fruchterman-Reingold [FR91], or Kamaddawai [KK89]. While the
asymptotic complexity of this algorithm is similar to that o f the Kamada-Kawai algorithm,
the multi-scale approach leads to good layouts for much largr graphs in reasonable time.

The algorithm of Harel and Koren [HK02] took force-directed algorithms to graphs with
15,000 vertices. This algorithm is similar to the algorithm of Hadany and Harel, yet uses
a simpler coarsening process based on lacenters approximation, and a faster ne-scale
beauti cation. Given a graph G = (V;E), the k-centers problem asks to nd a subset of
the vertex setV® V of sizek, so as to minimize the maximum distance from a vertex to
V% minu 2 V max,zv.y2vodist(u;v). While k-centers is an NP-hard problem, Harel and
Koren use a straightforward and e cient 2-approximation al gorithm that relies on Breadth-
First Search [Hoc96]. The ne-scale vertex relocations araone using the Kamada-Kawai
approach. The Harel and Koren algorithm is summarized in Figire 12.5.

392 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Layout (G(V;E))
% Goal: Find L, a nice layout of G
% Constants:
% Rad[= 7] { determines radius of local neighborhoods
% Iterations[= 4] { determines number of iterations in local beauti cation
% Ratio[= 3] { ratio between number of vertices in two consecuive levels
% MinSize[= 10] { size of the coarsest graph
Compute the all-pairs shortest path length: dyv
Set up a random layout L
k MinSize
while k j Vjdo
centers K-Centers (G(V;E);k)
radius = maxyzcenters MiNy2centers fdvug Rad
LocalLayout (dcenters centers ; L (centers); radius; Iterations)
for everyv 2 V do
L(v) 2 L(center(v)) + rand
k kRatio
return L

K-Centers (G(V;E);k)
% Goal: Find a set S V of size k, such that max,oy mingxsfdsyg is
minimized.
S f vgfor some arbitrary v2 V
for i=2to k do
1. Find the vertex u farthest away from S
(i.e., such that ming,sfdysg ming,sfdyusg; 8w 2 V)
2.S S|[f ug
return S

LocalLayout (dy v;L;k;Iterations)
% Goal: Find a locally nice layout L by beautifying k-neighborhoods
% dy v : all-pairs shortest path length
% L: initialized layout
% k: radius of neighborhoods
for i =1 to Iterations jVj do
1. Choose the vertexv with the maximal &
2. Compute ¥ as in Kamada-Kawai
3L(V) LM+ K k)
end

Figure 12.5 Pseudo-code for the algorithm by Harel and Koren [HKO0Z2].

12.6. LARGE GRAPHS 393

Main Algorithm

create a ltration V: Vo Vi i1 W
for i = kto 0do
for each v2V, Viy do
nd vertex neighborhood N;(v); N; 1(v);:::;Ng(V)
nd initial position pogv] of v
repeat rounds times
for each v 2V, do
compute local temperature heat[v]
disp[v] heat[v] Fy; (V)
for each v2 'V, do
pogv] pogv] + disp[v]
add all edgese 2 E

Figure 12.6 Pseudo-code for the algorithm by Gajeret al. [GGKO04].

The 2000 algorithm of Gajer et al. [GGKO04], shown in Figure 12.6, is also a multi-
scale force-directed algorithm but introduces several idas to the realm of multi-scale force-
directed algorithms for large graphs. Most importantly, this approach avoids the quadratic
space and time complexity of previous force-directed appraches with the help of a simpler
coarsening strategy. Instead of computing a series of coas graphs from the given Iarge
graph G = (V;E), Gajer et al. produce avertex ltration V: Vo Vi 11 W ,
whereVy = V(G) is the original vertex set of the given graphG. By restricting the number
of vertices considered in relocating any particular vertexin the ltration and ensuring that
the Itration has O(logjVj) levels an overall running time of O(jVjlog?jVj) is achieved.
Filtrations based on graph centers (as in Harel and Koren [HK2]) and maximal independent
sets are consideredV = Vo Vi i V¢ ; ,is a maximal independent set lItration
of G if V; is a maximal subset ofV;, ; for which the graph distance between any pair of its
elements is greater than or equal to 2

In the GRIPsystem [GKO02], Gajer et al. add to the ltration and neighborhood cal-
culations of [GGKO04]: they introduce the idea of realizing the graph in high-dimensional
Euclidean space and obtaining 2D or 3D projections at the end The algorithm also relies
on intelligent initial placement of vertices based on graphtheoretic distances, rather than
on random initial placement. Finally, the notion of cooling is re-introduced in the context
of multi-scale force-directed algorithms. TheGRIPsystem produces high-quality layouts, as
illustrated in Figure 12.7.

Another multilevel algorithm is that of Walshaw [Wal03]. In stead of relying on the
Kamada-Kawai type force interactions, this algorithm extends the grid variant of Fruchterman-
Reingold to a multilevel algorithm. The coarsening step is lased on repeatedly collaps-
ing maximally independent sets of edges, and the ne-scaleernements are based on
Fruchterman-Reingold force calculations. This O(jVj?) algorithm is summarized in Fig-
ure 12.8.

394 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

The fourth 2000 multilevel force-directed algorithm is dueto Quigley and Eades [QEOQO].
This algorithm relies on the Barnes-Hut n-body simulation method [BH86] and reduces
repulsive force calculations toO(jVjlogjVj) time instead of the usual O(jVj?). Similarly,
the algorithm of Hu [Hu05] combines the multilevel approachwith the n-bosy simulation
method, and is implemented in thesfdp drawing engine of GraphViz [EGK* 01].

One possible drawback to this approach is that the running tme depends on the distribu-
tion of the vertices. Hachul and Janger [HJ04] address thigoroblem in their 2004 multilevel
algorithm.

Figure 12.7 Drawings from GRIP. First row: knotted meshes of 1600, 2500and 10000
vertices. Second row: Sierpinski graphs of order 7 (1,095 séces), order 6 (2,050 vertices),
3D Sierpinski of order 7 (8,194 vertices) [GK02].

12.6. LARGE GRAPHS 395

function fg(x;w):= begin return Cwk?=x end
function f(x;d;w):=begin return f(x k)=dg fg(x;w) end
t:= tg;
Posn:= NewP osn;
while (converged6 1) begin
converged :=1;
for v2 V begin
OldP osn[v] = NewP osn[v]
end
for v2 V begin
finitialize D, the vector of displacements ofvg
D :=0;
f calculate global (repulsive) forceg
for u2 V;u6 v begin
.= Posnu] Posnv];
D:=D+(=Deltaj) fg(j j;ju);
end
f calculate local (spring) forcesg
for u2 (v) begin
:= Posnu] Posnv];
D:=D+(HDeltaj) fi(j j;j (V)i;juj);
end
f reposition vg
NewP osnv] = NewPosn[v] + (D=jDj) min(t;jDj);
= NewPosnv] OIdPosn[v];
if j>k tol)converged:=0;
end
freduce the temperature to reduce the maximum movemerg
t := cool(t);
end

Figure 12.8 Pseudo-code for the algorithm by Walshaw [WalO3].

396 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

12.7 Stress Majorization

Methods that exploit fast algebraic operations o er another practical way to deal with
large graphs. Stress minimization has been proposed and implemented in the more general
setting of multidimensional scaling (MDS) [Kru64]. The function describing the stress is
similar to the layout energy function of Kamada-Kawai from Section 12.4:

X1 X 1)) ,
E= Eki;j e mi lig)s
i=1 j=i+1
but here ki; =1 and l;; = di; is simply the graph theoretic distance. In their paper on

graph drawing by stress minimization Gansneret al. [GKNO4] point out that this particular
formulation of the energy of the layout, or stress function has been already used to draw
graphs as early as in 1980 [KS80]. What makes this particulastress function relevant to
drawing large graphs is that it can be optimized better than with the local Newton-Raphson
method or with gradient descent. Speci cally, this stress finction can be globally minimized
via majorization. That is, unlike the energy function of Kamada-Kawai, the classical MDS
stress function can be optimized via majorization which is giaranteed to converge.

The strain model, or classical scaling, is related to the stress modelin this setting
a solution can be obtained via an eigen-decomposition of thadjacency matrix. Solving
the full stress or strain model still requires computing all pairs shortest paths. Signi cant
savings can be gained if we instead compute a good approxiniah. In PivotMDS Brandes
and Pich [BP06] show that replacing the all-pairs-shortestpath computation with a distance
calculations from a few vertices in the graph is often su cient, especially if combined with
a solution to a sparse stress model.

When not all nodes are free to move,constrained stress majorization can be used to
support additional constraints by, and treating the majori zing functions as a quadratic
program [DKMO09]. Planar graphs are of particular interest in graph drawing, and often
force-directed graph drawing algorithms are used to draw tem. While in theory any planar
graph has a straight-line crossings-free drawing in the plae, force-directed algorithms do
not guarantee such drawings.

Modi cations to the basic force-directed functionality, w ith the aim of improving the lay-
out quality for planar graphs, have also been considered. Hal and Sardas [HS98] improve
an earlier simulated annealing drawing algorithm by Davidson and Harel [DH96]. The main
idea is to obtain an initial plane embedding and then apply simulated annealing while not
introducing any crossings. Overall their method signi cantly improved the aesthetic quality
of the initial planar layouts, but at the expense of a signi cant increase in running time of
O(n®), making it practical only for small graphs.

PrEd [Ber00] and ImPrEd [PSA11] are force-directed algorihms that improve already
created drawings of a graph. PrEd [Ber00] extends the methoaf Fruchterman and Rein-
gold [FR91] and can be used as a post-processing crossingegerving optimization. In
particular, PrEd takes some straight-line drawing as input and guarantees that no new
edge crossings will be created (while preserving existing@ssings, if any are present in the
input drawing). Then the algorithm can be used to optimize a planar layout, while preserv-
ing its planarity and its embedding, or to improve a graph that has a meaningful initial set
of edge crossings. To achieve this result, PrEd adds a phasehere the maximal movement
of each node is computed, and adds a repulsive force betweemode, edge) pairs. The main
aims of ImPrEd [PSA11] are to signi cantly reduce the running time of PrEd, achieve high
aesthetics even for large and sparse graphs, and make the atlifhm more stable and reliable

12.8. NON-EUCLIDEAN APPROACHES 397

with respect to the input parameters. This is achieved via inproved spacing of the graph
elements and an accelerated convergence of the drawing tcsitnal con guration.

An alternative approach for modifying force-directed fundionality is to use a prepro-
cessing step rather than a random layout to initialize the aborithm. Experimental results
indicate that combining a linear-time planar embedding step with a standard force-directed
algorithm such as a Fruchterman-Reingold can lead to improed qualitative and quantitative
results [FK12].

12.8 Non-Euclidean Approaches

Much of the work on non-Euclidean graph drawing has been doni hyperbolic space which
0 ers certain advantages over Euclidean space; see Munzn@un97, MB96]. For example,
in hyperbolic space it is possible to compute a layout for a caplete tree with both uniform
edge lengths and uniform distribution of nodes. Furthermoe, some of the embeddings of
hyperbolic space into Euclidean space naturally provide a sh-eye view of the space, which
is useful for \focus+context" visualization, as shown by Lamping et al. [LRP95]. From
a visualization point of view, spherical space o ers a way topresent a graph in a center-
free and periphery-free fashion. That is, in traditional drawings in R? there is an implicit
assumption that nodes in the center are important, while nodes on the periphery are less
important. This can be avoided in S$* space, where any part of the graph can become
the center of the layout. The early approaches for calculatig the layouts of graphs in
hyperbolic space, however, are either restricted by their ature to the layout of trees and
tree-like graphs, or to layouts on a lattice.

The hyperbolic tree layout algorithms function on the principle of hyperbolic sphere
packing, and operate by making each node of a tree, starting ith the root, the center of a
sphere in hyperbolic space. The children of this node are thegiven positions on the surface
of this sphere and the process recurses on these children. Bgprefully computing the radii
of these spheres it is possible to create aesthetically plsig layouts for the given tree.

Although some applications calculate the layout of a generbgraph using this method, the
layout is calculated using a spanning tree of the graph and tk extra edges are then added
in without altering the layout [Mun98]. This method works well for tree-like and quasi-
hierarchical graphs, or for graphs where domain-speci ¢ kowledge provides a way to create
a meaningful spanning tree. However, for general graphs (g., bipartite or densely connected
graphs) and without relying on domain speci ¢ knowledge, the tree-based approach may
result in poor layouts.

Methods for generalizing Euclidean geometric algorithms @ hyperbolic space, although
not directly related to graph drawing, have also been studid. Recently, van Wijk and
Nuij [VWNO4] proposed a Poincae's half-plane projectionto de ne a model for 2D viewing
and navigation. Eppstein [Epp03] shows that many algorithns that operate in Euclidean
space can be extended to hyperbolic space by exploiting therpperties of a Euclidean model
of the space, such as the Beltrami-Klein or Poincae.

Hyperbolic and spherical space have also been used to displaelf-organizing maps in
the context of data visualization. Ontrup and Ritter [OR01] and Ritter [Rit99] extend the
traditional use of a regular (Euclidean) grid, on which the slf-organizing map is created,
with a tessellation in spherical or hyperbolic space. An iteative process is then used to
adjust which elements in the data-set are represented by theéntersections. Although the
hyperbolic space method seems to be a promising way to displdigh-dimensional data-sets,
the restriction to a lattice is often undesirable for graph visualization.

398 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

imension
\ al gorithm .
a
i & rectangle
atproacn N\ i
(2 orthogonal
X __ problem constraintg
N f .
Constraint \
[4 > \.mteracnve ,,,,,,,,,,, ¢ schematic
& three
20Ut . \
iiciant
P @
N A 4
L Java
| jiagle 9" approach
. N)
difnension . finding

s visualizing
‘,\«he\mg train .\ N \' N algorithm ‘
: <
¢ -

Figure 12.9 Layouts of a graph obtained from research papers' titles in fiperbolic space
H2 and in spherical spaceS? [KWO05].

Ostry [Ost96] considers constraining force-directed algithms to the surface of three-
dimensional objects. This work is based on a di erential eqation formulation of the motion
of the nodes in the graph, and is exible in that it allows a layout on almost any object,
even multiple objects. Since the force calculations are maain Euclidean space, however,
this method is inapplicable to certain geometries (e.g., hperbolic geometry).

Another example of graph embedding within a non-Euclidean gometry is described in the
context of generating spherical parameterizations of 3D mghes. Gotsmanet al. [GGSO03]
describe a method for producing such an embedding using a geralization to spherical
space of planar methods for expressing convex combinatiors points. The implementation
of the procedure is similar to the method described in this paer, but it may not lend itself
to geometries other than spherical.

Kobourov and Wampler [KWO5] describe a conceptually simpleapproach to generalizing
force-directed methods for graph layout from Euclidean gemetry to Riemannian geome-
tries. Unlike previous work on non-Euclidean force-direced methods, this approach is
not limited to special classes of graphs but can be applied tarbitrary graphs; see Fig-
ure 12.9. The method relies on extending the Euclidean notios of distance, angle, and
force-interactions to smooth non-Euclidean geometries @ projections to and from appro-
priately chosen tangent spaces. Formal description of the aculations needed to extend
such algorithms to hyperbolic and spherical geometries aralso detailed.

In 1894 Riemann described a generalization of the geometryf surfaces, which had been
studied earlier by Gauss, Bolyai, and Lobachevsky. Two welknown special cases of Rie-
mannian geometries are the two standard non-Euclidean typg, spherical geometry and
hyperbolic geometry. This generalization led to the modernconcept of a Riemannian man-
ifold. Riemannian geometries have less convenient structe than Euclidean geometry, but
they do retain many of the characteristics which are useful ér force-directed graph layouts.
A Riemannian manifold M has the property that for every point x 2 M, the tangent space
TxM is an inner product space. This means that for every point on he manifold, it is
possible to de ne local notions of length and angle.

12.8. NON-EUCLIDEAN APPROACHES 399

Using the local notions of length we can de ne the length of a ontinuous curve : [a;b]!
M by

z b
length() = i qjjdt:
a

This leads to a natural generalization of the concept of a staight line to that of a geodesi¢
where the geodesic between two pointsi;v 2 M is de ned as a continuously di erentiable
curve of minimal length between them. These geodesics in Elidean geometry are straight
lines, and in spherical geometry they are arcs of great cirek.

We can similarly de ne the distance between two points,d(x; y) as the length of a geodesic
between them. In Euclidean space the relationship between pair of nodes is de ned along
lines: the distance between the two nodes is the length of théine segment between them
and forces between the two nodes act along the line through #m. These notions of distance
and forces can be extended to a Riemannian geometry by havinthese same relationships
be de ned in terms of the geodesics of the geometry, rather thn in terms of Euclidean lines.

As Riemannian manifolds have a well-structured tangent spae at every point, these tan-
gent spaces can be used to generalize spring embedders toitidry Riemannian geometries.
In particular, the tangent space is useful in dealing with the interaction between one point
and several other points in non-Euclidean geometries. Coiider three points X, y, and z in
a Riemannian manifold M where there is an attractive force fromx to y and z. As can
be easily seen in the Euclidean case (but also true in genejalhe net force on x is not
necessarily in the direction ofy or z, and thus the natural motion of x is along neither the
geodesic towardy, nor that toward z. Determining the direction in which x should move
requires the notion of angle.

Since the tangent space ak, being an inner product space, has enough structure to de ne
lengths and angles, we do the computations for calculatinghe forces onx in TyM . In order
to do this, we de ne two functions for every point x 2 M as follows:

M TTM

MM

These two functions map points inM to and from the tangent space ofM at x, respec-
tively. We require that , and , ! satisfy the following constraints:

1 , Y x(y)=yforaly2M
2.4 x(Nii = d(x;y)
3. x preserves angles about the origin

Using these functions it is now easy to de ne the way in which he nodes of a given
graph G = (V; E) interact with each other through forces. In the general franework for this
algorithm each node is considered individually, and its newposition is calculated based on
the relative locations of the other nodes in the graph (repusive forces) and on its adjacent
edges (attractive forces). Then we obtain pseudo-code for &raditional Euclidean spring
embedder and its corresponding non-Euclidean counterpartas shown in Figure 12.10.

400 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

genericalgorithm(G)
while not done do
foreach n 2 G do
position[n] := force _directed_placement(n, G)
end
non_Euclidean_algorithm(G)
while not done do
foreach n 2 G do
X := position[n]
G%:= (G)
x? := force_directed_placement(n, G°
position[n] := , 1(x9
end
end

Figure 12.10 Pseudo-code for a traditional Euclidean spring embedder ad its corre-
sponding non-Euclidean counterpart.

12.9 Lombardi Spring Embedders

Inspired by American graphic artist Mark Lombardi, Duncan et al. [DEG* 10a, DEG' 10b]
introduce the concept of alLombardi drawing, which is a drawing that uses circular arcs
for edges and achieves the maximum (i.eperfect) amount of angular resolution possible at
each vertex.

There are several force-directed graph drawing methods thause circular-arc edges or
curvilinear poly-edges. Brandes and Wagner [BWO0O] describ a force-directed method for
drawing train connections, where the vertex positions are xed but transitive edges are
drawn as Bezier curves. Finkel and Tamassia [FT05], on the ther hand, describe a force-
directed method for drawing graphs using curvilinear edgesvhere vertex positions are free
to move. Their method is based on adding dummy vertices that erve as control points for
Bezier curve.

Chernobelskyiet al. [CCG* 11] describe two force-directed algorithms folLombardi-style
(or near-Lombardi) drawings of graphs, where edges are drawn using circular es with the
goal of maximizing the angular resolution at each vertex. The rst approach calculates
lateral and rotational forces based on the two tangents de ring a circular arc between two
vertices. In contrast, the second approach uses dummy vertes on each edge with repulsive
forces to \push out" the circular arcs representing edges, & as to provide an aesthetic
\balance". Another distinction between the two approachesis that the rst one lays out
the vertex positions along with the circular edges, while tke second one works on graphs
that are already laid out, only modifying the edges. It can beargued that Lombardi or
near-Lombardi graph drawings have a certain aesthetic appad as has been shown in recent
empirical experiments [PHNK12]; see Fig. 12.11. However, rother recent experimental
paper on curve-based drawings [XRP 12] seems to suggest that straight-line drawings have
better readability.

12.10. DYNAMIC GRAPH DRAWING 401

Figure 12.11 Examples of force-directed Lombardi drawings: note that eery edge is a
circular arc and every vertex has perfect angular resolutin [CCG™ 11].

12.10 Dynamic Graph Drawing

While static graphs arise in many applications, dynamic pracesses give rise to graphs that
evolve through time. Such dynamic processes can be found ilmware engineering, telecom-
munications tra ¢, computational biology, and social netw orks, among others.

Thus, dynamic graph drawing deals with the problem of e ectively presenting relation-
ships as they change over time. A related problem is that of \gualizing multiple relationships
on the same dataset. Traditionally, dynamic relational data is visualized with the help of
graphs, in which vertices and edges fade in and out as needeak, as a time-series of graphs;
see Figure 12.12.

Figure 12.12 A dynamic graph can be interpreted as a larger graph made of amecting
graphs in adjacent timeslices [EHK 04].

402 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

The input to this problem is a series of graphs de ned on the seme underlying set
of vertices. As a consequence, nearly all existing approaebk to visualization of evolv-
ing and dynamic graphs are based on the force-directed metlib Early work can be
dated back to North's DynaDAG [Nor96], where the graph is not given all at once, but
incrementally. Brandes and Wagner adapt the force-directd model to dynamic graphs
using a Bayesian framework [Brandes and Wagner 1998]. Dieldnd Gerg [DGO02] con-
sider graphs in a sequence to create smoother transitions. p8cial classes of graphs such
as trees, series-parallel graphs and st-graphs have also dye studied in dynamic mod-
els [CDTT95, CBT* 92, Moe90]. Most of these early approaches, however, are lited
to special classes of graphs and usually do not scale to graplover a few hundred vertices.

TGRIPwas one of the rst practical tools that could handle the larger graphs that appear
in the real-world. It was developed as part of a system that keps track of the evolution of
software by extracting information about the program stored within a CVS version control
system [CKN* 03]. Such tools allow programmers to understand the evolutin of a legacy
program: Why is the program structured the way it is? Which programmers were responsi-
ble for which parts of the program during which time periods? Which parts of the program
appear unstable over long periods of time?TGRIPwas used to visualize inheritance graphs,
program call-graphs, and control- ow graphs, as they evole over time; see Fig. 12.13.

For layout of evolving and dynamic graphs, there are two impatant criteria to con-
sider:

1. readability of the individual layouts, which depends on aesthetic critgia such as
display of symmetries, uniform edge lengths, and minimal nmber of crossings;
and

2. mental map preservationin the series of layouts, which can be achieved by en-
suring that vertices and edges that appear in consecutive @phs in the series,
remain in the same location.

These two criteria are often contradictory. If we obtain individual layouts for each graph,
without regard to other graphs in the series, we may optimizereadability at the expense of
mental map preservation. Conversely, if we X the common vetices and edges in all graphs
once and for all, we are optimizing the mental map preservatin yet the individual layouts
may be far from readable. Thus, we can measure the e ectiverss of various approaches for
visualization of evolving and dynamic graphs by measuring lhe readability of the individual
layouts, and the overall mental map preservation.

Figure 12.13 Snapshots of the call-graph of a program as it evolves throug time,
extracted from CVS logs. Vertices start out red. As time pasgs and a vertex does not
change it turns purple and nally blue. When another change is a ected, the vertex again
becomes red. Note the number of changes between the two larghusters and the break in
the build on the last image [CKN* 03].

12.11. CONCLUSION 403

Dynamic graphs can be visualized withaggregated viewswhere all the graphs are dis-
played at once,merged views where all the graphs are stacked above each other, and with
animations, where only one graph is shown at a time, and morphing is used en chang-
ing between graphs (fading in/out vertices and edges that apear/disappear). When using
the animation/morphing approach, it is possible to change he balance between readabil-
ity of individual graphs and the overall mental map preservaion, as in the system for
Graph Animations with Evolving Layouts, GraphAEL [EHK * 03, FKN* 04]. Applications
of this framework include visualizing software evolution CKN* 03], social networks analy-
sis [MB09], and the behavior of dynamically modi able code PID * 05].

12.11 Conclusion

Force-directed algorithms for drawing graphs have a long tdtory and new variants are still
introduced every year. Their intuitive simplicity appeals to researchers from many di erent
elds, and this accounts for dozens of available implementons. As new relational data
sets continue to be generated in many applications, forceitected algorithms will likely
continue to be the method of choice. The latest scalable algadhms and algorithms that
can handle large dynamic and streaming graphs are arguablyfareatest utility today.

404

CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

References

[BBS97]

[Ber00]

[BF96]

[BH86]

[BPO6]

[Bra01]

[BWOO]

[CBT*92]

[CCG* 11]

[CDTT95]

[CKN* 03]

[CLRS90]

[Coh97]

[CT96]

Jargen Branke, Frank Bucher, and Hartmut Schmeck.A genetic algorithm
for drawing undirected graphs. In Proceedings of the 3rd Nordic Workshop
on Genetic Algorithms and Their Applications, pages 193{206, 1997.

Francois Bertault. A Force-Directed Algorithm tha t Preserves Edge Cross-
ing Properties. Information Processing Letters, 74(1-2):7{13, 2000.

I. Bru and A. Frick. Fast interactive 3-D graph visua lization. In F. J.
Brandenburg, editor, Proceedings of the 3rd Symposium on Graph Drawing
(GD), volume 1027 ofLecture Notes Computer Science pages 99{110.
Springer-Verlag, 1996.

Josh Barnes and Piet Hut. A hierarchical O(N log N) force calculation
algorithm. Nature, 324:446{449, December 1986.

U. Brandes and C. Pich. Eigensolver methods for progrssive multidi-
mensional scaling of large data. InProceedings 14th Symposium on Graph
Drawing (GD), pages 42{53, 2006.

Ulrik Brandes. Drawing on physical analogies. In Mthael Kaufmann and
Dorothea Wagner, editors, Drawing Graphs, volume 2025 ofLecture Notes
in Computer Science pages 71{86. Springer-Verlag, 2001.

Ulrik Brandes and Dorothea Wagner. Using Graph Layou to Visualize
Train Interconnection Data. J. Graph Algorithms Appl., 4(3):135{155,
2000.

R. F. Cohen, G. Di Battista, R. Tamassia, |. G. Tollis, and P. Bertolazzi.
A framework for dynamic graph drawing. In Proceedings of the 8th Annual
Symposium on Computational Geometry (SCG '92) pages 261{270, 1992.
R. Chernobelskiy, K. Cunningham, M. T. Goodrich, S. G. Kabourov, and
L. Trott. Force-directed lombardi-style graph drawing. In Proceedings
19th Symposium on Graph Drawing (GD) pages 78{90, 2011.

R. F. Cohen, G. Di Battista, R. Tamassia, and |. G. Tollis. Dynamic
graph drawings: Trees, series-parallel digraphs, and plar ST-digraphs.
SIAM J. Comput., 24(5):970{1001, 1995.

C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A
system for graph-based visualization of the evolution of siware. In ACM
Symposium on Software Visualization (SoftVis) pages 77{86, 2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sgin. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

Jonathan D. Cohen. Drawing graphs to convey proxinty: An incremental
arrangement method. ACM Transactions on Computer-Human Interac-
tion, 4(3):197{229, September 1997.

I. F. Cruz and J. P. Twarog. 3D graph drawing with simul ated annealing.
In F. J. Brandenburg, editor, Proceedings of the 3rd Symposium on Graph
Drawing (GD), volume 1027 ofLecture Notes Computer Science pages
162{165. Springer-Verlag, 1996.

[DEG™ 10a] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.

Kobourov, and Martin Nellenburg. Drawing trees with perfe ct angular
resolution and polynomial area. In Graph Drawing, pages 183{194, 2010.

REFERENCES

[DEG™ 10b] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.

[DETT99]

[DGO02]

[DHY96]

[DID * 05]

[DKMO9]

[Ead84]

[EGY5]

[EGK* 01]

[EHK * 03]

[EHK * 04]

[Epp03]

[FCW67]
[FK12]

[FKN* 04]

[FLMO5]

[FRO1]

Kobourov, and Martin Nellenburg. Lombardi drawings of graphs. In
Graph Drawing, pages 195{207, 2010.

Giuseppe Di Battista, Peter Eades, Roberto Tamass$a, and loannis G. Tol-
lis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, Englewood Cli s, NJ, 1999.

Stephan Diehl and Carsten Gerg. Graphs, they are chaging. In Pro-
ceedings of the 10th Symposium on Graph Drawing (GD)pages 23{30,
2002.

Ron Davidson and David Harel. Drawing graphs nicely sing simulated
annealing. ACM Transactions on Graphics, 15(4):301{331, 1996.

Brad Dux, Anand lyer, Saumya Debray, David Forrester, ard Stephen G.
Kobourov. Visualizing the behaviour of dynamically modi a ble code. In
13th IEEE Workshop on Porgram Comprehension pages 337{340, 2005.
Tim Dwyer, Yehuda Koren, and Kim Marriott. Constrai ned graph layout
by stress majorization and gradient projection. Discrete Mathematics

309(7):1895{1908, 2009.

Peter Eades. A heuristic for graph drawing. Congressus Numerantium
42:149{160, 1984.

Peter Eades and Patrick Garvan. Drawing stressed plaar graphs in three
dimensions. In Proceedings of the 3rd Symposium on Graph Drawing
pages 212{223, 1995.

John Ellson, Emden R. Gansner, Eleftherios Koutso os, &phen C.

North, and Gordon Woodhull. Graphviz|open source graph draw ing

tools. In Graph Drawing, pages 483{484, 2001.

C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.

GraphAEL: Graph animations with evolving layouts. In 11th Symposium
on Graph Drawing, pages 98{110, 2003.

C. Erten, P. J. Harding, S. Kobourov, K. Wampler, and G. Yee. Ex-

ploring the computing literature using temporal graph visualization. In

Visualization and Data Analysis, pages 45{56, 2004.

D. Eppstein. Hyperbolic geometry, Mebius transfarmations, and geomet-
ric optimization. In MSRI Introductory Workshop on Discrete and Com-
putational Geometry, 2003.

C. Fisk, D. Caskey, and L. West. Accel: Automated circuit card etching
layout. Proceedings of the IEEE 55(11):1971{1982, 1967.

Joe Fowler and Stephen G. Kobourov. Planar preprocesing for spring
embedders. InGraph Drawing, 2012.

D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler, and G. Yee.
graphael: A system for generalized force-directed layoutsin 12th Sympo-
sium on Graph Drawing (GD), 2004.

A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive | ayout algorithm for
undirected graphs. In R. Tamassia and I. G. Tollis, editors, Proceedings
of the 2nd Symposium on Graph Drawing (GD) volume 894 of Lecture
Notes in Computer Science pages 388{403. Springer-Verlag, 1995.

T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Softw. { Pract. Exp., 21(11):1129{1164, 1991.

405

406

[FTOS]

[GGKO4]

[GGS03]

[GKO02]

[GKNO4]

[Gre88]
[HHO1]

[HJ04]

[HKO2]

[Hoc96]
[HS98]
[HUOS]
[KGV83]
[KK89]

[KMS91]

[Kru64]
[KS80]

[KWO05]

CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Benjamin Finkel and Roberto Tamassia. Curvilinear Graph Drawing Us-
ing the Force-Directed Method. In Proc. 12th Int. Symp. on Graph Draw-
ing (GD 2004), pages 448{453, 2005.

P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional
algorithm for drawing large graphs. Computational Geometry: Theory
and Applications, 29(1):3{18, 2004.

C. Gotsman, X. Gu, and A. She er. Fundamentals of splerical parame-
terization for 3D meshes. InACM Transactions on Graphics, 22, pages
358{363, 2003.

Pawel Gajer and Stephen G. Kobourov. GRIP: Graph dRawng with
Intelligent Placement. Journal of Graph Algorithms and Applications,
6(3):203{224, 2002.

E. Gansner, Y. Koren, and S. North. Graph drawing by gress mini-
mization. In Proceedings 12th Symposium on Graph Drawing (GD)pages
239{250, 2004.

Leslie Greengard. The Rapid Evolution of Potential Fields in Particle
Systems MIT. Press, Cambridge, MA, 1988.

R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs
nicely. Discrete Applied Mathematics 113(1):3{21, 2001.

S. Hachul and M. Jenger. Drawing large graphs woth a mtential- eld-
based multilevel algorithm. In Proceedings of the 12th Symposium on
Graph Drawing (GD), volume 3383 ofLecture Notes in Computer Science
pages 285{295. Springer-Verlag, 2004.

David Harel and Yehuda Koren. A fast multi-scale method for drawing
large graphs. Journal of Graph Algorithms and Applications, 6(3):179{
2002, 2002.

D. S. Hochbaum.Approximation Algorithms for NP-Hard Problems. PWS
Publishing, 1996.

David Harel and Meir Sardas. An algorithm for straigh-line drawing of
planar graphs. Algorithmica, 20(2):119{135, 1998.

Yifan Hu. E cient and high quality force-directed gr aph drawing. The
Mathematica Journal, 10:37{71, 2005.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optim ization by simulated
annealing. Science 220(4598):671{680, 1983.

T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7{15, 1989.

Corey Kosak, Joe Marks, and Stuart Shieber. A parakl genetic algo-
rithm for network-diagram layout. In Proceedings of the 4th International
Conference on Genetic Algorithms pages 458{465, 1991.

J. B. Kruskal. Multidimensional scaling by optimiz ing goodness of t to
a nonmetric hypothesis. Psychometrika 29:1{27, 1964.

J. Kruskal and J. Seery. Designing network diagramsln Proceedings 1st
General Conference on Social Graphicspages 22{50, 1980.

S. G. Kobourov and K. Wampler. Non-Euclidean spring enbedders.|EEE
Transactions on Visualization and Computer Graphics 11(6):757{767,
2005.

REFERENCES 407

[LR88]

[LRP95]

[MB96]

[MBO9]

[Moe90]

[Mun97]

[Mun9s]

[Noa07]
[Nor96]

[ORO1]

[Ost96]

[PHNK12]

[PSA11]

[QB79]

[QEO00]

[Rit99]

T. Leighton and S. Rao. An approximate max- ow min-cut theorem for
uniform multicommodity ow problems with applications to a pproxima-
tion algorithms. In Proceedings of the 29th Annual Symposium on Foun-
dations of Computer Science (FOCS) pages 422{431, 1988.

John Lamping, Ramana Rao, and Peter Pirolli. A focustcontext tech-
nique based on hyperbolic geometry for visualizing large lerarchies. In
Proceedings of Computer Human Interaction pages 401{408. ACM, 1995.

T. Munzner and P. Burchard. Visualizing the structur e of the World Wide
Web in 3D hyperbolic space. In David R. Nadeau and John L. More
land, editors, 1995 Symposium on the Virtual Reality Modeling Language,
VRML '95, pages 33{38, 1996.

M. Jacomy M. Bastian, S. Heymann. Gephi: an open soure software for
exploring and manipulating networks. International AAAI Conference on
Weblogs and Social Media2009.

Sven Moen. Drawing dynamic trees.|EEE Software, 7(4):21{28, July
1990.

Tamara Munzner. H3: Laying out large directed graphs in 3D hyper-
bolic space. In L. Lavagno and W. Reisig, editors,Proceedings of IEEE
Symposium on Information Visualization, pages 2{10, 1997.

T. Munzner. Drawing large graphs with H3Viewer and Ste Manager.
In Proceedings of the 6th Symposium on Graph Drawingpages 384{393,
1998.

Andreas Noack. Energy models for graph clusteringl. Graph Algorithms
Appl., 11(2):453{480, 2007.

S. C. North. Incremental layout in DynaDAG. In Proceedings of the 4th
Symposium on Graph Drawing (GD), pages 409{418, 1996.

J. Ontrup and H. Ritter. Hyperbolic self-organizing maps for semantic
navigation. In Advances in Neural Information Processing Systems 14
pages 1417{1424, 2001.

Diethelm Ironi Ostry. Some three-dimensional grafy drawing algorithms.
Master's thesis, University of Newcastle, Australia, 1996

Helen Purchase, John Hamer, Martin Nellenburg, and Stephen G.
Kobourov. On the usability of Lombardi graph drawings. In Graph Draw-
ing, 2012.

Daniel Archambault Paolo Simonetto and David Auber. IMPrEd: An im-
proved force-directed algorithm that prevents nodes from cossing edges.
Computer Graphics Forum (EuroVis), 30(3):1071{1080, 2011.

N. Quinn and M. Breur. A force directed component pla@ment procedure
for printed circuit boards. IEEE Transactions on Circuits and Systems
CAS-26(6):377{388, 1979.

Aaron Quigley and Peter Eades. FADE: graph drawing, tustering, and
visual abstraction. In Proceedings of the 8th Symposium on Graph Drawing
(GD), volume 1984 ofLecture Notes in Computer Science pages 197{210.
Springer-Verlag, 2000.

H. Ritter. Self-organizing maps on non-euclidean paces. In Erkki Oja
and Samuel Kaski, editors,Kohonen Maps pages 97{110. Elsevier, Ams-
terdam, 1999.

408

[SMOO]

[Tut63]
[Vos99]

[VWNO4]

[Wal03]

[XRP* 12]

CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

J. Shi and J. Malik. Normalized cuts and image segmeution. IEEE
Transaction on Pattern Analysis and Machine Intelligence 22(8):888{905,
2000.

William T. Tutte. How to draw a graph. Proc. London Math. Society,
13(52):743{768, 1963.

Michael D. Vose.The Simple Genetic Algorithm: Foundations and Theory
MIT Press, 1999.

J. J. van Wijk and W. A. A. Nuij. A model for smooth view ing and naviga-
tion of large 2D information spaces.|EEE Transactions on Visualization
and Computer Graphics 10(4):447{ 458, 2004.

C. Walshaw. A multilevel algorithm for force-directed graph drawing.
Journal of Graph Algorithms and Applications, 7(3):253{285, 2003.

K. Xu, C. Rooney, P. Passmore, D. H. Ham, and P. Nguyen. A usr study
on curved edges in graph visualization. INIEEE InfoVis , 2012.

