
ML Notes

1 Introduction

In machine learning, what w want to do is to train a model to take a series of
(labelled) examples, represented by their features and adapt the parameters of
a model, s.t. a function y(x) takes in a new data point represented in the same
way as the training data points and outputs a vector that categorises it.

1.1 Types of Learning

1.1.1 Supervised Learning

In supervised learning, machine-learning models learn from labelled data. Here
each sample that we train (and test on) are the inputs and outputs of the
model — we learn to take in an input, produce an output, and always have the
ground-truth output to compare against during training. For example classi-
fication (assigning input vector to discrete categories), regression (assigning to
continuous variables) and so on. Every scenario of this sort needs annotated
data to perform this kind of learning, so pairs of training data points with labels
to train on are required for all such learning algorithms.

1.1.2 Unsupervised Learning

In unsupervised learning, we hope to transcend the above limitation of always
need to train on samples that we have labels for. The key idea is to learn to
represent inputs i.e., points in the space of all possible points, such that we
can learn from correlations in the data and use this to update parameters and
learn similarities or other useful functions we are interested in. For example,
we can learn from clustering (discovering groups of similar examples), density
estimation (discovering how data is distributed in input space) and so on.

1.1.3 Reinforcement Learning

In reinforcement learning, we typically learn from exploration in an environ-
ment, with only a week signal i.e., a reinforcement as to whether or not the
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actions and decisions we have made so far were good ones. We essentially want
to learn from the environment we exist in to find a policy i.e., find which actions
should be taken at which states to maximise a reward. This can be thought
of as a trial and error process, where there is a sequence of states and actions;
a current action affects immediate reward at a state, but also affects rewards
at later timesteps. Intuitively, a network can learn by interacting with itself
or other agents, until the optimal set of moves is achieved. Several problems
need to be dealt with in this setting — there is tradeoff between exploration
(trying out possible actions) and exploitation (prioritise actions that yield high
reward) and also a credit assignment problem in this sequential decision making
problem that makes it hard to pin-point the exact decision that led to a good
or bad reward signal.

2 Examples

2.1 Polynomial Curve Fitting

Goal: given training set data, where each data point is mapped to a target vari-
able (and the data points come from some function), our goal is to implicitly
try to discover the underlying function. This is difficult, because we want to
generalise from a finite data set.

y(x,w) = wo + w1x+ w2x
2 + ..+ wmx

m =
∑m
j=0 wjx

j

Although the polynomial is non-linear in x, it is a linear function of the coeffi-
cients. The value of the coefficients is determined by trying to fit the polynomial
to the training data by minimising an error function. For example, one error
function is the sum of squares of errors of predictions vs. the gold values. We
therefore want to minimise:

E(w) = 1
2

∑n
i=1{y(xi, w)− ti}2

We want to choose coefficients w to minimise E(w). Since the error is quadratic
in w, it’s derivate is linear, so there exists a unique solution. We also have to
choose the order of the polynomial in the first place and this is called model
comparison or model selection. We sometimes use the RMS error ERMS =√

2E(w)/N so that we can compare different sizes of datasets. The coefficients
may sometimes be too finely tuned to the training data, so we use a penalty
term or regularisation to control the over fitting phenomenon.

E(w) = 1
2

∑n
i=1{y(xi, w)− ti}2 + λ

2 ‖w‖
2
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Here λ governs the relative importance of the regularisation penalty against
the sum of squares error.

2.2 Gaussian Distribution

This is a probability distribution governed by two factors, the mean µ and vari-
ance σ2. It is defined by:

ℵ (x|µ, σ2) = 1√
2πσ2

exp(− 1
2σ2 (x− µ2))

THe Gaussian is normalised so that:∫ ∞
−∞
ℵ (x|µ, σ2) = 1

Now given a set of observations x = (x1, x2, ..., xN )T , such that observations
are drawn independently from the same distribution and are therefore i.i.d., the
probability of the data et, given µ and σ2 is:

p(x|µ, σ2) =

N∏
n=1

ℵ(xn|µ, σ2).

This is the likelihood function for the Gaussian. We can determine values for the
unkown parameters µ and σ2 to maximise the likelihood function. Intuitievly,
we should note that maximising the probability of the parameters given the
data and the probability of the data given the parameters are closesly related.
Instead of working with the likelihood, we work with the log likelihood, and
maximising this.

Maximising wrt µ, we get:

µML = 1
N

∑
n=1

Nxn.

Maximising wrt σ2, we get:

σ2
ML = 1

N

∑
n=1

N(xn = µML)2.

The limitations of the maximum likelihood approach are that is systematically
underestimates the variance of the distribution i.e. causes a bias. If we look at
the expectations of µML and σ2

ML, we see that:
E[µML] = µ

E[σ2
ML] = N−1

N σ2.

Therefore on average, the maximum likelihood estimate will obtain the correct
mean but will udnerestimate the true variance by a factor of N1

N
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