
Markov Decision Processes ∗

1 MDPs

Decision making is an important task, especially temporally. Both the decision
to be made and it’s impact have immediate (short-term) and long-term effects.
Immediate effects are transparent and can be judged at the current time-step,
but long term effects are not always as transparent. It is easy to think of ex-
amples where we can have good short-term effects that result in poor overall
long-term effects. We therefore want to choose an action that makes the right
tradeoff to yield the best possible overall solution to maximise our reward.

We use a Markov decision process (MDP) to model such problems to auto-
mate and optmise this process.

The components of an MDP model are:

• A set of states S: These states represent how the world exists at different
time points. Every such state i.e., every possible way that the world can
plausibly exist as, is a state in the MDP.

• A set of actions A: These actions can affect the current state of the world,
resulting in a new state; thus resulting in some effect and a different set
of further actions that can be taken. An important point of MDPs is that
effects of an action are probabilistic. Therefore, an action for a particular
state can result in different states with different probabilities, thus allowing
us to make a statistical decision.

• Effects i.e., a transition function T (s, a, s′): These are a result of taking
an action at a state, as described above. This is also called the model or
the dynamics and defines the probability of reaching state s′ from state s
with action a i.e., P (s′|s, a).

• Reward i.e., a reward function R(s, a, s′): These are a defined value for a
(state, action) pair i.e., the immediate reward value we obtain by taking
an action at a particular state.

∗This covers MDPs, CO-MDPs, POMDPS and algorithms for solving. Code is in a GitHub
repo (link). These notes are taken from Michael Littman’s exceptionally informative tutorial
at Brown University; for more detail and lectures consult his homepage.

1

The solution to an MDP is called a policy i.e., a mapping that defines for
each state, the best possible action to take. For the sake of simplicity, we limit
to finite horizon solutions i.e., we assume that agents do not exist for infinite
time periods. Therefore action values and rewards can decay with increasing
time according to some γ, thus urging agents to take action sooner rather than
later. We also compute a value function that is similar to a policy i.e., a map-
ping that defines for each state, a numerical value. From this value function,
we can then easily derive the policy i.e., given a numerical value for each state
we can proceed to specify an action for each state i.e., define a policy.

Note that our MDPs, as their names specifically state, follow the Markov as-
sumption. This says that for an MDP, the next state is solely determined by the
current state and action. Note that there exist situations when we want to look
back further i.e., the effect of an action might not depend on the previous states,
but can go back several states further. Our first-order Markovian assumption
however, will not let us model these situations directly.

Given an MDP, our goal is to find a policy, which is easy if we have knowl-
edge of the values of states for a horizon length. To do this let’s introduce the
Value Iteration Algorithm i.e., a way to compute the value function by find-
ing a sequence of value functions, each derived from the previous one. Similar to
every recursion function, we first define the base case. This is when our horizon
length = 1 i.e., when we are at a state and need to make a single decision. Since
we know the immediate rewards, for each state, we simply choose the action
corresponding to the argmax over all rewards. Now the second iteration deals
with horizon length = 2 i.e., when we have two steps forward. Here we want the
immediate reward for the action we take, plus the reward for the future action.
We’ve already computed horizon length=1 for every state, so for each action, we
simply sum the current reward plus the computed reward for the state it leads
to and again, choose the action corresponding to the argmax over all rewards.
We continue in this way until convergence. In all, this involves iterating over
all states and weighting the values with transition probabilities. The formula is
given below:

V∗i+1(s) = maxa

∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗i (s′)](1)

This is also called the Bellman update. In short: V ∗i (s) is the expected sum of
rewards on starting from state s and acting optimally for horizon length=i.

How do we know this converges?

We want to show that limk→∞ Vk = V ∗ i.e., we converge to unique optimal val-
ues. We know that for two approximations U and V , |Ui+1−Vi+1| ≤ γ |Ui−Vi|
i.e., as we continue, approximations get closer to one another. Therefore any

2

approximation must get closer to the most optimal U and this therefore con-
verges to a unique, stable, optimal solution.

So in all, value iteration allows us to repeatedly update an estimate of the
optimal value function according to the Bellman optimality equation, and we
can thus compute the optimal policy (read: optimal value function). This there-
fore involves iterating over all states and using the transition probabilities to
weight the values.

Let’s now look at Policy Iteration.

This manipulates the policy indirectly, rather than finding it through value
iteration. We start with some initial policy πo and at each iteration, perform a
policy evaluation and a policy improvement. This therefore includes computing
the policy at each iteration, solving the linear equation and then improving it,
until we find the optimal π

′
.

The convergence property of policy iteration: π → π∗.

We can easily prove this by showing that each iteration is a contraction; there-
fore the policy must either improve at each step, or it must already be the
optimal policy and does not change. Since the number of policies is finite (al-
beit exponentially large), policy iteration converges to the exact optimal policy.
Note that in theory, we could take an exponential number of iterations before
we converge, but for most problems of interest, convergence occurs much faster.
Interestingly, policy iteration requires fewer iterations than value iteration and
gives us the exact value function. Value iteration often converges to the optimal
policy long before the approximation of the value function is the correct value,
but this is MDP-specific.

Do we want to use Policy Iteration or Value Iteration?

From above, we know that policy iteration requires fewer iterations than value
iteration. However each iteration requires solving a linear system; which is in
contrast to value iteration, where each iteration only requires applying the Bell-
man operator.

In practice, policy iteration is often faster, especially when the transition prob-
abilities are structured and sparse, which makes solving the linear system far
more efficient.

It is interesting to note that a method that combines ideas from both, called
modified policy iteration (Putterman and Shin, 1978) solves the linear system
approximately, using backups similar to value iteration. This often performs
better than both policy iteration or value iteration.

3

2 POMDPs

We can think of POMDPs as the MDPs and CO-MDPs i.e., regular discrete
Markov decision processes, but with partial observability. This is far from a
trivial addition, considering that all solution procedures for regular MDPs give
values or policies for states, but require the state to be completely known at all
times.

Like a regular MDP, a POMDP has a set of states, a set of actions, transi-
tion weights, immediate rewards and action effects on states. The difference
is whether or not we can observe the current state of the process. Instead of
directly observing the current state, we get an observation that gives us a hint
about the state that it is in. These observations can be probabilistic, so we need
to specify the observation model i.e., the model that tells us the probability of
each observation for each state in the model.

The underlying dynamics of the POMDP are Markovian, but we have no direct
access to the current state, which therefore means our decisions require us to
keep track of the history of the process. This could possibly be the entire his-
tory, making this a non-Markovian process.

However, maintaining a probability distribution over all the states, gives us the
same information as maintaining the complete history. We therefore maintain a
distribution over states, and update this when performing an action and mak-
ing an observation. These updates involve using the transition and observation
probabilities.

2.1 Solving POMDPs

In regular MDPs, the problem that we want to solve is to find a mapping from
states to actions; however in POMDPs our problem is to find a mapping from
a probability distribution over states to actions. This probability distribution
over states is a belief state and the entire probability space i.e., the set of all
possible probability distributions is the belief space.

For example, in a two-state POMDP, our belief state can be represented by
a single number that represents the probability of being in the first state, which
allows us to simply infer the probability of the only other state i.e., the second
state. Therefore, this entire space of belief states can be represented as a line
segment albeit of significant width; which will clarify later explanations. These
lines become hyperplanes for higher dimensional examples.

The belief space is therefore a single line segment, labeled with a 0 and 1 on
either ends that tells us the probability of being in state s1.

Consider the problem of updating belief state, assuming we start at a particular

4

belief state b. If we take action a1 and receive observation z1 by taking the ac-
tion, then our next belief state is fully determined. Since we assume that there
are a finite number of actions and observations; given a belief state, there are a
finite number of possible next belief states, each corresponding to a combination
of action and observation. Consider the figure, where the red line corresponds
to our 1D belief space for a 2 state POMDP, the yellow dot is the initial belief
state, and the arcs represent the process of transforming the belief state. We
can therefore see that with a finite number of arcs (actions that correspond to
observations), we have a finite number of transformations, thus a finite number
of possible belief states.

Given that our observations are probabilistic, each belief state has a proba-
bility associated with it. Before we take an action, each resulting belief state
has a probability associated with it, and there are multiple possible next be-
lief states (the number of observations for a given action). Keep in mind that
for a given action, the next belief state probabilities must sum to 1. It turns
out that the process of maintaining a belief state is Markovian; the next be-
lief state depends only on the current belief state (and therefore current action
and observation). Therefore we can convert a discrete POMDP problem into
a continuous space CO-MDP problem, where the continuous space is the belief
space. The transitions of this new continuous space CO-MDP can be derived
from the transition and observation probabilities of the POMDP, and we are
tehrefore back to solving a CO-MDP and can use an adapted version of the
value iteration algorithm.

We do however have to consider the continuous state space which is differ-
ent from our CO-MDP. Earlier, in value iteration, we could mainting a table
with one entry per state, and the value of each state could be stored in the
table, giving us a finite representation of the value function. For our POMDP,
however, we have a continuous space and the value function is some arbitrary
function over the belief space. Our first problem is therefore, to represent this
value function. The POMDP formulation imposes restrictions on the form of
the solutions to the continuous space CO-MDP derived from the POMDP. The
key insight is that the finite horizon value function is piecewise linear and convex
(PWLC) for every horizon length. This essentially means that for each itera-
tion of value iteration, we need to only find a number of linear segments (that
is finite) that make up the value function. These linear segments comepletely
specify the value function over the belief space. In higher dimensions these
are not linear, but hyperplanes through our belief space, and we can represent
each hyperplane with a vector of numbers i.e., the coefficients of the hyperplane
equation. The value at any belief state is then found by plugging in the belief
state into the hyperplane equation (or more simply, if both the hyperplane and
belief state are vectors, the value of a belief point is the dot product of the two).
Therefore, the value function for each horizon is represented for each horizon,
as a set of vectors, and what we want i.e., the value of a belief state, is the
vector that has the largest dot product with the belief state. Note that instead

5

of linear segments over our belief space, another way to view the function is
as something that partitions the belief space into a finite number of segments.
Consider the figures below.

Now for our value iteration algorithm, consider the continuous space CO-MDP
that we want to adapt value iteration to. From above, since each horizon’s value
function is PWLC, we can represent the value function at each iteration as a
set of vectors i.e., coefficients of the hyper-planes. But now, in each iteration
of value iteration in the discrete state space, we can find a state’s new value by
looping over all possible next states. But when in a continuous state CO-MDP,
we cannot enumerate all possible states. There are therefore specific algorithms
that try to solve this difficulty i.e., given a value function as a set of vectors
for horizon h, we want to generate the set of vectors for the value function of
horizon h+ 1.

Consider value iteration for a problem that has horizon length=3. We assume
the POMDP has two states, two actions and three observations for simplicity.

6

2.2 POMDP Solution General Form

In the general case, lines corresponding to two state value functions become hy-
perplanes. This hyperplane is essentially a vector of coefficients and our value
function similarly can be represented with a set of vectors.

Let V ′ be the set of vectors for the next stage of value iteration and let V be
the set of vectors from the previous stage. In this instance, the stages of value
iteration correspond to succeeding horizon lengths. We know that each vector
in V ′ is constructed from a combination of vectors in V i.e., from the immedi-
ate rewards and the transformation of V . Every vector in V has a particular
strategy associated with it, also note that each vector at each stage denotes the
value of acting according to the particular current strategy and future strategy
for that vector. So selecting a vector at one stage is equivalent at some level, to
selecting a particular course of action at a stage and a particular future action
strategy. The future strategy is contingent on the particular observations that
are received, but note that the future strategy is fixed for a particular observa-
tion sequence.

What we want is to construct the vector V ′ given V (where V tells us the
best way to act in the previous stage). Once we have this set of vectors, we
now know how to act for a given belief state i.e., to simply choose the action
associated with the vector that gives the highest value at the point. Now every
action performed has some immediate and future consequences. The immedi-
ate consequences are directly available from the POMDP problem formulation
and the future consequences are completely contained in the set V . However,
once we perform an action, things change, so all possible future consequences
must be weighted by the probability that we incur those consequences. We can
take these probabilities directly from the POMDP formulation and specifically,
depend on our current belief, the immediate action we take and the observation
that world provides us.

We can therefore take the set V and transform it into a set S(a, z) for each
action a and observation z. Each set therefore represents the effect of choosing
the various courses of action for vectors in V after having performed action a and
observed observation z. And to construct each of the sets S(a, z), we perform
a simple transformation using the set V and the POMDP model parameters.
We shoud note that like V , the vectors S(a, z also form a PWLC value function
over the belief space, but partition it differently.

Note however, that these must be interpreted differently. A point in the function
V can tell us how good it is to follow that strategy if our belief was that point in
the belief space, whereas a oint in S(a, z) corresponds to how good it is to follow
that strategy given that we started from that point, performed a and observed z.

Let’s now look at the problem of constructing the vectors v′ from the set v

7

in the first place. A useful and important point to note is that given a partic-
ular belief point, we can easily construct the vector in v′ for that belief point,
considering our partition view of the sets of vectors. For each action that we
an perform, we can see any of the possible observations after doing this. For a
given action, we want to look at the immediate effects of the action and select
a future course of action for each possible observation we can get. Ignoring the
immediate effects, we can now see that we have the information we need to
select a course of action for each observation; the sets S(a, z). Now for a given
observation, the choice of action at a given belief point can be easily determined.
The vector that gives us the maximum value i.e., the one that dominates, is the
one that we want to choose. This information we can pick out from the par-
tioning diagram, which shows us which vector dominates at which point. For
all the observations, we can do the same and this amounts to drawing a vertical
line corresponding to a particular belief point and simply selecting all vectors
whose partition it intersects. This now gives us a contigency strategy; it tells
us which v vector to choose for each observation, which is equivalent to telling
us which future course of action is best at that point.

8

