
Log-Linear Models!

1 Introduction

Log-linear models are advantageous because they allow a far richer set of fea-
tures, that provide better representation for what we want to model especially
for various natural language processing problems.

Consider a sequence of words and a general lagnauge modeling problem i.e.,
we want to estimate the probability of word i being a certain word, given the
previous i − 1 words. We therefore want to model the distribution over the
word wi given the previous words w1...wi−1. For an n-gram language model we
assume that

p(wi |w1...wi−1) = q(wi |wi−n+1, .., wi−1)

where q(wi |wi−n+1, .., wi−1) is a parameter of the model for the n-gram. You
can estimate the q parameters in a number of ways e.g., linear interpolation.

n-gram models are restricted in that they condition only on the previous n− 1
words but not on any other features that those words could incorporate. Linear
interpolation of all such features is obviously inefficient beyond a small number
of estimates. Here, using log-linear models offers a more satisfactory method to
incorporate all the contextual information as features.

2 Log-linear Models

Definition: A log-linear model primarily consists of the following components:

• A set X of possible inputs

• A set Y of possible labels

• A positive integer d denoting the number of features and parameters of
the model

• A function f : X × Y → Rd

• A parameter vector v ∈ Rd
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For any x ∈ X , y ∈ Y, the model defines a conditional probability:

p(y|x; v) =
exp(v · f(x, y))∑

y′∈Y exp(v · f(x, y′))
(1)

Here exp(x) = ex and v · f(x, y) =
∑d

k=1 vkfk(x, y) is the inner product be-
tween parameter vector v and f(x, y).

Features: For any pair (x, y), f(x, y) ∈ Rd is the feature vector represent-
ing that pair. Each dimension or component fk(x, y) for k = 1...d is a distinct
feature that represents some property of the input x in conjunction with label
y. Each feature has an associated parameter vk whose value is estimated from
the training examples.

Notes on feature construction: In the language modeling problem we have
our input x as a sequence of words w1..wi−1 and the label y is the new word in
the sequence. You can have features as indicator functions representing various
aspects i.e., a feature space of all unigrams where the component for a unigram
w is set to 1 if label y is w.

Using feature templates makes this simpler i.e., assign unique IDs to elements
seen in training data, to allow efficient lookup from a hash table. For example,
if we index every trigram or every (bigram, previous POS) pair or some other
feature combination, we can then easily incorporate indicator functions and es-
timate parameters when needed.

Efficient feature representation: When implementing log-linear models,
sparse features are efficient because we do not need to explicitly represent or
manipulate the entire space i.e., d-dimensional feature vectors f(x, y). It is more
efficient to compute a function through hash tables s.t., for any pair (x, y), we
only want the indices of relevant i.e., non-zero features. For example:

Z(x, y) = k : f)k(x, y) = 1 (2)

When using hash functions we can now compute Z(x, y) in O(|Z(x, y)|) time,
where |Z(x, y)| << d. Also consider the equation below, that is a central com-
putation in log-linear models i.e., an inner product of the parameter vector and
feature vector:

v · f(x, y) =

d∑
k=1

vkfk(x, y) =
∑

x∈Z(x,y)

vk (3)
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Therefore instead of iterating from 1..d, we can simply look only at non-zero
indicator features and compute the inner product in O(|Z(x, y)|) time.

3 Fundamental Model Equation

Consider a pair (x, y) such that x ∈ X and y ∈ Y in the training data. The
conditional probability under the model is:

p(y|x; v) =
exp(v · f(x, y))∑

y′∈Y exp(v · f(x, y′))
(4)

log(p(y|x; v)) = v · f(x, y) = log(
∑
y′∈Y

exp(v · f(x, y′))) (5)

In the second equation, the inner product is linear in the features f(x, y). The
second term depends only on x ∈ X and not on the label y. The log probability
is therefore linear in the features f(x, y) hence the origination of the name of
the model.

4 Parameter Estimation

Log-likelihood function and Regularisation: Consider the training set of
examples (x(i), y(i)) for i ∈ 1.n.n and x(i) ∈ X, y(i) ∈ Y . Given the parameter
vector v, we can calculate the log conditional probability log(p(y|x; v)) from the
equations above. For a particular example, the higher the log conditional prob-
ability, the better the model fits this example. Now the log-likelihood considers
the sum of the log probabilties of examples in the training data:

L(v) =

n∑
i=1

log(p(y(i)|x(i); v)) (6)

Therefore for any parameter vector v, this likelihood is a measure of how well v
fits the training examples i.e., we have a function of the parameters v. One es-
timation method is the maximum likelihood estimation i.e., choose parameters
given by:
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vML = arg max
x∈Rd

L(v) (7)

Therefore this method seeks to find parameters that fit the training data as
well as possible.
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